How Many Conflicts Does It Need to be Unsatisfiable?

Dominik Scheder and Philipp Zumstein

Institute of Theoretical Computer Science ETH Zürich

Eleventh International Conference on Theory and Applications of Satisfiability Testing

< 口 > < 同 > < 回 > < 回 > 、 回

Definition

Two clauses C and D constitute a *conflict* if there is a variable occurring positively in C and negatively in D (or vice versa).

Sfrag replacements

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ ― 座

Definition

Two clauses C and D constitute a *conflict* if there is a variable occurring positively in C and negatively in D (or vice versa).

$$\{\bar{\boldsymbol{x}},\boldsymbol{u}\}$$
 $\{\bar{\boldsymbol{y}},\bar{\boldsymbol{u}}\}$

 $\{x, y\}$

Sfrag replacements

$\{\bar{x}, \bar{y}\}$

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ 二 陸

Definition

Two clauses C and D constitute a *conflict* if there is a variable occurring positively in C and negatively in D (or vice versa).

$$\{\bar{\boldsymbol{x}},\boldsymbol{u}\}$$
 $\{\bar{\boldsymbol{y}},\bar{\boldsymbol{u}}\}$

 $\{\mathbf{X}, \mathbf{y}\}$

Sfrag replacements

$\{\bar{x},\bar{y}\}$

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ 二 陸

Definition

Two clauses C and D constitute a *conflict* if there is a variable occurring positively in C and negatively in D (or vice versa).

Sfrag replacements

$\{\bar{x},\bar{y}\}$

3) 3

Definition

Two clauses C and D constitute a *conflict* if there is a variable occurring positively in C and negatively in D (or vice versa).

Sfrag replacements

$\{\bar{\pmb{x}},\bar{\pmb{y}}\}$

3) 3

Definition

Definition

Definition

Definition

SAT meets Extremal Combinatorics

Theorem (

F is satisfiable if it fulfills one of these conditions:

Dominik Scheder and Philipp Zumstein How Many Conflicts Does It Need to be Unsatisfiable?

・ 「 ・ ・ = ト ・ = ト ・ 三

SAT meets Extremal Combinatorics

Theorem (folklore,

F is satisfiable if it fulfills one of these conditions:

• F has $< 2^k$ clauses.

Theorem (folklore, Kratochvíl et al.,

F is satisfiable if it fulfills one of these conditions:

• F has $< 2^k$ clauses.

$$2 \Delta(G_F) \leq 2^{k-2}.$$

Theorem (folklore, Kratochvíl et al.,

F is satisfiable if it fulfills one of these conditions:

- F has $< 2^k$ clauses.
- $(G_F) \leq 2^{k-2}.$
- Similar Every variable occurs in less than $\frac{2^k}{ek}$ clauses of F.

伺 とう ヨ とう とう とう

Theorem (folklore, Kratochvíl et al., S. and Z.)

F is satisfiable if it fulfills one of these conditions:

- F has $< 2^k$ clauses.
- $(G_F) \leq 2^{k-2}.$
- Similar Every variable occurs in less than $\frac{2^k}{ek}$ clauses of F.
- F has less than ??? conflicts.

Number of Conflicts—A Lower Bound

Lemma

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Number of Conflicts—A Lower Bound

Lemma

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

Proof.

• Suppose *F* is unsatisfiable.

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

Proof.

- Suppose *F* is unsatisfiable.
- Let $F' \subseteq F$ be minimal unsatisfiable.

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

Proof.

- Suppose *F* is unsatisfiable.
- Let $F' \subseteq F$ be minimal unsatisfiable.
- Every clause in F' has at least k "neighbors".

・ 同 ト ・ ヨ ト ・ ヨ ト

- -

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

Proof.

- Suppose *F* is unsatisfiable.
- Let $F' \subseteq F$ be minimal unsatisfiable.
- Every clause in F' has at least k "neighbors".
- F' has at least 2^k clauses.

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

Proof.

- Suppose *F* is unsatisfiable.
- Let $F' \subseteq F$ be minimal unsatisfiable.
- Every clause in F' has at least k "neighbors".
- F' has at least 2^k clauses.

Thus, *F* has at least $k2^{k-1}$ conflicts.

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

Proof.

- Suppose *F* is unsatisfiable.
- Let $F' \subseteq F$ be minimal unsatisfiable.
- Every clause in F' has at least k "neighbors".
- F' has at least 2^k clauses.

Thus, *F* has at least $k2^{k-1}$ conflicts.

Instead of $k2^{k-1}$, we want something better...

Let F be a k-CNF formula. If F has $< k2^{k-1}$ conflicts, then F is satisfiable.

Proof.

