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Abstract—We give new characterizations and lower bounds
relating classes in the communication complexity polynomial
hierarchy and circuit complexity to limited memory commu-
nication models.

We introduce the notion of rectangle overlay complexity of
a function f : {0, 1}n × {0, 1}n → {0, 1}. This is a natural
combinatorial complexity measure in terms of combinatorial
rectangles in the communication matrix of f . Furthermore,
we consider memoryless and limited-memory communication
models, originally introduced in [1] with slightly different
terminology. In these communication models there are two
parameters of interest: The maximum message length s (which
we think of as space) and the number of memory states w.
Specifically, these are one-way protocols which proceed in
rounds. In each round, Alice sends a message of at most
s bits to Bob; receiving a message from Alice, Bob has to
decide on the spot whether to output 0 or 1 and halt, or to
continue the protocol. If he decides to continue, he immediately
forgets Alice’s message. In memoryless protocols, no memory is
transferred between different rounds (but Bob still has “space”
to hold Alice’s messages within each round). We can make Bob
more powerful by giving him w memory states. He can change
into a new state at the end of each round.

We show that rectangle overlays completely characterize
memoryless protocols. Then, we go on to show several connec-
tions to the communication complexity polynomial hierarchy
defined by Babai, Frankl and Simon in 1986 [2]. This hierarchy
has recently regained attention because its connection to the
algebrization barrier in complexity theory [3]. We show that
PNPcc is completely characterized by memoryless protocols
with polylog(n) space (maximum message length), and thus
it admits a purely combinatorial characterization in terms of
rectangle overlays. If Bob has 3 memory states and Alice sends
messages of length polylog(n), they can compute every level of
Σcc

k in the communication complexity hierarchy (for constant
k), and also every function in AC0. Furthermore, we show that
with 5 memory states and messages of length polylog(n) they
can compute exactly the functions in the communication class
PSPACEcc. This gives the first meaningful characterization
of PSPACEcc in terms of space, originally defined in [2]
without any notion of space. We also study equivalences and
separations between our limited memory communication model
and branching programs, and relations to circuit classes.

Keywords-Communication Complexity, Space, Polynomial
Hierarchy, Combinatorial Characterization.

I. INTRODUCTION

Communication complexity is one of the jewels of theory
of computation. There is a number of profound questions
of interest to communication complexity itself, though its
power mostly shows when proving lower bounds for other
models of computation. For instance, lower bounds for

streaming e.g. [4], [5]), circuit complexity e.g. [6], [7], and
property testing [8].

In classical communication complexity, two players Al-
ice and Bob are each given only part of the input to a
computational problem. The goal is to cooperatively solve
the problem by exchanging as little information as possible.
The computational power of Alice and Bob is unlimited. In
particular, they have unlimited time and unlimited memory
space. In this two-player setting, we assume Alice and
Bob receive inputs x, y ∈ {0, 1}n respectively and wish to
compute a boolean function f : {0, 1}n × {0, 1}n → {0, 1}
on (x, y), that is to determine the value of f(x, y).

In this work we revisit some novel one-way communi-
cation models, first introduced in [1] with slightly different
terminology,1 in which the memory of the receiving end is
severely limited (in some cases, even without any explicit
memory). Our models show surprising connections to the
communication classes corresponding to the polynomial
time hierarchy [2]. These classes regained interest recently
through their relation to algebrization [3], [9]. Our models
give rise to characterizations of different levels of this hier-
archy, either through very simple and intuitive combinatorial
characterizations or through our limited memory communi-
cation models. First, these characterizations make transpar-
ent known separation results in the hierarchy (in particular
those achieved recently by Impagliazzo and Williams [10]).
In addition, we explore relationships between our models
and bounded-width branching programs and bounded-depth
circuit classes.

We hope that this rich set of connections leads to further
advancements in the aforementioned fields of complexity.
We discuss future research directions in Section VIII.

A. Memoryless Communication Model and its Combinato-
rial Characterization

In the one-way memoryless model, protocols proceed in
rounds. In round i, Alice sends a message A(i, x) to Bob.
Upon receiving this message, Bob has three choices: He can
terminate and output 0; terminate and output 1; or decide

1We introduced new terminology since [1] reflecting our understanding
on what matters. In [1] Bob had two types of memory. A large oblivious
one that was only a function of the communication, and a small non-
oblivious one that was a function of everything. Now, Bob has a small
number w of memory states—this corresponds to the old notion of non-
oblivious memory. Each of Alice’s messages consist of up to s bits—the s
corresponds to the old notion of oblivious memory.



to continue. If he continues, he forgets everything that has
happened so far, and enters the next round. The cost of
the protocol is maxx,i |A(i, x)|, i.e. the maximum message
length. The memoryless complexity of a function f , denoted
by S(f), is the complexity of the most efficient protocol
that correctly computes f , i.e. minP maxx,i |A(i, x)| where
P ranges over all protocols that correctly compute f .

1) Rectangle Overlay: This one-way memoryless model
has a simple and intuitive combinatorial characterization:
rectangle overlays. The rectangle overlay concept gener-
alizes the rectangle partition and rectangle cover concepts
that have been previously used in the study of classical
communication complexity. Similar to rectangle partitions
and rectangle covers, rectangle overlays are defined using
combinatorial rectangles of the form R = X × Y , where
X,Y ⊆ {0, 1}n. A rectangle overlay of length l is a se-
quence of tuples (R1, b1), (R2, b2), . . . , (Rl, bl) where each
Ri is a combinatorial rectangle that has “color” bi ∈ {0, 1}.
For completeness, the union of these rectangles must cover
the whole domain {0, 1}n × {0, 1}n. This overlay defines
a function f : {0, 1}n × {0, 1}n → {0, 1} in the following
way: For each input pair (x, y) ∈ {0, 1}n × {0, 1}n, find
the first rectangle Ri in the sequence that contains (x, y),
then define the output of f(x, y) to be bi. We denote the
minimum length of any rectangle overlay that computes f
as RO(f).
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Figure 1. The top square is the communication matrix of some function.
Below it is a construction of this matrix by a rectangle overlay (we draw
this using the “overlay” feature of image processing tools, hence the name).
The third row shows a covering of the 1s by rectangles. We will see that
rectangle overlays can be exponentially shorter than rectangle covers (in
terms of number of rectangles).

As one reviewer pointed out, there is a simple equivalent

definition of overlays: Consider a decision list (i.e., width-
1 branching program) of length l that can query not only
single bits of the input but can make rectangle queries, i.e.,
check whether (x, y) ∈ Ri. Our first result shows that the
overlay complexity RO(f) of a function characterizes its
memoryless complexity S(f).

Theorem 1 (Rectangle overlay characterizes memoryless
complexity). For every boolean function f : {0, 1}n ×
{0, 1}n → {0, 1}, it holds that S(f) ≤ dlog (RO(f))e ≤
2S(f) + 1.

