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Colorability of Hypergraphs

Theorem (Erdds)

A k-uniform hypergraph with less than 2~1 edges is
2-colorable.

Proof: Take a random coloring.

Theorem (Erdés)

There exists a k-uniform hypergraph with k22K edges that is not
2-colorable.

Proof: Take k2 vertices and randomly select k22X hyperedges
from the (¥*) possible ones.
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CNF Formulas

() A (1 V&2 V) A (X1 VX0 V3 ) A (1 VR )A (R VRo V3 A (R V)

assignment: X3 — 1. X, — 1 X3 +— 0,%X4 — 1

K-CNF formulas: (X1 V X2 V X4) A (X1 V X3 V Xq) A (X1 V X2 V X3)




Extremal Results on CNF Formulas

Theorem (Folklore)

A k-CNF formula with less than 2% clauses is satisfiable.




Extremal Results on CNF Formulas

Theorem (Folklore)

A k-CNF formula with less than 2% clauses is satisfiable.
There exists an unsatisfiable k-CNF formula with 2% clauses.




Extremal Results on CNF Formulas

Theorem (Folklore)

A k-CNF formula with less than 2% clauses is satisfiable.
There exists an unsatisfiable k-CNF formula with 2% clauses.

A
A
A
XVYyVZ) A
A
A
A




Linear CNF Formulas




Linear CNF Formulas

Definition
F is linear if any two clauses share at most one variable.




Linear CNF Formulas

Definition
F is linear if any two clauses share at most one variable.

Forbidden: (x Vy VZ) A (X V Z Vu)




Linear CNF Formulas

Definition
F is linear if any two clauses share at most one variable.

Forbidden: (x Vy VZ) A (X V Z Vu)
Allowed: (X VUV V)A(X VY VW)
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Existence of Unsatisfiable Linear k-CNF Formulas

Question (Porschen, Randerath, Speckenmeyer)

Are there unsatisfiable linear k-CNF formulas?

@ k =0: 0 (also called 0, or f, or 1)
@ k=1 (x)A(X)

@ k = 3: 30 clauses, maybe less. ..
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Any linear k-CNF formulas with less than c4X /k? clauses is
satisfiable.




Any linear k-CNF formulas with less than c4X /k? clauses is
satisfiable.

Proof: Lovasz Local Lemma + Tweaking
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Probabilistic vs. Explicit Constructions

There are unsatisfiable linear k-CNF formulas with O (k24*)
clauses.
Yeah, but show me one...
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Quite Large Resolution Trees

Suppose F is an unsatisfiable linear k-CNF formula. Any
resolution tree for F has at least 22°™* nodes.
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Taking a Random Walk

@ A function {L,R}* — {nodes of the resolution tree}
@ Produces a sequence Fo,F1,Fo, ...
@ Walk reaches a leaf = F; contains the empty clause

Observation
For a random walk Fg, Fq, ..., F, of £ steps:

2° Prjwalk doesn’t reach a leaf]
2 Pr[F, doesn't contain empty clause]

# inner nodes >
>
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Bounding Pr[F, contains empty clause |

w(F) = > 2-Icl

clauses CeF:|C|<k—2

For a random walk Fg, F4, ..., F, of £ steps:
# innernodes > 2° Prjwalk doesn't reach a leaf]
> 2¢ Pr[F, doesn’t contain empty clause]
> 2'Priw(Fy) < 1]
> 21— E[Ww(F)])
a little bit more work
> 2Y(1—¢%2275)
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Size of Resolution Trees

# inner nodes > 2¢(1 — ¢227)

Plugin ¢ := v2k-1

Suppose F is an unsatisfiable linear k-CNF formula. Any
resolution tree for F has at least 22/ nodes.
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Conclusion

@ unsatisfiable linear k-CNF formulas exist
@ large, but not too large
@ hard to construct explicitly

They might help to understand the “Hay in a Haystack Paradox”