- Suppose *F* is unsatisfiable.
- Let $F' \subseteq F$ be minimal unsatisfiable.
- Every clause in F' has at least k "neighbors".
- F' has at least 2^k clauses.

Thus, *F* has at least $k2^{k-1}$ conflicts.

Instead of $k2^{k-1}$, we want something better... 2.5^k, 3^k, 4^k, 8^k?? How big is possible?

・ 同 ト ・ ヨ ト ・ ヨ ト

Number of Conflicts—An Upper Bound

Lemma

There is an unsatisfiable k-CNF formula with $\binom{2^k}{2} \in \Theta(4^k)$ conflicts.

◆□ > ◆圖 > ◆臣 > ◆臣 > ─臣

Number of Conflicts—An Upper Bound

Lemma

There is an unsatisfiable k-CNF formula with $\binom{2^k}{2} \in \Theta(4^k)$ conflicts.

We want an unsatisfiable *k*-CNF formula with less than Θ (4^{*k*}) conflicts.

Dominik Scheder and Philipp Zumstein How Many Conflicts Does It Need to be Unsatisfiable?

★課 と★注 と★注 とう注

We want an unsatisfiable *k*-CNF formula with less than Θ (4^{*k*}) conflicts.

Hoory and Szeider [2006]:

- unsatisfiable k-CNF formula F
- Every variable occurs in at most $\mathcal{O}\left(\frac{\log(k)2^k}{k}\right)$ clauses

• F has
$$\mathcal{O}\left(\frac{\log^2(k)4^k}{k}\right)$$
 conflicts

(

We want an unsatisfiable *k*-CNF formula with less than Θ (4^{*k*}) conflicts.

Hoory and Szeider [2006]:

- unsatisfiable k-CNF formula F
- Every variable occurs in at most $\mathcal{O}\left(\frac{\log(k)2^k}{k}\right)$ clauses

• *F* has
$$\mathcal{O}\left(\frac{\log^2(k)4^k}{k}\right)$$
 conflicts

Does there exist unsatisfiable *k*-CNF formulas with less conflicts?

Theorem

Any k-CNF formula with less than $\mathcal{O}(2.69^k)$ conflicts is satisfiable.

Remark: 2.69 of course not the precise value. But you don't want to know...

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Theorem

Any k-CNF formula with less than $\mathcal{O}(2.69^k)$ conflicts is satisfiable.

Remark: 2.69 of course not the precise value. But you don't want to know...

Proof. Apply the Lovász Local Lemma...

・ロン・(部)・・ヨン・ヨン 三連

• Choose a random truth assignment.

Dominik Scheder and Philipp Zumstein How Many Conflicts Does It Need to be Unsatisfiable?

ъ

▶ ★ ≣ ▶ ★

- Choose a random truth assignment.
- If *F* has no conflicts, Pr[*F* is satisfied] > 0.

伺 とくき とくきと

- Choose a random truth assignment.
- If *F* has no conflicts, Pr[*F* is satisfied] > 0.
- If each clause *C* has few neighbors, still okay.

- Choose a random truth assignment.
- If *F* has no conflicts, Pr[*F* is satisfied] > 0.
- If each clause *C* has few neighbors, still okay.
- If *C* has many neighbors, but every neighbor is extremely likely to be satisfied, that's okay too.

Let F be any CNF formula. Set every variable x of F to true with some probability p(x), independently. If for every clause C, it holds that

$$\sum_{\in N(C)} \Pr[D \text{ not satisfied}] \leq \frac{1}{4}$$

then F is satisfiable.

D

▲御 ▶ ▲ 陸 ▶ ▲ 陸 ▶ 二 陸

Definition

For a literal u, let occ(u) denote the number of clauses in F containing u.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

3
Definition

For a literal u, let occ(u) denote the number of clauses in F containing u.

Note: number of occurrences of a variable $v = occ(v) + occ(\bar{v})$.

・ 「 ・ ・ = ト ・ = ト ・ 三

Definition

For a literal u, let occ(u) denote the number of clauses in F containing u.

Note: number of occurrences of a variable $v = occ(v) + occ(\bar{v})$.

Lemma

If F is a k-CNF formula and $occ(u) \le \frac{2^k}{4k}$ for all literals u, then F is satisfiable.

< ロ > < 同 > < 回 > < 回 > < 回 > <

If F is a k-CNF formula and $occ(u) \le \frac{2^k}{4k}$ for all literals u, then F is satisfiable.

Proof.

• Choose an assignment uniformly at random.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

If F is a k-CNF formula and $occ(u) \le \frac{2^k}{4k}$ for all literals u, then F is satisfiable.

Proof.