As an example, we give a rectangle overlay of “Greater-
Than” function GT: For x, y ∈ {0, 1}n, GT(x, y) = 1 if
and only if x > y, where > is the lexicographic order. A
standard fooling set argument (cf. [11] Section 1.3) shows
that one needs at least 2n − 1 monochromatic rectangles to
cover all the x > y inputs; and at least 2n monochromatic
rectangles for all the x ≤ y inputs. However, there exists a
rectangle overlay of length 2n + 1 that computes GT. Say
x = x1x2 . . . xn and y = y1y2 . . . yn. We define R>i

def
=

{(x, y) | xi = 1, yi = 0} and give it color 1; similarly,
R<i

def
= {(x, y) | xi = 0, yi = 1} gets color 0. Finally, we set

Rn+1 = {0, 1}n×{0, 1}n and give it color 0. The rectangle
overlay

(R>1 , 1), (R<1 , 0), . . . , (R>n , 1), (R<n , 0), (Rn+1, 0)

has length 2n + 1 and computes GT. If one can cover
the 1-entries of a function f with m rectangles, then surely
RO(f) ≤ m + 1 (one needs an additional “background
rectangle” for the 0’s), thus by Theorem 1, S(f) ≤
N1(f) + 1, and similarly S(f) ≤ N0(f) + 1. Furthermore,
GT shows that S(f) can be exponentially smaller than
min(N1(f), N0(f)).

Another nice fact, pointed out by one of the reviewers, is
that the deterministic communication complexity D(f) is at
most RO(f): Indeed, in a deterministic protocol, Alice can
send a bit-vector telling Bob with which rectangles her input
x is consistent. Bob can then compute the smallest index i
such that (x, y) ∈ Ri, and outputs bi.

The rectangle overlay characterization allows a very
intuitive lower bound technique for one-way memoryless
protocols.

Theorem 2 (Rectangle Lower Bound). Let f : {0, 1}n ×
{0, 1}n → {0, 1} be a boolean function and µ a product
probability distribution on {0, 1}n × {0, 1}n. Let εµ

def
=

maxR µ(R), where R ranges over all monochromatic rect-
angles in the communication matrix of f . Then S(f) ≥
1
4 log

(
1
εµ

)
− 1

2 .

Using this lower bound technique we prove nearly tight
lower bounds in the memoryless complexity of several
functions, including the inner product function over GF(2)



(Corollary 12), the “List-Non-Equality” function (Corol-
lary 13) and the “Gap-Hamming-Distance” function (Corol-
lary 14.) 2

Open Problem 1. In the setup of Theorem 2, let ε def
=

minµ εµ, where µ ranges over all product distributions. Is
S(f) ≤ polylog

(
1
ε

)
?

2) The Class PNPcc : Babai, Frankl, and Simon [2] de-
fined a communication analogue of the polynomial hierarchy
of the Turing Machine world. This hierarchy is defined using
non-determinism and alternating quantifiers, similarly to its
Turing Machine counterpart. For completeness we recall
the formal definitions of these communication classes in
Section II. For now, let us just say that the first level of
this hierarchy Σcc1 = NPcc is the class of all functions
f = {fn}∞n=1

3 whose nondeterministic communication
complexity N1(f) is at most polylog(n). Similarly, Πcc

1 =
coNPcc contains those f ’s with N0(f) ∈ polylog(n).

The class PNPcc is defined using protocols with access
to a certain oracle. Suppose Alice and Bob can exchange
messages as usual, but in addition they can query Oracles in
the class NPcc (by each sending her part for the query). The
cost of such a protocol is the total amount of communication,
where an oracle query on strings of length s counts as
dlog(s)e bits of communication. Now, PNPcc is the class
of all functions computable by such an oracle protocol of
cost at most polylog(n).

Theorem 3. A function f = {fn}∞n=1 is in PNPcc ⇐⇒
S(f) ∈ polylog(n).

PNPcc is strictly between the first and second level of the
polynomial hierarchy:

Fact 4 ([10]). Σcc1 ∪Πcc
1 ( PNPcc ( Σcc2 ∩Πcc

2

Impagliazzo and Williams [10] proved the second
separation using the “List-Non-Equality” function LNE:
S(LNE) = Ω(

√
n). Note that LNE can be computed

by a depth-3 circuit of polynomial size. We improve this
separation showing that there are two functions of small
depth-3 circuits but linear memoryless complexity: One of
them in Σcc2 and the other in Πcc

2 . Both of these functions
are total function extensions of the partial function “Gap-
Hamming-Distance” (Corollary 14.)

The complexity classes Σcck and Πcc
k have a nice combi-

natorial characterization as iterated intersections and unions
of monochromatic rectangles [2]. Before our work no such
characterization was known for PNPcc . We give a very

2Technically, the “Gap-Hamming-Distance” function is a partial function,
we prove lower bound for every total-function extension of this function

3When we discuss asymptotics, we use the notation f = {fn}∞n=1 to
denote a family of boolean functions, one for each input length n, fn :
{0, 1}n × {0, 1}n → {0, 1}. The communication protocol (or branching
program, or circuit) involved should also be understood as a non-uniform
family of protocols (or branching programs, or circuits), one for each input
length.

elegant (and somewhat unexpected) combinatorial charac-
terization for PNPcc : Rectangle overlays characterize one-
way memoryless protocols (Theorem 1), which in turn
characterize PNPcc (Theorem 3). In addition, we are now
able to give very intuitive proofs for several results about
PNPcc in [10], including the above separation.

B. Limited Memory Communication Model

In the one-way limited memory communication model, we
give Bob w memory states. Note that this memory is “per-
manent”: Bob can make his decisions depending on Alice’s
message and his current memory state, and can also update
the memory state for the next round. Contrary to this, he will
not remember Alice’s old message in the next round. We let
SPACELTD[s, w] be the set of all functions computable by a
one-way limited memory protocol with w memory states and
maximum message length s. Surprisingly, protocols in which
Bob has 5 memory states and Alice sends messages of length
polylog(n) can compute exactly those functions PSPACEcc,
which is the “infinite-level” limit of the hierarchy in [2].)

Theorem 5. PSPACEcc = SPACELTD[polylog(n), 5]. More-
over, the same holds true when replacing 5 by a larger
constant.

Despite what its name suggests, when the class PSPACEcc

was first defined by Babai, Frankl and Simon in 1986, the
authors noted that “we do not have a notion corresponding
to space”. Now through this newly found equivalence, we
can actually put a “polynomial” space notion behind this
long known class PSPACEcc. We emphasize that we really
need this subtle notion of “space” in order to characterize
PSPACEcc, i.e. polylog(n) message length and these all-
powerful 5 memory states (lacking those 5 states by Theo-
rem 3 we go down to PNPcc ).

Theorem 5 is the communication complexity analogue
of Barrington’s Theorem [12]. Barrington’s Theorem states
that every function in NC1 can be computed by a width-5
branching program of polynomial length. In fact, the proof
of Theorem 5 also shows the following.

