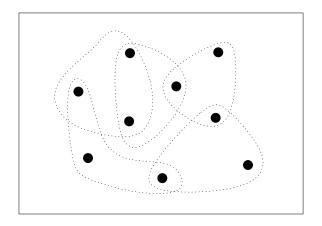
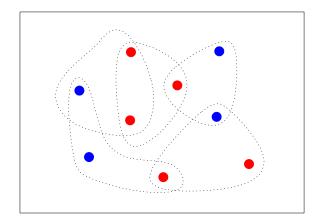
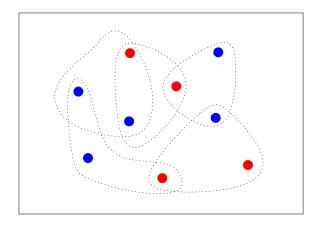
Linear Formulas

Linear Formulas Are Large and Complex

Dominik Scheder, ETH Zürich STACS 2010, Nancy, March 4







Theorem (Erdős)

A k-uniform hypergraph with less than 2^{k-1} edges is 2-colorable.

Theorem (Erdős)

A k-uniform hypergraph with less than 2^{k-1} edges is 2-colorable.

Proof: Take a random coloring.

Theorem (Erdős)

A k-uniform hypergraph with less than 2^{k-1} edges is 2-colorable.

Proof: Take a random coloring.

Theorem (Erdős)

There exists a k-uniform hypergraph with $k^2 2^k$ edges that is not 2-colorable.

Theorem (Erdős)

A k-uniform hypergraph with less than 2^{k-1} edges is 2-colorable.

Proof: Take a random coloring.

Theorem (Erdős)

There exists a k-uniform hypergraph with $k^2 2^k$ edges that is not 2-colorable.

Proof: Take k^2 vertices and randomly select $k^2 2^k$ hyperedges from the $\binom{k^2}{k}$ possible ones.

$$(x_2)\wedge(x_1\vee\bar{x}_2\vee\bar{x}_3)\wedge(x_1\vee x_2\vee\bar{x}_3)\wedge(x_1\vee\bar{x}_2)\wedge(\bar{x}_1\vee\bar{x}_2\vee\bar{x}_3)\wedge(\bar{x}_3\vee x_4)$$

$$(x_2) \wedge (x_1 \vee \bar{x}_2 \vee \bar{x}_3) \wedge (x_1 \vee x_2 \vee \bar{x}_3) \wedge (x_1 \vee \bar{x}_2) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3) \wedge (\bar{x}_3 \vee x_4)$$

assignment: $x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0, x_4 \mapsto 1$

$$(x_2) \wedge (x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (x_1 \vee x_2 \vee \overline{x}_3) \wedge (x_1 \vee \overline{x}_2) \wedge (\overline{x}_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (\overline{x}_3 \vee x_4)$$

assignment: $x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0, x_4 \mapsto 1$

$$(x_2)\wedge(x_1\vee \bar{x}_2\vee \bar{x}_3)\wedge(x_1\vee x_2\vee \bar{x}_3)\wedge(x_1\vee \bar{x}_2)\wedge(\bar{x}_1\vee \bar{x}_2\vee \bar{x}_3)\wedge(\bar{x}_3\vee x_4)$$

assignment: $x_1 \mapsto 1, x_2 \mapsto 1, x_3 \mapsto 0, x_4 \mapsto 1$

k-CNF formulas: $(x_1 \lor x_2 \lor \bar{x}_4) \land (\bar{x}_1 \lor x_3 \lor \bar{x}_4) \land (x_1 \lor \bar{x}_2 \lor \bar{x}_3)$

Extremal Results on CNF Formulas

Theorem (Folklore)

A k-CNF formula with less than 2^k clauses is satisfiable.

Extremal Results on CNF Formulas

Theorem (Folklore)

A k-CNF formula with less than 2^k clauses is satisfiable. There exists an unsatisfiable k-CNF formula with 2^k clauses.

Extremal Results on CNF Formulas

Theorem (Folklore)

A k-CNF formula with less than 2^k clauses is satisfiable. There exists an unsatisfiable k-CNF formula with 2^k clauses.

$$(x \lor y \lor z) \land (x \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \land (x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z})$$

Definition

F is linear if any two clauses share at most one variable.

Definition

F is linear if any two clauses share at most one variable.

Forbidden: $(x \lor y \lor z) \land (x \lor \bar{z} \lor u)$

Definition

F is linear if any two clauses share at most one variable.

Forbidden: $(x \lor y \lor z) \land (x \lor \bar{z} \lor u)$ Allowed: $(x \lor u \lor v) \land (\bar{x} \lor y \lor w)$

Question (Porschen, Randerath, Speckenmeyer)

Question (Porschen, Randerath, Speckenmeyer)

Are there unsatisfiable linear k-CNF formulas?