- Choose an assignment uniformly at random.
- The number of neighbors of C is $\leq \sum_{u \in C} \operatorname{occ}(\bar{u})$

《曰》《聞》《臣》《臣》

If F is a k-CNF formula and $occ(u) \le \frac{2^k}{4k}$ for all literals u, then F is satisfiable.

Proof.

- Choose an assignment uniformly at random.
- The number of neighbors of *C* is $\leq \sum_{u \in C} \operatorname{occ}(\bar{u})$
- This is at most $k \cdot \frac{2^k}{4k}$.

イロト イポト イヨト イヨト 三日

If F is a k-CNF formula and $occ(u) \le \frac{2^k}{4k}$ for all literals u, then F is satisfiable.

Proof.

- Choose an assignment uniformly at random.
- The number of neighbors of C is $\leq \sum_{u \in C} \operatorname{occ}(\bar{u})$
- This is at most $k \cdot \frac{2^k}{4k}$.
- $\sum_{D \in N(C)} \Pr[D \text{ not satisfied}] \le k \cdot \frac{2^k}{4} \cdot 2^{-k} = \frac{1}{4}$.

・ロン・(部)・・ヨン・ヨン 三連

If F is a k-CNF formula and $occ(u) \le \frac{2^k}{4k}$ for all literals u, then F is satisfiable.

Proof.

- Choose an assignment uniformly at random.
- The number of neighbors of C is $\leq \sum_{u \in C} \operatorname{occ}(\bar{u})$
- This is at most $k \cdot \frac{2^k}{4k}$.
- $\sum_{D \in N(C)} \Pr[D \text{ not satisfied}] \le k \cdot \frac{2^k}{4} \cdot 2^{-k} = \frac{1}{4}$.
- By the Lovász Local Lemma, *F* is satisfiable.

イロト イポト イヨト イヨト 三日

Goal: *F* has "few" conflicts \implies *F* is satisfiable.

• *F*: a *k*-CNF formula with "few" conflicts.

Goal: *F* has "few" conflicts \implies *F* is satisfiable.

- F: a k-CNF formula with "few" conflicts.
- Case 1. If $occ(u) \le \frac{2^k}{4k} \forall u$, then *F* is satisfiable.

Goal: *F* has "few" conflicts \implies *F* is satisfiable.

- F: a k-CNF formula with "few" conflicts.
- *Case 1.* If $occ(u) \le \frac{2^k}{4k} \forall u$, then *F* is satisfiable.

• Case 2. Suppose $occ(u) > \frac{2^k}{4k}$.

Goal: *F* has "few" conflicts \implies *F* is satisfiable.

- F: a k-CNF formula with "few" conflicts.
- *Case 1.* If $occ(u) \le \frac{2^k}{4k} \forall u$, then *F* is satisfiable.

• Case 2. Suppose $occ(u) > \frac{2^k}{4k}$.

Goal: *F* has "few" conflicts \implies *F* is satisfiable.

- F: a k-CNF formula with "few" conflicts.
- Case 1. If $occ(u) \le \frac{2^k}{4k} \forall u$, then F is satisfiable.

• Case 2. Suppose $occ(u) > \frac{2^k}{4k}$.

• *F* has at least $occ(u)occ(\bar{u})$ conflicts.

Goal: *F* has "few" conflicts \implies *F* is satisfiable.

- F: a k-CNF formula with "few" conflicts.
- Case 1. If $occ(u) \le \frac{2^k}{4k} \forall u$, then F is satisfiable.

• Case 2. Suppose $occ(u) > \frac{2^k}{4k}$.

- *F* has at least $occ(u)occ(\bar{u})$ conflicts.
- If *F* has $\ll 4^k$ conflicts, $\operatorname{occ}(\bar{u}) \ll 2^k$.

- Number of conflicts $\geq occ(u)occ(\bar{u})$.
- If occ(u) big then $occ(\bar{u})$ small, i.e., u is *unbalanced*.
- Choose $p(u) > \frac{1}{2} > p(\bar{u})$ for such variables.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

- Number of conflicts $\geq occ(u)occ(\bar{u})$.
- If occ(u) big then $occ(\bar{u})$ small, i.e., u is *unbalanced*.
- Choose $p(u) > \frac{1}{2} > p(\bar{u})$ for such variables.
- Want $\sum_{D \in N(C)} \Pr[D \text{ not satisfied}] \leq \frac{1}{4}$

- Number of conflicts $\geq occ(u)occ(\bar{u})$.
- If occ(u) big then $occ(\bar{u})$ small, i.e., u is *unbalanced*.
- Choose $p(u) > \frac{1}{2} > p(\bar{u})$ for such variables.
- Want $\sum_{D \in N(C)} \Pr[D \text{ not satisfied}] \leq \frac{1}{4}$
- Clause D is good if p(u) ≥ ½ for all u ∈ D.
 Note: Pr[D not satisfied] is "small".

