Mathematical Foundations
of
Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

10 Network Flow

e Homework assignment published on Monday 2018-05-07
e Submit questions and first solution by Sunday, 2018-05-13, 12:00

e Submit final solution by Sunday, 2018-05-20.

Exercise 10.1. [From the video lecture] Recall the definition of the value of
a flow: val(f) =3 oy f(s,v). Let S CV be a set of vertices that contains
s but not ¢. Show that

val(f) = Z f(u,v) .

ueS,weV\S

That is, the total amount of flow leaving s equals the total amount of flow
going from S to V'\ S. Remark. It sounds obvious. However, find a formal
proof that works with the axiomatic definition of flows.

Exercise 10.2. Let G = (V, E,c¢) be a flow network. Prove that flow is
“transitive” in the following sense: If there is a flow from s to r of value k,
and a flow from r to ¢ of value k, then there is a flow from s to t of value
k. Hint. The solution is extremely short. If you are trying something that
needs more than 3 lines to write, you are on the wrong track.

10.1 An Algorithm for Maximum Flow

Recall the algorithm for Maximum Flow presented in the video. It is usually
called the Ford-Fulkerson method.

Algorithm 1 Ford-Fulkerson Method
1: procedure FF(G = (V, E), s,t,¢)
2 Initialize f to be the all-O-flow.
3 while there is a path p form s to t in the residual network Gy do
4: Cmin := min{c(e) | e € p}
5: let f, be the flow in Gy that routes ¢,y flow along p
6
7
8
9

f=F+1
end while
// now f is a maximum flow
S :={v €V | Gy contains a path from s to v}
10: // S is a minimum cut
11: return (f,5)
12: end procedure

We proved in the lecture that f is a maximum flow and S is a minimum
cut, by showing that upon termination of the while-loop, val(f) = cap(S).
The problem is that the while-loop might not terminate. In fact, there is an
example with capacities in R for which the while loop does not terminate,
and the value of f does not even converge to the value of a maximum flow.
As indicated in the video, a little twist fixes this:

Edmonds-Karp Algorithm: Execute the above Ford-Fulkerson
Method, but in every iteration choose p to be a shortest s-t-path
in G¢. Here, “shortest” means minimum number of edges.

In a series of exercises, you will now show that this algorithm always ter-
minates after at most n - m iterations of the while loop (here n = |V| and
m = |E).

Definition 10.3. Let (G, s,t,c) be a flow network and k € Ny. A k-layering
is a partition of V.= Vo U --- UV} such that (1) s € Vo, (2)t € Vi, (3) for
every edge (u,v) € E the following holds: suppose v € V; and v € V;. Then
Jj <i+1. In words, point (3) states that every edge moves at most one level
forward.

The figure below illustrates this concept: for one network we show two
possible layerings and something that looks like a layering but is not:

A 3-layering. A 1-layering. Not a layering: the fat red edge
“jumps ahead”.

Exercise 10.4. Suppose the network (G, s,t, ¢) has a k-layering. Show that
dist(s,t) > k. That is, every s-t-path in G has at most k edges.

Exercise 10.5. Conversely, suppose dist(s,?) = k. Show that (G, s, t, c) has
a k-layering.

Let (G,s,t,c) be a flow network and Vg, ..., V, a k-layering. We call
this layering optimal if distg(s,t) = k. Here, distg(u, v) is the shortest-path
distance from s to ¢ (measured by number of edges). If there is no path
from s to t, we set distg(s,t) = co. In this case, no layering is optimal. For
example, the 3-layering in the above figure is optimal, but the 1-layering in
the middle of the above figure is not. Let us explore how layerings and the
Ford-Fulkerson Method interact.

Exercise 10.6. Let (G, s,t,¢) be a flow network and Vy, Vi,..., Vi be an
optimal layering (that is, & = distg(s,t). Let p be a path from s to t of
length k. Suppose we route some flow f along p (of some value ¢y, > 0)
and let (Gy,s,t,cs) be the residual network. Show that Vg, Vi,...,Vj is a
layering of (G, s, t, ¢f), too. Obviously, condition (1) and (2) in the definition
of k-layerings still hold, so you only have to check condition (3).

Exercise 10.7. Show that every network (G, s, t, ¢) has an optimal layering,
provided there is a path from s to ¢.

Exercise 10.8. Imagine we are in some iteration of the while-loop of the
Edmonds-Karp algorithm. Let Vg, ..., Vi be an optimal layering of (G, s, t, ¢).
Show that after at most m iterations of the while-loop, Vj,..., V) ceases to
be an optimal layering. Remark. Note that it is the network that changes
from iteration to iteration of the while-loop, not the partition Vg, ..., V.. We
consider the partition Vj, ...,V to be fixed in this exercise.

Exercise 10.9. Show that the Edmonds-Karp algorithm terminates after
n - m iterations of the while-loop. Hint. Initially, compute an optimal k-
layering (which?). Then keep this layering as long as its optimal. Once
it ceases to be optimal, compute a new optimal layering. Note that the
Edmonds-Karp algorithm does not actually need to compute any layering.
It’s us who compute it to show that n-m bound on the number of iterations.

Exercise 10.10. Show that every network has a maximum flow f. That is,
a flow f such that val(f) > val(f’) for every flow f’. Remark. This sounds
obvious but it is not. In fact, there might be an infinite sequence of flows
f1, fo, f3, ... of increasing value that does not reach any maximum. Use the
previous exercises!

