
An Uncountable Chain in {0, 1}N

An Uncountable Chain in {0, 1}N

Part I: the proof I showed in class, with a bit more details.

An Uncountable Chain in {0, 1}N

Part I: the proof I showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets.
A function f : X → Y is an isomorphism if
• f is bijective,
• x1 ≤ x2 if and only if f(x1) ≤ f(x2).

If such an f exists, we say X and Y are isomorphic and
write X ∼= Y .

An Uncountable Chain in {0, 1}N

Part I: the proof I showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets.
A function f : X → Y is an isomorphism if
• f is bijective,
• x1 ≤ x2 if and only if f(x1) ≤ f(x2).

If such an f exists, we say X and Y are isomorphic and
write X ∼= Y .

Intuitive meaning: X and Y being isomorphic means that
they look identical, differing only by the names of their
elements.

Observation 2. (2N,⊆) and (2Q,⊆) are isomorphic.

Observation 3. If X and Y are isomorphic, then X has
an uncountable chain if and only if Y has an uncountable
chain.

Observation 1. ({0, 1}N,≤) and (2N,⊆) are isomorphic.

Theorem. (2Q,⊆) has an uncountable chain.

Proof. For a real number x, definfe
Bx := {q ∈ Q | q < x}.
Define C := {Bx | x ∈ R}.
• C is a chain. Any Bx, By are comparable. Indeed, if

x ≤ y then Bx ⊆ By.
• C is uncountable. Indeed, the function f : R→ C

defined by f(x) = Bx is injective.

Theorem. (2Q,⊆) has an uncountable chain.

Proof. For a real number x, definfe
Bx := {q ∈ Q | q < x}.
Define C := {Bx | x ∈ R}.
• C is a chain. Any Bx, By are comparable. Indeed, if

x ≤ y then Bx ⊆ By.
• C is uncountable. Indeed, the function f : R→ C

defined by f(x) = Bx is injective.

Corollay. ({0, 1}N,≤) has an uncountable chain.

Okay, maybe this was a bit mysterious...

Let’s give a (longer) proof that actually shows how the
elements of the chain are constructed.

Okay, maybe this was a bit mysterious...

Let’s give a (longer) proof that actually shows how the
elements of the chain are constructed.

We’ll define a function f that takes as input
an infinite bit sequence a ∈ {0, 1}N and outputs an
infinite bit sequence f(a) ∈ {0, 1}N such that

1. f is an injection.
2. All output elements f(a) are comparable.

Point 1 will ensure the set of outputs is uncountable,
Point 2 will ensure it is a chain.

Example of our procedure

01101001...

input sequence

Example of our procedure

01101001...

input sequence

∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

output sequence

Example of our procedure

01101001...

input sequence

∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

output sequence

just infinitely many ∗ in the beginning

01101001...

∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

01101001...

∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

read first bit of input

01101001...

∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

read first bit of input

put it here

01101001...

∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

read first bit of input

put it here

0

01101001...

∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

read first bit of input

0

01101001...

∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

read first bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

01101001...

∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

read first bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

01101001...

∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ . . .

read first bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

01101001...

∗ . . .

read first bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 0

01101001...

∗ . . .

read first bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 0

01101001...

∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 0

01101001...

∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 0

01101001...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01

01101001...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01

. . .

01101001...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01

. . .

1 1 1 1 1 1 1 1 1

01101001...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 1

01101001...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 1

01101001...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

01101001...

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

01101001...

∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

1 1 1 1

01101001...

∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

1 1 1 1

01101001...

∗ ∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

1 1 1 1

01101001...

∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

1 1 1 10

01101001...

∗ ∗ ∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

1 1 1 10

01101001...

∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

1 1 1 10 0 0

01101001...

∗ ∗ . . .

read next bit of input

0

Rule 1: Read bit of input. In output,
replace first ∗ by that bit.

Rule 2:
• If that bit is 0, replace every other ∗

by 0, starting with the first ∗.
• If that bit is 1, replace every other ∗

by 1, starting with the second ∗.

0 01 1 1 1 1 1 1 1 1 11

. . .

1 1 1 10 0 0

AND SO ON FOREVER

01101001...

∗ ∗ . . .00 01 1 1 1 1 1 1 1 1 11 1 1 1 10 0 0

input a

output f(a)

Claim. This procedure is injective and produces a chain.

Proof. Let a and b be two different input sequences.

Let i be the first coordinate where ai 6= bi.

Let’s assume ai = 0, bi = 1.

Let’s run the previous procedure on a and b and stop just
before it reads the ith bit.

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

Input, just before reading bit i:

f(a) =

f(b) =

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

Input, just before reading bit i:

f(a) =

f(b) =

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

These parts of f(a) and f(b) consist of 0’s
and 1’s. They are equal, because the parts of
a and b read so far as identical.

. . .

. . .

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

Input, just before reading bit i:

f(a) =

f(b) =

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Now we read the next bit of
a and b

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

Input, just before reading bit i:

f(a) =

f(b) =

∗

∗

∗

∗

∗

∗

∗

∗

∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Now we read the next bit of
a and b

0

1

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

Input, just before reading bit i:

f(a) =

f(b) = ∗

∗

∗

∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Now we read the next bit of
a and b

0

1 1 1

0 0 0

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

Input, just before reading bit i:

f(a) =

f(b) = ∗

∗

∗

∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Now we read the next bit of
a and b

0

1 1 1

0 0 0

Whatever happens from now on, it is clear that
f(a) < f(b).

a = a1a2 . . . ai−10ai+1ai+2 . . .

b = a1a2 . . . ai−11bi+1bi+2 . . .

Input:

Input, just before reading bit i:

f(a) =

f(b) = ∗

∗

∗

∗

∗

.

.

.

.

.

.

.

.

.

.

.

.

. . .

Now we read the next bit of
a and b

0

1 1 1

0 0 0

Whatever happens from now on, it is clear that
f(a) < f(b).

So f is injective and Im(f) is a chain.