• k = 0: \square (also called 0, or f, or \bot)

Question (Porschen, Randerath, Speckenmeyer)

- k = 0: \square (also called 0, or f, or \bot)
- $k = 1: (x) \land (\bar{x})$

Question (Porschen, Randerath, Speckenmeyer)

- k = 0: \square (also called 0, or f, or \bot)
- $k = 1: (x) \land (\bar{x})$
- k = 2: $(\bar{x} \lor y) \land (\bar{y} \lor z) \land (\bar{z} \lor u) \land (\bar{u} \lor x) \land (x \lor z) \land (\bar{y} \lor \bar{u})$

Question (Porschen, Randerath, Speckenmeyer)

- k = 0: \square (also called 0, or f, or \bot)
- $k = 1: (x) \land (\bar{x})$
- k = 2: $(\bar{x} \lor y) \land (\bar{y} \lor z) \land (\bar{z} \lor u) \land (\bar{u} \lor x) \land (x \lor z) \land (\bar{y} \lor \bar{u})$
- k = 3: 30 clauses, maybe less...

Theorem

There are unsatisfiable linear k-CNF formulas with $O(k^24^k)$ clauses.

Theorem

There are unsatisfiable linear k-CNF formulas with $O(k^24^k)$ clauses.

$$(x \lor y \lor z) \land (x \lor u \lor v) \land (y \lor u \lor w) \land (y \lor z \lor v)$$

Theorem

There are unsatisfiable linear k-CNF formulas with $O(k^24^k)$ clauses.

$$(\bar{x} \lor y \lor \bar{z}) \land (x \lor \bar{u} \lor \bar{v}) \land (\bar{y} \lor \bar{u} \lor w) \land (y \lor z \lor v)$$

Theorem

There are unsatisfiable linear k-CNF formulas with $O(k^24^k)$ clauses.

$$(x \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{u} \lor v) \land (y \lor u \lor w) \land (\bar{y} \lor \bar{z} \lor \bar{v})$$

Theorem

There are unsatisfiable linear k-CNF formulas with $O(k^24^k)$ clauses.

$$(\bar{x} \lor y \lor z) \land (x \lor \bar{u} \lor \bar{v}) \land (\bar{y} \lor \bar{u} \lor w) \land (y \lor \bar{z} \lor v)$$

Lower Bounds

Theorem

Any linear k-CNF formulas with less than $c4^k/k^2$ clauses is satisfiable.

Lower Bounds

Theorem

Any linear k-CNF formulas with less than $c4^k/k^2$ clauses is satisfiable.

Proof: Lovász Local Lemma + Tweaking

Probabilistic vs. Explicit Constructions

Question

There are unsatisfiable linear k-CNF formulas with $O(k^24^k)$ clauses.

Probabilistic vs. Explicit Constructions

Question

There are unsatisfiable linear k-CNF formulas with $O(k^24^k)$ clauses.

Yeah, but show me one...

Resolution Trees

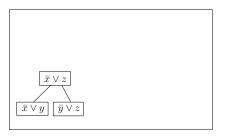
$$F = (\bar{x} \lor y) \land (\bar{y} \lor z) \land (\bar{z} \lor u) \land (\bar{u} \lor x) \land (x \lor z) \land (\bar{y} \lor \bar{u})$$

$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$

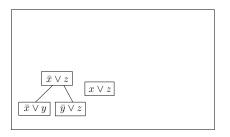
 $\bar{x} \lor y$

$$F = (\bar{x} \lor y) \land (\bar{y} \lor z) \land (\bar{z} \lor u) \land (\bar{u} \lor x) \land (x \lor z) \land (\bar{y} \lor \bar{u})$$

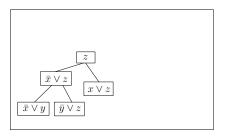
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



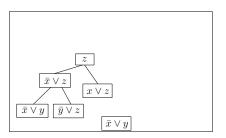
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



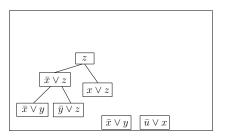
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



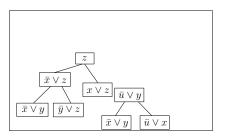
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



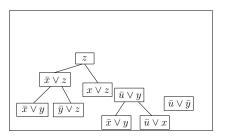
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



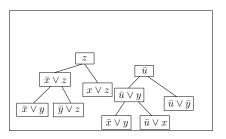
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



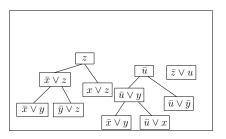
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



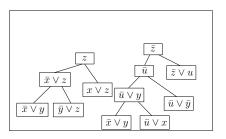
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



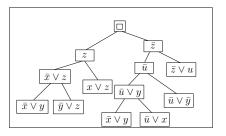
$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



$$F = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$

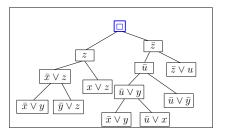


Quite Large Resolution Trees

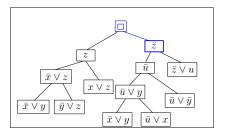
Theorem

Suppose F is an unsatisfiable linear k-CNF formula. Any resolution tree for F has at least $2^{2^{k/2-1}}$ nodes.

