
Mathematical Foundations
of

Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

8 Spanning Trees

• Homework assignment published on Monday, 2018-04-16

• Submit questions and first solution by Sunday, 2018-04-22, 12:00, by
email to me and the TAs.

• Submit your final solution by Sunday, 2018-04-29.

8.1 Minimum Spanning Trees

Throughout this assignment, let G = (V,E) be a connected graph and
w : E → R+ be a weight function.

Exercise 8.1. Prove the inverse of the cut lemma: If X is good, e 6∈ X,
and X ∪ e is good, then there is a cut S, V \ S such that (i) no edge from X
crosses this cut and (ii) e is a minimum weight edge of G crossing this cut.

Definition 8.2. For c ∈ R and a weighted graph G = (V,E), let Gc :=
(V, {e ∈ E | w(e) ≤ c}). That is, Gc is the subgraph of G consisting of all
edges of weight at most c.

Lemma 8.3. Let T be a minimum spanning tree of G, and let c ∈ R. Then
Tc and Gc have exactly the same connected components. (That is, two vertices
u, v ∈ V are connected in Tc if and only if they are connected in Gc).

1

Exercise 8.4. Illustrate Lemma 8.3 with an example!

Exercise 8.5. Prove the lemma.

Definition 8.6. For a weighted graph G, let mc(G) := |{e ∈ E(G) | w(e) ≤
c}|, i.e., the number of edges of weight at most c (so Gc has mc(G) edges).

Lemma 8.7. Let T, T ′ be two minimum spanning trees of G. Then mc(T) =
mc(T

′).

Exercise 8.8. Illustrate Lemma 8.7 with an example!

Exercise 8.9. Prove the lemma.

Exercise 8.10. Suppose no two edges of G have the same weight. Show
that G has exactly one minimum spanning tree!

8.2 Counting Special Functions

In the video lecture, we have seen a connection between functions f : V → V
and trees on V . We used this to learn something about the number of such
trees. Here, we will go in the reverse direction: the connection will actually
teach us a bit about the number of functions with a special structure.

Let V be a set of size n. We have learned that there are nn functions
f : V → V . For such a function we can draw an “arrow diagram” by simply
drawing an arrow from x to f(x) for every V . For example, let V = {0, . . . , 7}
and f(x) := x2 mod 8. The arrow diagram of f looks as follows:

0 1

4

6 2

3 5 7

The core of a function is the set of elements lying on cycles in such a diagram.
For example, the core of the above function is {0, 1}. Formally, the core of
f is the set

{x ∈ V | ∃k ≥ 1f (k)(x) = x}

2

where f (k)(x) = f(f(. . . f(x) . . .)), i.e., the function f applied k times itera-
tively to x.

Exercise 8.11. Of the nn functions from V to V , how many have a core of
size 1? Give an explicit formula in terms of n.

Exercise 8.12. How many have a core of size 2 that consists of two 1-cycles?
By this we mean that core(f) = {x, y} with f(x) = x and f(y) = y.

Hint. For the previous two exercises, you need to use the link between
functions f : [n]→ [n] and vertebrates (T, h, b) from the video lecture.

8.3 Counting Trees with Prüfer Codes

In the video lecture, we have seen Cayley’s formula, stating that there are
exactly nn−2 trees on the vertex set [n]. We showed a proof using vertebrates.
For this homework, read Section 7.4 of the textbook, titled “A proof using
the Prüfer code”.

Exercise 8.13. Let V = {1, . . . , 9} and consider the code (1, 3, 3, 2, 6, 6, 1).
Reconstruct a tree from this code. That is, find a tree on V whose Prüfer
code is (1, 3, 3, 2, 6, 6, 1).

Exercise 8.14. Let p = (p1, p2, . . . , pn−2) be the Prüfer code of some tree T
on [n]. Find a way to quickly determine the degree of vertex i only by looking
at p and not actually constructing the tree T . In particular, by looking at
p, what are the leaves of T?

Exercise 8.15. Describe which tree on V = [n] has the

1. Prüfer code (1, 1, . . . , 1).

2. Prüfer code (1, 2, 3, . . . , n− 2).

3. Prüfer code (3, 4, 5, . . . , n).

4. Prüfer code (n, n− 1, n− 2, . . . , 4, 3).

5. Prüfer code (n− 2, n− 3, . . . , 2, 1).

6. Prüfer code (1, 2, 1, 2, . . . , 1, 2) (assuming n is even).

3

Justify and explain your answers.

The next two exercises use a bit of probability theory. Suppose we want
to sample a random tree on [n]. That is, we want to write a little procedure
(say in Java) that uses randomness and outputs a tree T on [n], where each
of the nn−2 trees has the same probability of appearing.

Exercise 8.16. Sketch how one could write such a procedure. Don’t actu-
ally write program code, just describe it informally. You can assume you
have access to a random generator randomInt(n) that returns a function in
{1, . . . , n} as well as randomReal() that returns a random real number from
the interval [0, 1].

Clearly, a tree T on [n] has at least 2 and at most n− 1 leaves. But how
many leaves does it have on average? For this, we could use your tree sam-
pler from the previous exercise, run it 1000 times and compute the average.
However, it would be much nicer to have a closed formula.

Exercise 8.17. Fix some vertex u ∈ [n]. If we choose a tree T on [n]
uniformly at random, what is the probability that u is a leaf? What is the
expected number of leaves of T?

Exercise 8.18. For a fixed vertex u, what is the probability that u has
degree 2?

4

