An Uncountable Chain in {0, 1}

An Uncountable Chain in {0, 1}™

Part I: the proof | showed in class, with a bit more details.

An Uncountable Chain in {0, 1}™

Part I: the proof | showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets.
A function f: X — Y is an isomorphism if

e f is bijective,

o v1 <z if and only if f(x1) < f(z2).

If such an f exists, we say X and Y are isomorphic and
write X =2 Y.

An Uncountable Chain in {0, 1}™

Part I: the proof | showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets.
A function f: X — Y is an isomorphism if

e f is bijective,

o v1 <z if and only if f(x1) < f(z2).

If such an f exists, we say X and Y are isomorphic and
write X =2 Y.

Intuitive meaning: X and Y being isomorphic means that
they look identical, differing only by the names of their
elements.

Observation 1. ({0,1}Y, <) and (2N, C) are isomorphic.

Observation 2. (2N, C) and (29, C) are isomorphic.

Observation 3. If X and Y are isomorphic, then X has
an uncountable chain if and only if Y has an uncountable
chain.

Theorem. (29, C) has an uncountable chain.

Proof. For a real number x, definfe
B, ={q€Q|q<z}.
Define C':={B, | x € R}.
e (' is achain. Any B,, B, are comparable. Indeed, if
r <y then B, C B,
e (' is uncountable. Indeed, the function f : R — C
defined by f(x) = B, is injective.

Theorem. (29, C) has an uncountable chain.

Proof. For a real number x, definfe
B, ={q€Q|q<z}.
Define C':={B, | x € R}.
e (' is achain. Any B,, B, are comparable. Indeed, if
r <y then B, C B,
e (' is uncountable. Indeed, the function f : R — C
defined by f(x) = B, is injective.

Corollay. ({0,1}, <) has an uncountable chain.

Okay, maybe this was a bit mysterious...

Let's give a (longer) proof that actually shows how the
elements of the chain are constructed.

Okay, maybe this was a bit mysterious...

Let's give a (longer) proof that actually shows how the
elements of the chain are constructed.

We'll define a function f that takes as input
an infinite bit sequence a € {0,1}™ and outputs an
infinite bit sequence f(a) € {0,1}Y such that

1. f is an injection.
2. All output elements f(a) are comparable.

Point 1 will ensure the set of outputs is uncountable,
Point 2 will ensure it is a chain.

Example of our procedure

Input sequence

l

01101001...

Example of our procedure

Input sequence

l

01101001...
output sequence

/

Example of our procedure

Input sequence

l

01101001...
output sequence

/ just infinitely many * in the beginning

01101001...

read first bit of input

01101001...

read first bit of input

01101001...

put it here

read first bit of input

01101001...

put it here

read first bit of input

01101001...

Rule 1: Read bit of input. In output,

read first bit of input replace first * by that bit.

01101001...

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

read first bit of input

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2;
ofth@s 0, rep@
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

read first bit of input

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2;
ofth@s 0, rep@
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

read first bit of input

00%x0%0%x0%x0%x0%x0%x0%x0%x0%x0%x0x0x0x0x0x0x0x0x0%0. ..

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

read first bit of input

000000000 0%x0%0%0%x0x0x0x0x0x0x0x0x0. ..

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

read next bit of input

000000000 0%x0%0%0%x0x0x0x0x0x0x0x0x0. ..

. ¢ bit of inout Rule 1: Read bit of input. In outpuf;
réad next bit ot inpu eplace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

000000000 0%x0%0%0%x0x0x0x0x0x0x0x0x0. ..

. ¢ bit of inout Rule 1: Read bit of input. In outpuf;
réad next bit ot inpu eplace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

0010%0%0%0%0%0%0%0%x0%0%0%x0%x0%x0x0x0x0x0x0x0. ..

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x

by 0, starti the first x.
If that bit is 1, replace every other x
by 1, starting with the second x.

0010%x0%x0%x0%x0x0%x0x0%x0%x0%x0x0x0x0x0x0x0x0x0x0...

read next bit of input

01101001...

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x

by 0, starti the first x.
If that bit is 1, replace every other x
by 1, starting with the second x.

0010x010x010%x010x010x010%x010x010x010%x010%0...

read next bit of input

01101001...

read next bit of input

v

01101001...

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
e If that bit is 1, replace every other x
by 1, starting with the second x.