Theorem 6. Suppose f ∈ NC1. Then f ∈
SPACELTD[O(log n), 5] (under every input partition).

With 3 memory states for Bob and maximum message
length polylog, Alice and Bob can compute any constant
level of the communication polynomial hierarchy.

Theorem 7. For every constant k ∈ N+ (independent of the
input length n), Σcck ∪Πcc

k ⊆ SPACELTD[polylog(n), 3].

As a corollary, we have:

Corollary 8. Suppose f ∈ AC0, then f ∈
SPACELTD[polylog(n), 3] (under every input partition).



We prove Theorem 7 by derandomizing Razborov
and Smolensky’s low-degree polynomial approximation of
bounded-depth circuits [13], [14]. For this we borrow ideas
from Newman’s randomness reduction scheme [15] and
Braverman’s error indicator [16]. Allender and Hertrampf
did something similar in their circuit depth reduction pa-
per [17].

The following fact states that limited-memory protocols
can simulate bounded-width branching programs:

Fact 9. Let f : {0, 1}n × {0, 1}n → {0, 1}. If there is a
width-w branching program of length l that computes f ,
then f ∈ SPACELTD[dlog le+ 1, w].

The other direction does not hold. Indeed, there is a
natural function for which limited-memory protocols are
more efficient than branching programs. Consider the inner
product modulo 3: IP3(x, y)

def
=
∑n
i=1 xiyi mod 3. An

unpublished result by Shearer [18] shows that every width-2
branching program computing IP3 has length Ω

((
3

2
√

2

)n)
.

On the other hand, there is a protocol in which Bob has two
memory states that computes IP3 with O(

√
n) maximum

message length. More generally:

Theorem 10. Suppose f : {0, 1}n × {0, 1}n → {0, 1}
can be decomposed as f(x, y) = g(h1(x, y), . . . , hk(x, y))
where each hi : {0, 1}n × {0, 1}n → {0, 1} depends on
at most ` bits from each of its two n-bit inputs. Then
f ∈ SPACELTD[`+ k + dlog ke , 2].

The details of the proof of this theorem are deferred to
Appendix. Please see the full version of this paper [19] for
all appendices. We can decompose IP3 into

√
n blocks of√

n bits each. The value of IP3 on one block is a number in
{0, 1, 2} and can be represented using two bits. Thus, k =
2 d
√
ne and ` = d

√
ne, and IP3 ∈ SPACELTD[O(

√
n), 2].

C. Roadmap to the Rest of the Paper

We recall basic definitions in Section II. Formal defini-
tions of our communication model are given in Section III.
Section III also contains our results concerning rectangle
overlays and some preliminary discussions and relations to
circuit classes (in the Appendix we give an example of
a function separating our memoryless model from AC0).
Sections IV, V, VI contain characterizations and separations
of PNPcc , Σcck , and PSPACEcc. In Section VIII we discuss
some future research directions.

II. STANDARD MODELS: DEFINITIONS AND NOTATION

This paper studies relations of communication memory
models with boolean circuits and branching programs. For a
detailed treatment cf. [20], [21]. For completeness we briefly
recall the definitions here. We also recall the definitions
of oracle classes in Communication Complexity [2]. For
a comprehensive treatment and definitions of deterministic

and non-deterministic communication complexity cf. [11]
(Section 1.1 and 2.1).

Definition 1 (Boolean Circuits). A boolean circuit is a
directed acyclic graph (DAG) with a unique sink. Each
source of this graph corresponds to a boolean input vari-
able; each internal node has a label in {∧,∨,¬} denoting
the boolean operation (gate) to apply (the in-degree of ¬
nodes must be 1). The fan-in of a node is its in-degree. We
evaluate the output of the circuit inductively by evaluating
the corresponding gates. The depth of a circuit is the length
of the longest path from one of the sources to the unique
sink.

Definition 2 (Bounded-Depth Circuit Classes: AC0 and
NC1). A family {fn}∞n=1 of boolean functions is in AC0

if every fn can be computed by a boolean circuit on the
basis {∨,∧,¬} with constant depth, polynomial size and
unbounded fan-in. A family {fn}∞n=1 is in NC1 if every fn
can be computed by a boolean circuit on the basis {∨,∧,¬}
with O(log n) depth, polynomial size and fan-in 2.

Definition 3 (Branching Programs). Let w, l, n ∈ N+. A
width w length l branching program defined on an n-bit
input, is defined as a sequence of l instructions and a
set SYES ⊆ {1, 2, . . . , w}. Each instruction is of the form
< i, f, g >, where i ∈ {1, 2, . . . , n} and f, g are functions
from {1, 2, . . . , w} to {1, 2, . . . , w}. Such a branching pro-
gram computes a function B : {0, 1}n → {0, 1} with the
computation defined as follows: A state M is initially set
to 1. We execute the instructions in the branching program
in order: For an instruction < i, f, g >, we read the ith

bit of the input. If this is 0, update M def
= f(M); if it is 1,

update M def
= g(M). If the state M is in SYES after the final

instruction, output 1. Otherwise output 0.

We now define related communication complexity classes:
The polynomial hierarchy PHcc, the class PSPACEcc, and
oracle communication classes. The polynomial hierarchy
PHcc can be defined in terms of a game: Given x, y ∈
{0, 1}n, a prover and a disprover take k turns in trying to
prove / disprove that f(x, y) = 1. In the end, the “referees”
Alice and Bob communicate and output 0 or 1. The value
of this protocol on (x, y) is defined to be 1 if the prover has
a winning strategy, i.e., can make sure that Alice and Bob
output 1 in the end. Otherwise, the value is 0. The whole
communication of prover, disprover, Alice, and Bob must be
at most polylog(n) bits long. If the prover speaks first, this
is a Σk-protocol. If the disprover speaks first, a Πk-protocol.
Now Σk (Πk) is the set of functions {fn}∞n=1 that can be
computed by a Σk-protocol (Πk-protocol). More formally:

Definition 4 (Communication Complexity Polynomial Hi-
erarchy). Let k(n) ≤ polylog(n). We say that a family of
boolean functions {fn}∞n=1 can be computed by a Σcck(n)

protocol if there exist φ, ψ : {0, 1}n × {0, 1}∗ → {0, 1},



such that for every two n-bit strings x, y, fn(x, y) = 1 if
and only if

∃u1∀u2∃u3 . . . Qk(n)uk(n)(φ(x, u) � ψ(y, u))

Here for each i ∈ [k(n)], ui is a bit string of length at most
polylog(n). When k is even, � stands for ∨ and Qk(n) is ∀;
when k is odd, � stands for ∧ and Qk(n) is ∃.

We define Πcc
k(n) analogously, by switching the roles of the

two quantifiers (∃ and ∀) and the two boolean operators (∧
and ∨).

