
Mathematical Foundations
of

Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

10 Network Flow

• Homework assignment published on Monday 2018-05-07

• Submit questions and first solution by Sunday, 2018-05-13, 12:00

• Submit final solution by Sunday, 2018-05-20.

Exercise 10.1. [From the video lecture] Recall the definition of the value of
a flow: val(f) =

∑
v∈V f(s, v). Let S ⊆ V be a set of vertices that contains

s but not t. Show that

val(f) =
∑

u∈S,v∈V \S

f(u, v) .

That is, the total amount of flow leaving s equals the total amount of flow
going from S to V \S. Remark. It sounds obvious. However, find a formal
proof that works with the axiomatic definition of flows.

Exercise 10.2. Let G = (V,E, c) be a flow network. Prove that flow is
“transitive” in the following sense: If there is a flow from s to r of value k,
and a flow from r to t of value k, then there is a flow from s to t of value
k. Hint. The solution is extremely short. If you are trying something that
needs more than 3 lines to write, you are on the wrong track.

1

10.1 An Algorithm for Maximum Flow

Recall the algorithm for Maximum Flow presented in the video. It is usually
called the Ford-Fulkerson method.

Algorithm 1 Ford-Fulkerson Method

1: procedure FF(G = (V,E), s, t, c)
2: Initialize f to be the all-0-flow.
3: while there is a path p form s to t in the residual network Gf do
4: cmin := min{cf (e) | e ∈ p}
5: let fp be the flow in Gf that routes cmin flow along p
6: f := f + fp
7: end while
8: // now f is a maximum flow
9: S := {v ∈ V | Gf contains a path from s to v}

10: // S is a minimum cut
11: return (f, S)
12: end procedure

We proved in the lecture that f is a maximum flow and S is a minimum
cut, by showing that upon termination of the while-loop, val(f) = cap(S).
The problem is that the while-loop might not terminate. In fact, there is an
example with capacities in R for which the while loop does not terminate,
and the value of f does not even converge to the value of a maximum flow.
As indicated in the video, a little twist fixes this:

Edmonds-Karp Algorithm: Execute the above Ford-Fulkerson
Method, but in every iteration choose p to be a shortest s-t-path
in Gf . Here, “shortest” means minimum number of edges.

In a series of exercises, you will now show that this algorithm always ter-
minates after at most n · m iterations of the while loop (here n = |V | and
m = |E|).

Definition 10.3. Let (G, s, t, c) be a flow network and k ∈ N0. A k-layering
is a partition of V = V0 ∪ · · · ∪ Vk such that (1) s ∈ V0, (2) t ∈ Vk, (3) for
every edge (u, v) ∈ E the following holds: suppose u ∈ Vi and v ∈ Vj. Then
j ≤ i+ 1. In words, point (3) states that every edge moves at most one level
forward.

2

The figure below illustrates this concept: for one network we show two
possible layerings and something that looks like a layering but is not:

s

t

A 3-layering.

V0

V1

V2

V3

s

t

A 1-layering.

V0

V1

s

t

Not a layering: the fat red edge
“jumps ahead”.

V0

V1

V2

V3

V4

Exercise 10.4. Suppose the network (G, s, t, c) has a k-layering. Show that
dist(s, t) ≥ k. That is, every s-t-path in G has at most k edges.

Exercise 10.5. Conversely, suppose dist(s, t) = k. Show that (G, s, t, c) has
a k-layering.

Let (G, s, t, c) be a flow network and V0, . . . , Vk a k-layering. We call
this layering optimal if distG(s, t) = k. Here, distG(u, v) is the shortest-path
distance from s to t (measured by number of edges). If there is no path
from s to t, we set distG(s, t) =∞. In this case, no layering is optimal. For
example, the 3-layering in the above figure is optimal, but the 1-layering in
the middle of the above figure is not. Let us explore how layerings and the
Ford-Fulkerson Method interact.

Exercise 10.6. Let (G, s, t, c) be a flow network and V0, V1, . . . , Vk be an
optimal layering (that is, k = distG(s, t). Let p be a path from s to t of
length k. Suppose we route some flow f along p (of some value cmin > 0)
and let (Gf , s, t, cf) be the residual network. Show that V0, V1, . . . , Vk is a
layering of (Gf , s, t, cf), too. Obviously, condition (1) and (2) in the definition
of k-layerings still hold, so you only have to check condition (3).

Exercise 10.7. Show that every network (G, s, t, c) has an optimal layering,
provided there is a path from s to t.

3

Exercise 10.8. Imagine we are in some iteration of the while-loop of the
Edmonds-Karp algorithm. Let V0, . . . , Vk be an optimal layering of (G, s, t, c).
Show that after at most m iterations of the while-loop, V0, . . . , Vk ceases to
be an optimal layering. Remark. Note that it is the network that changes
from iteration to iteration of the while-loop, not the partition V0, . . . , Vk. We
consider the partition V0, . . . , Vk to be fixed in this exercise.

Exercise 10.9. Show that the Edmonds-Karp algorithm terminates after
n · m iterations of the while-loop. Hint. Initially, compute an optimal k-
layering (which?). Then keep this layering as long as its optimal. Once
it ceases to be optimal, compute a new optimal layering. Note that the
Edmonds-Karp algorithm does not actually need to compute any layering.
It’s us who compute it to show that n ·m bound on the number of iterations.

Exercise 10.10. Show that every network has a maximum flow f . That is,
a flow f such that val(f) ≥ val(f ′) for every flow f ′. Remark. This sounds
obvious but it is not. In fact, there might be an infinite sequence of flows
f1, f2, f3, . . . of increasing value that does not reach any maximum. Use the
previous exercises!

4