0010x010x010%x010x010x010%x010x010x010%x010%0...

d t bit of inpbut Rule 1: Read bit of input. In output,
read next bit of inpu eplace first = by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x

by 1, starting with the second x.

0010x010x010%x010x010x010%x010x010x010%x010%0...

d t bit of inpbut Rule 1: Read bit of input. In output,
read next bit of inpu eplace first = by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x

by 1, starting with the second x.

00101010x010%x010x010x010%x010x010x010%x010%0...

Rule 1: Read bit of input. In output,

read next bit of input replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.

01101001... e If that bit is 1, replace every other x
/ by 1, starting with the second x.

00101010x010%x010x010x010%x010x010x010%x010%0...

Rule 1: Read bit of input. In output,

read next bit of input replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.

01101001... e If that bit is 1, replace every other x
/ by 1, starting with the second x.

00101010x0101010x0101010x0101010«x0101010x%0. ..

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

read next bit of input

00101010x0101010x0101010x0101010«x0101010x%0. ..

d t bit of inbut ule 1: Read bit of input. In output,
read next bit of inpu replace first = by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

00101010x0101010x0101010x0101010«x0101010x%0. ..

d t bit of inbut ule 1: Read bit of input. In output,
read next bit of inpu replace first = by that bit.

Rule 2:
e If that bit is 0, replace every other x
by 0, starting with the first x.
01101001... e If that bit is 1, replace every other x
by 1, starting with the second x.

0010101000101010«0101010«0101010+x0101010=x0. ..

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:

e If that bit is O, replace every @
by 0, starting with the first x.
01101001... e If that bit is I, replace every other x
by 1, starting with the second x.

read next bit of input

0010101000101010«0101010«0101010+x0101010=x0. ..

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:

e If that bit is O, replace every @
by 0, starting with the first x.
01101001... e If that bit is I, replace every other x
by 1, starting with the second x.

read next bit of input

001010100010101000101010«010101000101010=x0. ..

Rule 1: Read bit of input. In output,
replace first * by that bit.

Rule 2:
@ bit is 0, replace every @
by 0, starting with the first x.
01101001... e If that bit is I, replace every other x
by 1, starting with the second x.

read next bit of input

001010100010101000101010«010101000101010=x0. ..

AND SO ON FOREVER

input a

/

01101001... output f(a)

/

001010100010101000101010«010101000101010=x0. ..

Claim. This procedure is injective and produces a chain.

Proof. Let a and b be two different input sequences.

Let 7 be the first coordinate where a; # b;.

Let's assume a; = 0, b; = 1.

Let's run the previous procedure on a and b and stop just
before it reads the it" bit.

Input:
a=aaz...a;—10a;41a0;12 ...

b = ajas ... ai_llbiHng ce

Input:
a=aaz...a;—10a;41a0;12 ...
b = ajas ... ai_llbiHng ce

Input, just before reading bit :

Input:
a=aaz...a;—10a;41a0;12 ...
b = ajas ... ai_llbiHng ce

Input, just before reading bit :

\\ /27

These parts of f(a) and f(b) consist of 0's
and 1's. They are equal, because the parts of
a and b read so far as identical.

Input: / T
Now we read the next bit of
a=aaz...a;—10a;41a0;12 ... a2 and b

b = aijas .. .ai_ll‘b@HQ c. /

Input, just before reading bit :

Input: / T
Now we read the next bit of
a=aaz...a;—10a;41a0;12 ... a2 and b

b = aijas .. .ai_ll‘b@HQ c. /

Input, just before reading bit :

Input: / T
Now we read the next bit of
a=aaz...a;—10a;41a0;12 ... a2 and b

b = aijas .. .ai_ll‘b@HQ c. /

Input, just before reading bit :

Input: / T
Now we read the next bit of
a=aaz...a;—10a;41a0;12 ... a2 and b

b = aijas .. .ai_ll‘b@HQ c. /

Input, just before reading bit :

Whatever happens from now on, it is clear that

f(a) < f(b).

Input: / T
Now we read the next bit of
a=aaz...a;—10a;41a0;12 ... a2 and b

b = aijas .. .ai_ll‘b@HQ c. /

Input, just before reading bit :

Whatever happens from now on, it is clear that
f(a) < f(b).

So f is injective and Im(f) is a chain.