Finally, we define PHcc
def
=
⋃∞
k=1 Σk and PSPACEcc

def
=

Σpolylog(n).

That is, PHcc allows any constant number of alternations
between prover and disprover, whereas PSPACEcc allows
polylog(n) many alternations.

Example: List-Non-Equality. Consider the function
LNE, defined as follows: Partition x ∈ {0, 1}n into

√
n

many blocks of equal size: x = x(1) . . . x(
√
n). Similarly

y = y(1) . . . y(
√
n). Now LNE(x, y) = 1 if and only if

x(i) 6= y(i) for all 1 ≤ i ≤
√
n. This function is in Π2:

If f(x, y) = 0, the disprover can send an index i such
that x(i) = y(i). If this is wrong, and in fact x(i) 6= y(i),
then the prover can send some j such that x(i)

j 6= y
(i)
j .

After this, Alice and Bob exchange two bits to determine
whether prover or disprover was right. The total amount of
communication is 2 dlog ne + 2. In fact, LNE ∈ Σ2, too,
although this is a little bit more difficult to prove [22].

Example: Inner Product. Let IP(x, y)
def
=
∑n
i=1 xiyi

mod 2. This function is in PSPACEcc. Partition x into
two n/2-bit strings: x = x(1)x(2); similarly y = y(1)y(2).
To prove that f(x, y) = 1, the prover announces two
bits: IP(x(1), y(1)) and IP(x(2), y(2)). If the prover lies, the
disprover can challenge him, and the protocol recurses to
determine IP on the part about which the prover allegedly
lied. If this sub-protocol determines that the prover indeed
lied, the protocol outputs 0. Otherwise, it outputs the parity
of the two announced bits. Proving that f(x, y) = 0
is analogous, with the roles of the prover and disprover
exchanged. This protocol has a total of O(log n) alternations
and O(log n) communicated bits. Thus, IP ∈ PSPACEcc.

We should remark that it is not known whether IP ∈ Σ2

or even whether PSPACEcc = Σ2.

Observation 11 (Relations between Communication Classes
and Circuit Classes). Let {fn}∞n=1 be a family of functions
fn : {0, 1}n × {0, 1}n → {0, 1}. It holds that {fn}∞n=1 ∈
Σcck(n) if and only if there exist m ≤ 2polylog(n), functions
A,B : {0, 1}n → {0, 1}m, and a circuit C on 2m input
variables such that:
• The depth of C is at most k(n) + 1.
• The output gate of C is ∨.
• C has size at most 2polylog(n).

• f(x, y) = C(A(x), B(y)).
Similarly, {fn}∞n=1 ∈ Πcc

k(n) if and only if the circuit is as
described, but with an ∧-gate at the top.

Definition 5 (PNPcc). An oracle protocol is a classical com-
munication protocols, where Alice and Bob can also make
queries of the form Q(f(x), g(y)). Here f, g : {0, 1}n →
{0, 1}m are arbitrary preprocessing functions and Q is the
oracle. The cost of an oracle query is defined to be logm.
The total cost of the protocol is the number of communicated
bits plus the total cost of all queries. The class PNPcc

contains exactly those functions computed by protocols with
an oracle in NPcc and total cost polylog(n).

III. MODEL DEFINITION AND A COMBINATORIAL
CHARACTERIZATION

Here we provide a formal definition of our one-way
limited memory communication model, related complexity
measures, complexity classes and the rectangle overlay char-
acterization. Also, at the end of this section we list some
important consequences of these definitions and characteri-
zations.

Definition 6. A one-way limited-memory protocol has two
parameters of interest: s, the maximum length of Alice’s
messages, and w, the number of Bob’s memory states. Alice
is specified by a function A : N+ × {0, 1}n → {0, 1}s,
Bob by B : {0, 1}n × {0, 1}s × [w]→ {0, 1,⊥} × [w]. The
protocol proceeds in rounds. In round i, Alice computes a
message α := A(i, x) and sends it to Bob. Bob, who is
in memory state q ∈ [w] when he receives α, computes
(β, q′) := B(y, α, q). If β ∈ {0, 1}, he outputs β and the
protocol ends. If β = ⊥, he changes his memory state to q′

and the players enter round i+ 1. The number of rounds is
limited: If the protocol has not halted within w · 2s rounds,
it outputs 0 by default.

SPACELTD[s, w] is the set of functions computable by a
one-way limited-memory protocol with maximum message
length s and w memory states. If w = 1 we call the protocol
memoryless and define SPACELESS[s]

def
= SPACELTD[s, 1].

It is essential that the number of rounds be limited.
Otherwise, every problem becomes solvable with message
length dlog (n+ 1)e+ 1 and two memory states; this is an
analog to the (easy) fact every function can be computed by
a width-2 branching program (of exponential length). In a
memoryless protocol though, Alice will never need to send
the same message twice. That is, an optimal memoryless
protocol with messages of length s will take at most 2s

rounds, and the limit we imposed becomes redundant.

A. The Rectangle Overlay Characterization

As already discussed in the introduction, one of the main
contributions of this paper is a combinatorial characteriza-
tion of one-way memoryless protocols through rectangle



overlays. Below is the formal definition and the proofs of
the characterization theorems.

Definition 7. For a positive integer n, a rectangle overlay
on {0, 1}n × {0, 1}n of length l is a sequence of tuples
(R1, b1), (R2, b2), . . . , (Rl, bl) such that
• for each i ∈ {1, 2, . . . , l}, Ri is a combinatorial

rectangle on the domain {0, 1}n × {0, 1}n (in other
words, Ri = Xi × Yi where Xi ⊆ {0, 1}n and
Yi ⊆ {0, 1}n) and bi ∈ {0, 1}

•
⋃l
i=1Ri = {0, 1}n × {0, 1}n

Such a rectangle overlay computes/defines a function f :
{0, 1}n × {0, 1}n → {0, 1} in a natural way. For every
input pair (x, y) ∈ {0, 1}n × {0, 1}n, find the smallest i
such that (x, y) ∈ Ri, then define the output of f(x, y) to
be bi.

The rectangle overlay complexity of a function
f : {0, 1}n × {0, 1}n → {0, 1}, denoted as
RO(f), is defined to be RO(f)

def
= min{l :

there is a rectangle overlay of length l that defines f}.

Theorem 1 (restated). For every boolean function f :
{0, 1}n × {0, 1}n → {0, 1}, it holds that S(f) ≤
dlog (RO(f))e ≤ 2S(f) + 1.