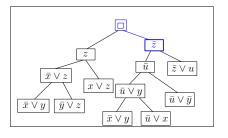
$$F_0 = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



$$F_0 = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$

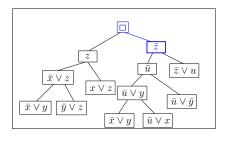


$$F_0 = (\bar{x} \vee y) \wedge (\bar{y} \vee z) \wedge (\bar{z} \vee u) \wedge (\bar{u} \vee x) \wedge (x \vee z) \wedge (\bar{y} \vee \bar{u})$$



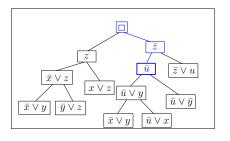
$$z\mapsto 1$$

$$F_1 = (\bar{x} \vee y) \wedge \qquad (u) \wedge (\bar{u} \vee x) \wedge (\bar{y} \vee \bar{u})$$



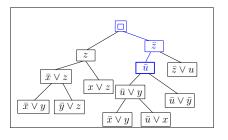
$$z\mapsto 1$$

$$F_1 = (\bar{x} \vee y) \wedge \qquad (u) \wedge (\bar{u} \vee x) \wedge (\bar{y} \vee \bar{u})$$



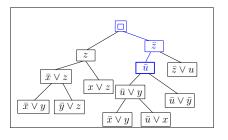
$$z\mapsto 1$$

$$F_1 = (\bar{x} \vee y) \wedge \qquad \qquad (u) \wedge (\bar{u} \vee x) \wedge \qquad (\bar{y} \vee \bar{u})$$



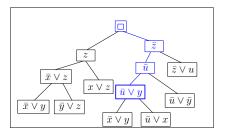
$$z\mapsto 1$$
 , $u\mapsto 1$

$$F_2 = (\bar{x} \vee y) \wedge (\bar{y}) \wedge (\bar{y})$$



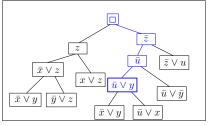
$$z\mapsto 1$$
 , $u\mapsto 1$

$$F_2 = (\bar{x} \vee y) \wedge (\bar{y}) \wedge (\bar{y})$$



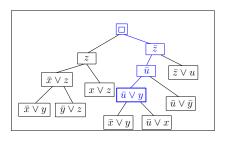
$$z\mapsto 1$$
 , $u\mapsto 1$

$$F_2 = (\bar{x} \lor y) \land \qquad (x) \land (\bar{y})$$



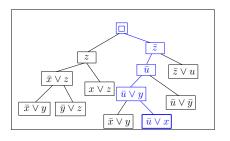
$$z\mapsto 1$$
 , $u\mapsto 1$, $y\mapsto 0$

$$F_3 = (\bar{x}) \land (x)$$



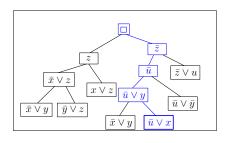
$$z\mapsto 1$$
 , $u\mapsto 1$, $y\mapsto 0$

$$F_3 = (\bar{x}) \land (x)$$



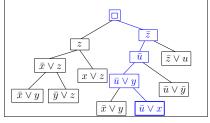
$$z\mapsto 1$$
 , $u\mapsto 1$, $y\mapsto 0$

$$F_3 = (\bar{x}) \land (x)$$



$$z\mapsto 1$$
 , $u\mapsto 1$, $y\mapsto 0$, $x\mapsto 0$

$$F_4 =$$
 ()



$$z\mapsto 1$$
 , $u\mapsto 1$, $y\mapsto 0$, $x\mapsto 0$

• A function $\{L, R\}^* \to \{\text{nodes of the resolution tree}\}$

- A function $\{L, R\}^* \rightarrow \{\text{nodes of the resolution tree}\}$
- Produces a sequence F_0, F_1, F_2, \dots

- A function $\{L, R\}^* \to \{\text{nodes of the resolution tree}\}$
- Produces a sequence F_0, F_1, F_2, \dots
- Walk reaches a leaf \Rightarrow F_i contains the empty clause

- A function $\{L, R\}^* \to \{\text{nodes of the resolution tree}\}$
- Produces a sequence F_0, F_1, F_2, \dots
- Walk reaches a leaf \Rightarrow F_i contains the empty clause