- Number of conflicts $\geq occ(u)occ(\bar{u})$.
- If occ(u) big then $occ(\bar{u})$ small, i.e., u is *unbalanced*.
- Choose $p(u) > \frac{1}{2} > p(\bar{u})$ for such variables.
- Want $\sum_{D \in N(C)} \Pr[D \text{ not satisfied}] \leq \frac{1}{4}$
- Clause D is good if p(u) ≥ ½ for all u ∈ D.
 Note: Pr[D not satisfied] is "small".
- Clause *D* is bad if $p(u) < \frac{1}{2}$ for at least one *u*. Note: Pr[*D* not satisfied] may be "big".

くロ とく得 とくき とくき とうき

• clause *D* is bad if $p(u) < \frac{1}{2}$ small for some $u \in D$.

Dominik Scheder and Philipp Zumstein How Many Conflicts Does It Need to be Unsatisfiable?

- clause *D* is bad if $p(u) < \frac{1}{2}$ small for some $u \in D$.
- occ(u) is small, and $occ(\bar{u})$ is large.

- clause *D* is bad if $p(u) < \frac{1}{2}$ small for some $u \in D$.
- occ(u) is small, and $occ(\bar{u})$ is large.
- D has a lot of conflicts.

- clause *D* is bad if $p(u) < \frac{1}{2}$ small for some $u \in D$.
- occ(u) is small, and $occ(\bar{u})$ is large.
- D has a lot of conflicts.
- Since *F* has few conflicts, *F* has few bad clauses.

御 と く き と く き と 一 連

- clause *D* is bad if $p(u) < \frac{1}{2}$ small for some $u \in D$.
- occ(u) is small, and $occ(\bar{u})$ is large.
- D has a lot of conflicts.
- Since F has few conflicts, F has few bad clauses.
- $\sum_{D \in N(C)} \Pr[D \text{ not satisfied}]$ is small.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ● ●

frag replacements

 $\{\bar{x}, \bar{y}, \bar{z}\}$

Dominik Scheder and Philipp Zumstein How Many Conflicts Does It Need to be Unsatisfiable?

過 ト イヨ ト イヨ ト 三 ヨ

•
$$p(x) = \frac{3}{4}$$
, $p = \frac{1}{2}$ for all other variables.

ъ

 $\sum = \frac{5}{16} > \frac{1}{4}$

-

•
$$p(x) = \frac{3}{4}$$
, $p = \frac{1}{2}$ for all other variables.

 $\sum = \frac{5}{16} > \frac{1}{4}$

ъ

•
$$p(x) = \frac{3}{4}$$
, $p = \frac{1}{2}$ for all other variables.

 $\sum = \frac{5}{16} > \frac{1}{4}$

伺 とくき とくき とうき

•
$$p(x) = \frac{3}{4}$$
, $p = \frac{1}{2}$ for all other variables.

 $\sum = \frac{1}{4}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

• $p(x) = \frac{3}{4}$, $p = \frac{1}{2}$ for all other variables.

• Assume *F* has few conflicts.

- Assume *F* has few conflicts.
- Define an appropriate probability distribution, exploiting the unbalancedness of certain variables.

▲□ ▼ ▲ 田 ▼ ▲ 田 ▼

- Assume F has few conflicts.
- Define an appropriate probability distribution, exploiting the unbalancedness of certain variables.
- Remove certain literals \Rightarrow new formula F'.

(同) (ヨ) (ヨ)

- 2

- Assume *F* has few conflicts.
- Define an appropriate probability distribution, exploiting the unbalancedness of certain variables.
- Remove certain literals \Rightarrow new formula F'.
- This "sparsifies" the conflict structure of *F*.

伺 ト イヨ ト イヨト

- Assume F has few conflicts.
- Define an appropriate probability distribution, exploiting the unbalancedness of certain variables.
- Remove certain literals \Rightarrow new formula F'.
- This "sparsifies" the conflict structure of *F*.
- Use Lovász Local Lemma to show that F' is satisfiable.

伺 ト イヨ ト イヨト

Theorem (Lower Bound)

If a k-CNF F has at most $O(2.69^k)$ conflicts, it is satisfiable.

Theorem (Upper Bound)

For every k, there is an unsatisfiable k-CNF formula with $O\left(\frac{\log^2(k)4^k}{k}\right)$ conflicts.

・ロン・(部)・・ヨン・ヨン 三連

Thank You For Your Attention!

Dominik Scheder and Philipp Zumstein How Many Conflicts Does It Need to be Unsatisfiable?

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・