Proof: begin with the first (and easier) inequality:
S(f) ≤ dlog (RO(f))e. Let l = RO(f). There is a rectangle
overlay (R1, b1), (R2, b2), . . . , (Rl, bl) that computes f . We
construct a one-way memoryless protocol with messages
of length at most s def

= dlog le. For each 1 ≤ i ≤ l
write Ri = Xi × Yi, where Xi, Yi ⊆ {0, 1}n. Given input
(x, y) ∈ {0, 1}n × {0, 1}n, let {Xi1 , Xi2 , . . . , Xil′} be the
set of all Xi’s such that x ∈ Xi, and i1 < i2 < . . . < il′ .
Our protocol works as follows: In round j, Alice sends ij
to Bob. Bob outputs bi if y ∈ Yi and ⊥ if otherwise. Every
message of Alice can be encoded with s bits.

Second, we show that dlog (RO(f))e ≤ 2S(f) + 1. Let
s

def
= S(f). There is a one-way memoryless protocol with

maximum message length s that computes f . We construct
a rectangle overlay of length at most 22s+1 that computes
f . According to Definition 6, there are functions A and B
such that in the i-th round, Bob computes B(y,A(i, x)) ∈
{0, 1,⊥} to determine whether to give the final answer from
the set {0, 1} or continue with the computation. For each
tuple (i, α, b) ∈ {1, 2, . . . , 2s}× {0, 1}s ×{0, 1}, we define
Xi,α,b

def
= {x | A(i, x) = α}, Yi,α,b

def
= {y | B(y, α) = b} and

Ri,α,b
def
= Xi,α,b × Yi,α,b.

Note that for fixed i, the rectangles Ri,α,b are disjoint. We
order the rectangles {Ri,α,b}(i,α,b) in the increasing order of
i and color each rectangle Ri,α,b with color b. This gives a
rectangle overlay that computes f and has length 22s+1.

Theorem 2 (restated). Let f : {0, 1}n×{0, 1}n → {0, 1} be
a boolean function and µ a product probability distribution

on {0, 1}n×{0, 1}n. Let εµ
def
= maxR µ(R), where R ranges

over all monochromatic rectangles in the communication
matrix of f . Then S(f) ≥ 1

4 log
(

1
εµ

)
− 1

2 .

Proof: Let ` = RO(f). There is a rectangle overlay
(R1, b1), (R2, b2), . . ., (R`, b`) that computes f . Then
according to Theorem 1, S(f) ≥ log(`)

2 − 1
2 .

Next we will construct a sequence of rectangles
T0, T1, T2, . . . , T` such that: (i) T0 = {0, 1}n ×{0, 1}n; (ii)
T` = ∅; (iii) Rj ∩ Ti = ∅ for all 1 ≤ j ≤ i ≤ `; (iv)
for every i ∈ {1, 2, . . . , `}, we have Ti ⊆ Ti−1, and (v)
µ(Ti) ≥ µ(Ti−1) −

√
ε. The existence of such a sequence

implies that ` ≥ 1√
ε

and S(f) ≥ log(`)
2 − 1

2 ≥
1
4 log

(
1
ε

)
− 1

2 .
We construct the sequence {Ti} as follows: Set T0 =

{0, 1}n×{0, 1}n. We define T1, T2, . . . , T` inductively. For
every i ∈ {1, 2, . . . , `}, define R̄i

def
= Ri ∩ Ti−1. R̄i is

clearly a combinatorial rectangle, and by property (iii) it is
disjoint from all previous R1, . . . , Ri−1. Thus, the function
defined by the rectangle overlay outputs color bi for all
(x, y) ∈ R̄i. In other words, R̄i is monochromatic. Write
Ti−1 = Xi−1×Yi−1 and R̄i = X̄i×Ȳi. Since µ is a product
distribution, we can write µ = µA × µB , where µA and
µB are both probability distributions on {0, 1}n. We have
µ(R̄i) = µA(X̄i) · µB(Ȳi) and min{µA(X̄i), µB(Ȳi)} ≤√
µ(R̄i) ≤

√
ε. Then we define

Ti
def
=

{
(Xi−1 \ X̄i)× Yi−1 if µA(X̄i) ≤ µB(Ȳi)

Xi−i × (Yi−1 \ Ȳi) if µA(X̄i) > µB(Ȳi)

In words, we obtain Ti by cutting a piece away from Ti−1 to
ensure that Ti and Ri are disjoint. Thus, Ti satisfies (iii) and
(iv). Finally, the piece we cut away has weight at most

√
ε,

thus (v) is satisfied, too. Since ∪2m

i=1Ri = {0, 1}n × {0, 1}n
it holds that T` = ∅. This completes the construction of the
sequence and concludes the proof.

B. Consequences of the Rectangle Overlay Characterization

The above characterization significantly simplifies and
strengthens lower bounds proved previously (as in e.g. [1]),
and significantly simplifies and appropriately conceptualizes
[10]. Also, involving the isoperimetric properties of the
Hamming Cube we obtain Lemma 14 whose proof is given
in the Appendix.

Corollary 12 (Theorem 22 in [1]). S(IP) ≥ n
4 −

1
2 . Here IP

is the Inner-Product function for two n-dimensional vectors
over GF(2).

Proof: It is well-known that every monochromatic rect-
angle of Inner Product has size at most 2n. See for example
Example 1.25 in the book by Kushilevitz and Nisan [11].
Let µ be the uniform distribution on {0, 1}n × {0, 1}n.
Thus µ(R) ≤ 2−n for every monochromatic rectangle R
in communication matrix.



Corollary 13. S(LNE√n,√n) ≥ 1
2

√
n − 1

4 log n − 1
2 .

Here LNEb,k is a boolean function over two (bk)-
bit inputs x = x1,1x1,2 . . . x1,kx2,1 . . . xb,k and y =
y1,1y1,2 . . . y1,ky2,1 . . . yb,k (that is, each input is divided
into b blocks, each block is k-bit long, e.g. x3,5 is the fifth
bit in the third block). And LNEb,k(x, y) outputs 1 if and
only if for every block i, there is at least one bit position j
within this block such that xi,j 6= yi,j .

Proof: Choose µ to be the uniform distribution on
{0, 1}n×{0, 1}n. In the communication matrix of LNEb,k,
every 0-monochromatic rectangle R0 satisfies µ(R0) ≤
b2 · 2−2k, and every 1-monochromatic rectangle R1 satisfies
µ(R1) ≤ 2−2b. See Impagliazzo and Williams [10] for a
proof. We simply apply Theorem 2, substitute in b = k =√
n, and the proof is done.
Note that this lower bound, together with the fact that

LNE√n,√n ∈ Σcc2 ∩ Πcc
2 [22], gives a separation PNPcc (

Σcc2 ∩Πcc
2 .

Lemma 14. There exists f = {fn}∞n=1 ∈ Σcc2 , and g =
{gn}∞n=1 ∈ Πcc

2 , both extensions of the partial function “Gap
Hamming Distance” GHD, such that S(f) = Ω(n) and
S(g) = Ω(n).

GHD : {0, 1}n × {0, 1}n → {0, 1} is defined as follows:
GHD(x, y) = 0 if the Hamming distance dH(x, y) ≤ n/3; if
dH(x, y) ≥ 2n/3, then GHD(x, y) = 1; in between, GHD
is not defined.

