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A Minimum Cut Algorithm for Undirected Graphs

BigNews

CS214: Algorithms and Complexity
Shanghai Jiao Tong University

2016.12.06

Running Time
0000000000



The Algorithm Correctness Running Time

[ ]o} (e]e] 0000000000
000000000000 00000O00O0O00000000 00000000

Outline

The Algorithm
Global Minimum Cut



The Algorithm
Global Minimum Cut

DePnition
Given an undirected grapB(V, E), a global min-cut is a partition of
V into two subset$S, T) such that the sum of weights of edges

betweerSandT is minimized.
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Stoer-Wagner Algorithm (1)

MinimumCutPhase(G, w, a)
1 Al{ a}

2 while (A= V)do

3 \ add toA the most tightly connected vertex

4 end

5 store thecut-of-the-phase

6 shrinkG by merging the two vertices added last
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Most Tightly Connected

DePnition
A vertext are callednost ptightly connectedto vertex sef if sum
of the weights of the edges connected betweamdA is the highest

among other vertices not belonging4o
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A graphG = (V, E) with edge-weights
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Start with vertex a =2

A= {2}
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Add vertex b =3

A= {23
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Add vertexc =4

Running Time
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A= {23 4
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Add vertexd =7

A={234T}
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Add vertexe =8
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A=1{234,78}
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Add vertex f=6

A= {234,786}

DA
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Add vertex s=5and vertext=1

A= {2,34,7,8,6,5)
A= {23,4,7,86,5,1}

sandt are the last two vertices (in order) added®and we get a cut
C(A-t, t), which is so-callea¢ut-of-the-phase

[m] =l =

DA
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Eachcut-of-the-phasas a minimum s-t cutin the current graph,
wheres andt are the two vertices added last in the phase.
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Implications

What if the global min cut of5 separates andt?
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Implications

What if the global min cut of5 separates andt?

Then mins-t cut is also a global min cut @&.
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Implications
What if the global min cut of5 separates andt?
Then mins-t cut is also a global min cut @&.

What if min cut of G does not separatandt?
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Implications

What if the global min cut ofs separates andt?
Then mins-t cut is also a global min cut db.
What if min cut ofG does not separateandt?

Thensandt are in the same partition of the global min cut, and we
canmergethem without changing the global min cut.
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Merge
DebPnition
The two vertices are replaced by a new vertex and any edges from the
two vertices to a remaining vertex are replaced by an edge weighted
by the sum of the weights of the previous two edges, while edges
joining the merged nodes are removed.

b
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The Algorithm

Merge
DebPnition
The two vertices are replaced by a new vertex and any edges from the
two vertices to a remaining vertex are replaced by an edge weighted
by the sum of the weights of the previous two edges, while edges
joining the merged nodes are removed.
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Stoer-Wagner Algorithm (2)

MinimumCut (G, w, a)
1 while (| V |> 1) do
2 MinimumCutPhasgs, w, a)
3 if the cut-of-the-phases lighter than the current minimum cut

then
4 \ store thecut-of-the-phasas the current minimum cut
5 end

6 end
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vertex orderinga, b, ¢, d, e, f, s, t
cut-of-the-phase{1},{2,3,4,5,6,7,8 | =5
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vertex orderinga, b, ¢, d, g s, t
cut-of-the-phase{8},{1,2,3,4,5,6,77 ! =5
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vertex orderinga, b, ¢, d, s, t
cut-of-the-phase{7,8},{1,2,3,4,5,6} | =7
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After the 4" MinimumCutPhasgs, !, a),a= 2

vertex orderinga, b, c, s, t
cut-of-the-phase{4,7,8},{1,2,3,5,6} | =7
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After the 8" MinimumCutPhasgs, !, a),a= 2

L——&

b S

vertex orderinga, b, s, t
cut-of-the-phase{ 3,4,7,8},{1,2,5,6} | =4
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After the 8" MinimumCutPhasgs, !, a),a= 2

vertex orderinga, s, t
cut-of-the-phase{1,5},{2,3,4,6,7,8 | =7
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After the 7" MinimumCutPhasgs, !, a),a= 2

S

t

vertex orderings, t
cut-of-the-phase{ 2},{1,3,4,5,6,7,8 | =9
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Cut-of-the-phase

cut-of-the-phase

{1}:;{2,3,4,5,6,7,8}
{8};{1,2,3,4,5,6,7}
{7,8};{1,2,3,4,5,6}
{4,7,8},;{1,2,3,5,6}
{3,4,7,8};{1,2,5,6}
{1,5};{2,3,4,6,7,8}
{2};{1,3,4,5,6,7,8}

O NP NNO1TO
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vertex orderinga, b, s, t
cut-of-the-phase{ 3,4,7,8},{1, 2,5, 6}

4

Running Time
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Lemma
Eachcut-of-the-phasas a minimum s-t cut in the current graph,
wheres andt are the two vertices added last in the phase.