Observation

For a random walk F_0, F_1, \ldots, F_ℓ of ℓ steps:

inner nodes $\geq 2^{\ell}$ Pr[walk doesn't reach a leaf]

- A function $\{L, R\}^* \to \{\text{nodes of the resolution tree}\}$
- Produces a sequence F_0, F_1, F_2, \dots
- Walk reaches a leaf \Rightarrow F_i contains the empty clause

Observation

For a random walk F_0, F_1, \ldots, F_ℓ of ℓ steps:

```
\# inner nodes \geq 2^{\ell} Pr[walk doesn't reach a leaf]
```

 $\geq \ \ 2^\ell \, \text{Pr}[\textit{\textbf{F}}_\ell \text{ doesn't contain empty clause}]$

$$w(F) := \sum_{\text{clauses } C \in F: |C| \le k-2} 2^{-|C|}$$

$$w(F) := \sum_{\text{clauses } C \in F: |C| \le k-2} 2^{-|C|}$$

Observation

For a random walk F_0, F_1, \dots, F_ℓ of ℓ steps:

```
\# inner nodes \geq 2^{\ell} Pr[walk doesn't reach a leaf] \geq 2^{\ell} Pr[F_{\ell} doesn't contain empty clause]
```

$$w(F) := \sum_{\text{clauses } C \in F: |C| \le k-2} 2^{-|C|}$$

Observation

For a random walk F_0, F_1, \dots, F_ℓ of ℓ steps:

```
# inner nodes \geq 2^{\ell} Pr[walk doesn't reach a leaf] \geq 2^{\ell} Pr[F_{\ell} doesn't contain empty clause] \geq 2^{\ell} Pr[w(F_{\ell}) < 1]
```

$$w(F) := \sum_{\text{clauses } C \in F: |C| \le k-2} 2^{-|C|}$$

Observation

For a random walk F_0, F_1, \ldots, F_ℓ of ℓ steps:

```
 \begin{split} \# \text{ inner nodes } & \geq & 2^\ell \text{ Pr[walk doesn't reach a leaf]} \\ & \geq & 2^\ell \text{Pr[}F_\ell \text{ doesn't contain empty clause]} \\ & \geq & 2^\ell \text{Pr[}w(F_\ell) < 1] \\ & \geq & 2^\ell (1 - \mathbb{E}[w(F_\ell)]) \end{split}
```

$$w(F) := \sum_{\text{clauses } C \in F: |C| \le k-2} 2^{-|C|}$$

Observation

For a random walk F_0, F_1, \ldots, F_ℓ of ℓ steps:

$$\#$$
 inner nodes $\geq 2^{\ell}$ Pr[walk doesn't reach a leaf] $\geq 2^{\ell}$ Pr[F_{ℓ} doesn't contain empty clause] $\geq 2^{\ell}$ Pr[$w(F_{\ell}) < 1$] $\geq 2^{\ell}(1 - \mathbb{E}[w(F_{\ell})])$

a little bit more work

$$w(F) := \sum_{\text{clauses } C \in F: |C| \le k-2} 2^{-|C|}$$

Observation

For a random walk F_0, F_1, \ldots, F_ℓ of ℓ steps:

inner nodes
$$\geq 2^{\ell}$$
 Pr[walk doesn't reach a leaf]

$$\geq 2^{\ell} \Pr[F_{\ell} \text{ doesn't contain empty clause}]$$

$$\geq 2^{\ell} \Pr[w(F_{\ell}) < 1]$$

$$\geq 2^{\ell}(1-\mathbb{E}[w(F_{\ell})])$$

a little bit more work

$$\geq 2^{\ell}(1-\ell^22^{-k})$$

Size of Resolution Trees

inner nodes
$$\geq 2^{\ell} (1 - \ell^2 2^{-k})$$

Size of Resolution Trees

inner nodes
$$\geq 2^{\ell} (1 - \ell^2 2^{-k})$$

Plug in
$$\ell := \sqrt{2^{k-1}}$$

Size of Resolution Trees

inner nodes
$$\geq 2^{\ell} (1 - \ell^2 2^{-k})$$

Plug in $\ell := \sqrt{2^{k-1}}$

Theorem

Suppose F is an unsatisfiable linear k-CNF formula. Any resolution tree for F has at least $2^{2^{k/2-1}}$ nodes.

unsatisfiable linear k-CNF formulas exist

- unsatisfiable linear k-CNF formulas exist
- large, but not too large

- unsatisfiable linear k-CNF formulas exist
- large, but not too large
- hard to construct explicitly

- unsatisfiable linear k-CNF formulas exist
- large, but not too large
- hard to construct explicitly

They might help to understand the "Hay in a Haystack Paradox"