The proof of this lemma is given in the Appendix.
Actually f and g are computable by depth-3 AC0 circuits.
Thus, there are functions in AC0 requiring rectangle overlays
of length 2Ω(n).

IV. PNPcc AND MEMORYLESS PROTOCOLS

Theorem 3 (restated). A function f = {fn}∞n=1 is in PNPcc

⇐⇒ S(f) ∈ polylog(n).

Proof: Let us start with the easier direction. Assume
that S(f) ∈ polylog(n). We will show that f ∈ PNPcc .
The oracle we will use here is the “NPcc-complete” func-
tion4 “intersect”, denoted by INT. For two n-bit strings
x = x1x2 . . . xn and y = y1y2 . . . yn, INT(x, y) = 1 if and
only if there exists i ∈ {1, 2, . . . , n} such that xi = yi = 1.

By Theorem 1 each fn has a rectangle over-
lay (R1, b1), (R2, b2), . . . , (R`(n), b`(n)) where `(n) ≤
2polylog(n). Write Ri = Xi×Yi for each i ∈ {1, 2, . . . , `(n)}.
Alice and Bob preprocess x and y into two `(n)-bit strings
x̂, ŷ ∈ {0, 1}`(n): For each 1 ≤ i ≤ `(n), set x̂i to be 1
if x ∈ Xi and 0 otherwise; define ŷ analogously. Given
these two `(n)-bit strings, Alice and Bob plan to find the
smallest i such that x̂i = ŷi = 1 and output bi. They
can find this i using binary search, by quering INT at

4INT is complete for NPcc under the so-called “rectangle reduction”,
please refer to [2] for more details.

most polylog(n) many times, each query of length at most
2polylog(n). This gives us an oracle protocol in PNPcc and
shows that f ∈ PNPcc .

For the other direction, we assume that f = {fn}∞n=1 ∈
PNPcc . We will give a one-way memoryless protocol with
maximum message length polylog(n). Consider fn, let P
be the corresponding oracle protocol and T its protocol
tree. According to Definition 5, T has maximum depth
polylog(n), and every query node makes a query to an NPcc-
function of input length 2polylog(n).

For every NPcc-function Q, there exists a family of
combinatorial rectangles {Ri}, such that for each (x, y),
Q(x, y) = 1 if and only there is i such that (x, y) ∈ Ri. We
call i a certificate for (x, y). Each certificate is of length at
most polylog(n).

For each input (x, y) to fn, we can describe the compu-
tational history the protocol will follow in T as follows:
First we use a polylog(n)-bit string p to denote all the
communication bits and query answers along the way, from
the root down to one of the leaf nodes; then we scan the
path from root the leaf, for each query that answers 1, we
concatenate one of the certificates for (x, y). This gives a
string (p, c1, c2, . . . , ct), in which p, c1, c2, . . . , ct are all of
polylog(n) length and t = O(polylog(n)). Therefore the
whole string is of length polylog(n).

Now let H be the set of all possible computational
histories for all possible input pairs (x, y). We construct a
one-way oblivious protocol P ′ for f in the following way:
Alice enumerates all computational histories in H that are
compatible with her input x, lexicographically decreasing in
p. That is, if h = (p, c1, . . . , ct) and h′ = (p′, c′1, . . . , c

′
t′)

are two histories with p < p′ (in lexicographic order), then
Alice enumerates h′ before h.

Each time Alice sends the computational history to Bob,
Bob checks to see if this computational history is also
compatible to his input y. If so, he outputs the label of the
corresponding leaf node, otherwise he just continues.

Clearly P ′ ∈ SPACELESS[polylog(n)]. Let us prove that
P ′ correctly computes f . Consider an input pair (x, y). Let p
be root-to-leaf path in T followed by the original protocol P
on input (x, y), and let h be one of the corresponding histo-
ries containing p as defined above. Let h∗ = (p∗, c∗1, . . . , c

∗
t )

be the computational history accepted by Alice and Bob in
the protocol P ′. We will prove that p = p∗ by contradiction.
Suppose p 6= p∗. Let v be the last node in T that is common
to p and p∗.
• v cannot be a communication node associated with

either Alice or Bob: Otherwise they would reject p∗

as incompatible to their input.
• So v must be a query node.

– Suppose p takes the 0-child of v whilst p∗ takes
the 1-child of v. This is impossible: The correct



answer for the query at node v is 0 (since p is the
correct path), so either Alice or Bob would have
rejected the purported 1-certificate in h∗.

– Suppose p takes the 1-child of v whilst p∗ takes
the 0-child of v. Then p > p∗ lexicographically,
and thus Alice enumerates h before h∗. Since h is
the correct history and is consistent for both Alice
and Bob, they would have accepted it before they
even consider h∗.

Thus p = p∗ and P ′ is correct. We conclude that f ∈
SPACELESS[polylog(n)].

V. CONSTANT LEVELS OF Σcck AND 3-STATE PROTOCOLS

We define PHcc
def
=
⋃∞
k=1 Σcck . This means that k can

be an arbitrarily large constant, independent of the input
length n.

Theorem 7 (restated). PHcc ⊆ SPACELTD[polylog(n), 3].

Proof outline: First, we show that for an arbitrary
function f ∈ PHcc, there is a randomized protocol that
computes f , in which Bob has only two states. That is, on
every (x, y) ∈ {0, 1}n × {0, 1}n, the protocol outputs the
correct value with probability at least 2/3. Second, we show
how to make this protocol zero-error. Finally, we show that
every zero-error protocol can be completely derandomized
by giving Bob one additional memory state.

A. Bounded-error and zero-error protocols

In a bounded-error protocol, Alice and Bob share a source
of randomness: At the beginning of the protocol, Alice and
Bob are given the same infinite random bit string r1r2r3 . . . ,
and Alice’s messages can depend on r: PA(i, x, r) instead
of PA(i, x). Similarly, Bob can base his decision to output 0,
output 1, or continue, on this random string. A protocol is a
bounded-error protocol computing f : {0, 1}n × {0, 1}n →
{0, 1} if for each (x, y) ∈ {0, 1}n × {0, 1}n, it outputs the
correct value f(x, y) with probability at least 2/3.

As in bounded-error protocols, in zero-error protocols
Alice and Bob share a random string r. In a zero-error
protocol, Bob has the additional possibility to abort the
protocol and output “don’t know”. A protocol is a zero-
error protocol computing f : {0, 1}n × {0, 1}n → {0, 1}
if for each (x, y) ∈ {0, 1}n × {0, 1}n, (i) the output of
the protocol is either f(x, y) or “don’t know”, and (ii) Bob
outputs “don’t know” with probability smaller than 1/2.

Theorem 15. Let f ∈ PHcc. There exists a zero-error
protocol computing f where Bob has two memory states
and Alice sends messages of length at most polylog(n).