Theorem
Thelightestof thesecuts-of-the-phasés theminimum cut of G.

Assuming that the lemma holds, the theorem can be proved by a
simple case distinction. Thus our proof is focused on the claimed
property of thecut-of-the-phase
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Proof

Running Time
Proof
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DePnition
We call a vertex activewhenv and the vertex added just beforare
in different parts of the cut.

/T \
|
|
|
| |
‘- _ J
e
\
'S
|
|
| m |
{ /

activevertices: a,...,V,w,...,t
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Proof

— === ) 9y w) = (1+2)+(3+8)

[
T,- T,U{v}} : = w4y, \4,, W) + w(4,,w)
\
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Proof

Ty ) w(Ay,w) = (1+2)+(3+8)
T,- T,U{V}J : = w(Ay\A4,, W) + w (4, w)
\ =
N 2l < w4\ Ay W) + 0(Ay, v)
=(1+2)+G+7)
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Proof

ooy ) w(Ay,w) = (1+2)+(3+8)
T,.- TvU{v}JI : = W(A\Ap, W) + 0 (A, W)

— 1)

< w(Ay\4,,w) + w(4,,v)
=[1+2)+G+7

< w(Ay,\A4y, W) + w(C,)
=1+2)+G+6)
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Ty ) w(Ay,w) = (1+2)+(3+8)
T.- T,U{v}J' : = WAy \Ap, W) + w(4y, W)

\

—_—_—— < w(Ay\A,, W) + w(4,,v)

=(1+2)+G+7)

meamea

< w(Ap\4y, W) + w(Cy)
=(1+2)+(5G+6)

< w(Cy)
- _______ = =(1+2+4+34+4+5+6)
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MinimumCut Algorithm

MinimumCut (G, w, a)
1 while (| V |> 1) do
2 MinimumCutPhasgs, w, a)
3 if the cut-of-the-phases lighter than the current minimum cut

then
4 \ store thecut-of-the-phasas the current minimum cut
5 end

6 end



MinimumCutPhase Algorithm

MinimumCutPhase(G, w, a)
Al{ &}
while (A= V) do
\ add toA the most tightly connected vertex
end
store thecut-of-the-phase
shrink G by merging the two vertices added last

Running Time
00®0000000



The Algorithm Correctness Running Time
[e]e] [e]e) 000e000000
0000000000000 000000000000000 00000000

MinimumCutPhase Algorithm

MinimumCutPhase(G, w, a)
1 Al{ a}
2 while (A= V)do
3 \ add toA the most tightly connected vertex
4 end
5 store thecut-of-the-phase
6 shrinkG by merging the two vertices added last
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Proposition
The running time for a single phase ig|@| + |V|log|V]).

Proof.

1. All vertices that are not ik reside in a priority queue.
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Proposition
The running time for a single phase ig|@| + |V|log|V]).
Proof.

1. All vertices that are not irA reside in a priority queue.

2. Whenever a vertex is added tA,
the priority queue doelxtractMaxandIncreaseKeyperations.

O
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Proposition
The running time for a single phase ig|@| + |V|log|V]).

Proof.

1. All vertices that are not irh reside in a priority queue.

2. Whenever a vertexis added tdA,
the priority queue doextractMaxandincreaseKeyperations.

3. |V| ExtractMax |E| IncreaseKey

0J
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Proposition
The running time for a single phase ig|@| + |V|log|V]).

Proof.

1. All vertices that are not ik reside in a priority queue.
2. Whenever a vertex is added toA,
the priority queue doelxtractMaxandIncreaseKeyperations.
3. |V| ExtractMax |E| IncreaseKey
4. Fibonacci heaps
ExtractMax (log|V|)

IncreaseKey QL)
Time for one phase i®(|E| + |V|log|V]).

O
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Proposition

The overall running time of Stoer-Wagner algorithm for minimum cut
in undirected graphs is QV||E| + |V|?log]|V]).

Proof.

1. |V|# 1 phases
2. Time for single phase)(|E| + |V|log|V|)
3. Overall running time O(|V||E| + |V|?log|V])

O
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Thank you!
Q&A