To prove this theorem, we first give a bounded-error
protocol computing f ; in a second step we make this
protocol zero-error. We do not know whether every bounded-
error protocol can be made zero-error without increasing the

maximum message length or Bob’s memory. In the special
case of f ∈ PHcc, it turns out that we can: The trick is to use
not only a Razborov-Smolensky approximation for f , but
also an “error-indicator”, in spirit similar to Braverman [16].

Proof of Theorem 15: Let f ∈ PHcc. That is, f ∈ Σcck
for some k (that is independent of the input length n). By
the connection between complexity classes and circuits (Ob-
servation 11), there exists m ∈ 2polylog(n), functions A,B :
{0, 1}n → {0, 1}m, and an AC0-circuit C over variables
u, v ∈ {0, 1}m such that f(x, y) = C(A(x), B(y)). We
approximate C using the well-known method of Razborov
and Smolensky [13], [14].

Lemma 16 (Razborov and Smolensky [13], [14]). Given a
circuit C of depth d and size S on the basis {∨,⊕,¬} with
unbounded fan-in on an m-bit input x, there is a scheme of
assigning random polynomials over GF(2) to each gate in
the circuit (the additive identity 0 corresponds to boolean
value false, and the multiplicative identity 1 corresponds to
boolean value true), such that

• For each gate g in C, denote the random polynomial
chosen as pg . The degree of pg is at most (log (3S))d.

• For every m-bit input x, we have

Pr[∃ gate g ∈ C such that g(x) 6= pg(x)] ≤ 1

3
.

Here, g(x) is the output of gate g.
• If g is an input gate with input xi, the i-th bit in x,

then pg = xi .
• If g is a ¬-gate and c is its only child, then pg = pc+1
• If g is an ⊕-gate with children c1, c2, . . . , ct, then pg =∑t

i=1 pci
• If g is a ∨-gate with children c1, c2, . . . , ct and
pc1(x) = · · · = pct(x) = 0, then pg(x) = 0, too.

Note that by applying DeMorgan’s rule, we can assume
our circuit C consists only of ∨-, ⊕-, and ¬-gates. The above
lemma is already enough to obtain a bounded-error protocol
evaluating C: Use common randomness to approximate the
output gate by a GF(2)-polynomial of polylogarithmic de-
gree. Alice and Bob can evaluate this polynomial, provided
Bob has space for messages of length polylog(n), and Bob
has at least two memory states. They also can evaluate f , by
precomputing u = A(x) and v = B(y) and then evaluating
the GF(2)-polynomial with u and v as input.

We show how to make this protocol zero-error. The
last four bullet points of Lemma 16 imply the following:
If g(x) = pg(x) for all ∨-gates g ∈ C, then indeed
g(x) = pg(x) for all gates. In other words, errors can only
be introduced at ∨-gates. Such an error is introduced at ∨-
gate g if and only if pg(x) = 0 and pc1(x)∨· · ·∨pct(x) = 1,
where c1, . . . , ct are the children of g. That is, if and only



if

Eg(x)
def
=

t∨
i=1

(¬pg(x)) ∧ pci(x) .

evaluates to 1. Note that each disjunct in this expression is
itself a polynomial of polylogarithmic degree. We conclude:
If there is a gate g in C such that g(x) 6= pg(x), then

E(x)
def
=

∨
∨−gates g

t∨
i=1

(¬pg(x)) ∧ pci(x)

evaluates to 1.
We are ready to state our zero-error protocol for evaluating

the circuit C. Alice and Bob evaluate E(x) by iterating over
all ∨-gates g and all children ci of g. They can evaluate the
GF(2)-polynomial (¬pg(x))∧pci(x) with two memory states
and polylog(S) maximum message length. If this polynomial
evaluates to 1, Bob immediately outputs “don’t know” and
stops. If they iterate over all ∨-gates g and ci without Bob
outputting “don’t know”, they know that E(x) = 0. This
implies that g(x) = pg(x) for all gates g in the circuit,
including the output gate. Thus, they evaluate pg(x) for the
output gate g and output its value.

What is the probability that Bob answers “don’t know”?
This can only happen if some error is introduced at a ∨-
gate. This happens with probability at most 1/3. Finally,
Alice and Bob evaluate f by evaluating C on A(x) and
B(y). This establishes a zero-error protocol for f ∈ PHcc

and completes the proof of Theorem 15.

B. Derandomization of Zero-Error Protocols

Theorem 17 (Derandomization of Zero-Error Protocols).
Suppose there is a zero-error protocol computing f with
maximum message length s and w memory states. Then
there is a deterministic protocol computing f with maximum
message length s+ dlog(3n)e and w + 1 memory states.

The idea behind this proof is that Alice and Bob can
iterate over all possible random strings r and simulate the
zero-error protocol with this random string. If the simulated
zero-error protocol causes the simulated Bob to output
“don’t know”, Bob can remember this by moving into his
(w+ 1)th state. Alice and Bob can afford to iterate over all
random strings only if the number of random strings is small.
Here, we use a technique similar to the proof of Newman’s
Theorem that replaces public by private randomness ([15],
see also Theorem 3.14 of [11]). We now prove Theorem 17,
and Theorem 7 clearly follows as a corollary of Theorem 15
and Theorem 17.

Proof of Theorem 17: Suppose Alice and Bob com-
pute f using a zero-error protocol with maximum message
length s in which Bob has w memory states. Denote by
P (x, y, r) the output of that protocol on input (x, y), when
the common random string is r. Clearly, P (x, y, r) ∈

{0, 1, “don’t know”}. Call the random string r good for in-
put (x, y) if P (x, y, r) ∈ {0, 1}. That is, P computes f cor-
rectly. Since P is zero-error, Pr[r is good for (x, y)] ≥ 1/2.
Sample 3n random strings r(1), . . . , r(3n) independently.
Consider an input (x, y) ∈ {0, 1}n × {0, 1}n.

Pr[none of r(1), . . . , r(3n) is good for (x, y)] ≤ 8−n .

Thus, by a union bound over {0, 1}n × {0, 1}n, we obtain

Pr[∃(x, y) : none of the r(i) is good for (x, y)] ≤ 2−n .

Thus, there exists a fixed choice r(1), . . . , r(3n) of strings
such that for each (x, y) ∈ {0, 1}n × {0, 1}n, at least one
such string is good.

We define a new, deterministic protocol P ′. In P ′ Al-
ice and Bob now iterate over all these random strings
r(1), . . . , r(3n). For each 1 ≤ i ≤ 3n, they simulate the zero-
error protocol P (x, y, r(i)). If in this simulated protocol, Bob
outputs 0 or 1, then in P ′, Bob outputs the same. If in the
simulated protocol, Bob outputs “don’t know”, then in P ′

Bob moves to its (w + 1)th memory state to remember that
this current simulation has failed. Since there is some r(i)

that is good for (x, y), Alice and Bob will at some point
arrive at a simulation that does not fail, but outputs the
correct value. In addition to the maximum message length
s of P , in protocol P ′ Alice uses additional dlog(3n)e bits
in each round to tell Bob the index i of the current random
string.

VI. PSPACEcc AND 5-STATE PROTOCOLS

According to Theorem 5, if instead of three we have five
or more states and the maximum message length is polyloga-
rithmic, then we fully characterize PSPACEcc. As mentioned
before, this is the first characterization of PSPACEcc in terms
of “space”.

Theorem 5 (restated). PSPACEcc =
SPACELTD[polylog(n), 5]. Moreover, the same holds
true when replacing 5 with a larger constant.

Theorem 6 (restated). Suppose f ∈ NC1. Then f ∈
SPACELTD[O(log n), 5] (under every input partition).

Proof of Theorem 5 and Theorem 6: Let f ∈
PSPACEcc. By the connection between circuits and com-
munication classes (Observation 11), Alice and Bob can
preprocess their inputs x, y and then evaluate a circuit of
polylog(n) depth and 2polylog(n) size. To be more precise,
there is m ≤ 2polylog(n), functions A,B : {0, 1}n → {0, 1}m
and a circuit C on 2m variables of depth polylog(n) such
that f(x, y) = C(A(x), B(y)).

Theorem 18 (Generalized Version of Barrington’s Theo-
rem). There exists a universal constant c ∈ N+ such that if
a function f can be computed by a depth d fan-in 2 circuit
over basis {∨,∧,¬}, it can also be computed by a width 5
length cd branching program.



Thus, there is a width-5 branching program of length
2polylog(n) that computes C. Alice and Bob use A and
B to preprocess their inputs into A(x) and B(y). Then
we use Fact 9 to evaluate C on inputs A(x), B(y). This
uses five memory states and has maximum message length
polylog(n).

This also proves Theorem 6, as Barrington’s theorem
transforms an NC1-circuit into a width-5 branching program
of polynomial length. Using Fact 9, Alice and Bob can sim-
ulate this with 5 memory states log(n) maximum message
length.

For the converse of Theorem 5, let f ∈
SPACELTD[polylog(n), 5]. That is, f is computed by a
protocol P of maximum message length S(n) ≤ polylog(n).
We will show that f ∈ PSPACEcc, which amounts to
constructing a quantified boolean formula as in Definition 4.

Using the same notation as in Definition 6, for a fixed
input (x, y), the configuration C of a particular round of P
is denoted by C def

= (α, i, γ), where i is the round number, α
is the message sent by Alice, and γ is Bob’s memory state.
Such a configuration is x-consistent if PA(i, x) = α. Two
configurations C1

def
= (α1, i1, γ1) and C2

def
= (α2, i2, γ2) are

adjacent if i2 = i1 + 1 and there exists β ∈ {0, 1,⊥} such
that TB(y, γ1, α2) = (β, γ2).

Therefore, to characterize the condition that f(x, y) = 1,
we only need to certify that there is a sequence of configu-
rations C0, C1, . . . , Cl such that
• l ≤ 5 · 2S(n)

• for each i ∈ {1, 2, . . . , l}, Ci is x-consistent
• for each i ∈ {0, 1, . . . , l− 1}, Ci and Ci+1 is adjacent
• C0 = (∅, 0, γ0) is the designated initial configuration,
γ0 is Bob’s designated initial memory state, and ∅ is a
placeholder

• for each i ∈ {0, 1, . . . , l− 2}, Ci and Ci+1 do not lead
Bob to output 0

• Cl−1 and Cl lead Bob to output 1

We encode this computation (sequence of configurations)
as a quantified boolean formula of length a logarithm of
the computation size by (i) existentially guessing the middle
configuration and (ii) universally asserting the correctness
of both parts – i.e. exactly as in the standard theorem by
Stockmeyer and Meyer [23] (see also 4.13 in [20]). The only
thing to observe and conclude is that certifying correctness
for Alice through ψ and for Bob through φ can be done
completely independently which means that the unquantified
formula is always in the form ψ(u, x) � φ(u, y).

VII. PROOF OF THEOREM 10

Theorem 10 (restated). Suppose f : {0, 1}n ×
{0, 1}n → {0, 1} can be decomposed as f(x, y) =
g(h1(x, y), . . . , hk(x, y)) where each hi : {0, 1}n ×
{0, 1}n → {0, 1} depends on at most ` bits from each of its
two n-bit inputs. Then f ∈ SPACELTD[`+ k + dlog ke , 2].

Proof: Suppose f(x, y) can be decomposed as
g(h1(x, y), . . . , hk(x, y)) where each hi depends on at most
` variables. We give a protocol with maximum message
length k + `+ dlog ke where Bob has two memory states.

The protocol proceeds in phases. In each phase, Alice
and Bob have a “working hypothesis” z ∈ {0, 1}k and
want to verify that hi(x, y) = zi for all 1 ≤ i ≤ k. To
do so, Bob first initializes himself into his first memory
state, then they use k rounds of communication. In round i,
they evaluate hi(x, y). Note that hi depends on at most `
variables in x. Alice sends those bits, and Bob can evaluate
hi(x, y). If hi(x, y) 6= zi, he moves into his second memory
state, remembering that z was a wrong hypothesis. Once i
reaches k, Bob remembers whether the z was the correct
hypothesis or not. If it is was not, he moves back into his
first memory state and continues, and they move on to the
next z ∈ {0, 1}k. Otherwise, he knows that zi = hi(x, y)
for all 1 ≤ i ≤ k, and outputs g(z1, . . . , zk).

In each step, Alice sends Bob up to ` bits of her own input.
Additionally, she has to send Bob the “guess” z ∈ {0, 1}k,
and finally the counter i ∈ {1, . . . , k}. Thus, her message
consists of at most `+ k + dlog ke bits.

VIII. FUTURE DIRECTIONS

We are just beginning to understand the power of the
one-way limited memory model. For models that are not
completely memoryless we cannot prove any lower bounds
so far. Given the various connections between this model
and the communication complexity polynomial hierarchy,
and the fact that separating classes higher up in the commu-
nication complexity hierarchy remains an open problem (e.g.
as far as we know, it is open whether Σcc2 = Πcc

2 ), any new
lower bound technique would bring substantial progress.

We do not have lower bounds on randomized versions of
memoryless protocols. Indeed, the most natural randomized
version contains the class AMcc (see Babai et al. [2] or
Klauck [24]); proving lower bounds on AMcc would be
significant progress and is considered a difficult problem.

Another direction that is worth exploring is the study of
space-communication tradeoffs. For example, tradeoffs be-
tween the maximum message length required by a memory-
less protocol and the total amount of communication. More
concrete: Is there a function f : {0, 1}n ×{0, 1}n → {0, 1}
such that OS(f) ≤ polylog(n), but every protocol with
polylog(n) maximum message length has a superpolynomial
total amount of communication?
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