An Uncountable Chain in $\{0,1\}^{\mathbb{N}}$

An Uncountable Chain in $\{0,1\}^{\mathbf{N}}$

Part I: the proof I showed in class, with a bit more details.

An Uncountable Chain in $\{0,1\}^{\mathbf{N}}$

Part I: the proof I showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets. A function $f: X \to Y$ is an *isomorphism* if

- f is bijective,
- $x_1 \leq x_2$ if and only if $f(x_1) \leq f(x_2)$.

If such an f exists, we say X and Y are isomorphic and write $X\cong Y$.

An Uncountable Chain in $\{0,1\}^{\mathbf{N}}$

Part I: the proof I showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets. A function $f:X\to Y$ is an isomorphism if

- f is bijective,
- $x_1 \leq x_2$ if and only if $f(x_1) \leq f(x_2)$.

If such an f exists, we say X and Y are isomorphic and write $X \cong Y$.

Intuitive meaning: X and Y being isomorphic means that they look identical, differing only by the names of their elements.

Observation 1. $(\{0,1\}^{\mathbf{N}}, \leq)$ and $(2^{\mathbf{N}}, \subseteq)$ are isomorphic.

Observation 2. $(2^{\mathbf{N}}, \subseteq)$ and $(2^{\mathbf{Q}}, \subseteq)$ are isomorphic.

Observation 3. If X and Y are isomorphic, then X has an uncountable chain if and only if Y has an uncountable chain.

Theorem. $(2^{\mathbf{Q}}, \subseteq)$ has an uncountable chain.

Proof. For a real number x, definfe

$$B_x := \{ q \in \mathbf{Q} \mid q < x \}.$$

Define $C := \{B_x \mid x \in \mathbf{R}\}.$

- C is a chain. Any B_x, B_y are comparable. Indeed, if $x \leq y$ then $B_x \subseteq B_y$.
- C is uncountable. Indeed, the function $f: \mathbf{R} \to C$ defined by $f(x) = B_x$ is injective.

Theorem. $(2^{\mathbf{Q}}, \subseteq)$ has an uncountable chain.

Proof. For a real number x, definfe

$$B_x := \{ q \in \mathbf{Q} \mid q < x \}.$$

Define $C := \{B_x \mid x \in \mathbf{R}\}.$

- C is a chain. Any B_x, B_y are comparable. Indeed, if $x \leq y$ then $B_x \subseteq B_y$.
- C is uncountable. Indeed, the function $f: \mathbf{R} \to C$ defined by $f(x) = B_x$ is injective.

Corollay. $(\{0,1\}^N,\leq)$ has an uncountable chain.

Okay, maybe this was a bit mysterious...

Let's give a (longer) proof that actually shows how the elements of the chain are constructed.

Okay, maybe this was a bit mysterious...

Let's give a (longer) proof that actually shows how the elements of the chain are constructed.

We'll define a function f that takes as input an infinite bit sequence $\mathbf{a} \in \{0,1\}^{\mathbf{N}}$ and outputs an infinite bit sequence $f(\mathbf{a}) \in \{0,1\}^{\mathbf{N}}$ such that

- 1. f is an injection.
- 2. All output elements $f(\mathbf{a})$ are comparable.

Point 1 will ensure the set of outputs is uncountable, Point 2 will ensure it is a chain.

Example of our procedure

input sequence \downarrow 01101001...

Example of our procedure

Example of our procedure

01101001...

read first bit of input

```
read first bit of input 01101001...
```


read first bit of input 01101001...

put it here

read first bit of input

read first bit of input

/
01101001...

Rule 1: Read bit of input. In output, replace first * by that bit.

read first bit of input 01101001...

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other *
 by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

read first bit of input

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other *
 by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

read first bit of input

/
01101001...

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other *
 by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

read first bit of input

/
01101001...

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

01101001

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

01101001

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

01101001...

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

If that bit is 0, replace every other *
 by 0, starting with the first *.

If that bit is 1, replace every other st by 1, starting with the second st.

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other *
 by 0, starting with the first *.
 - If that bit is 1, replace every other \ast by 1, starting with the second \ast .

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

read next bit of input
01101001...

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other *
 by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

. . .

00101010*0101010*0101010*0101010*0101010*0...

01101001...

Rule 1: Read bit of input. In output, replace first st by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

. . .

 $00101010*0101010*0101010*0101010*0101010*0\dots$

read next bit of input

01101001...

Rule 1: Read bit of input. In output, replace first st by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

. . .

 $0010101000101010*0101010*0101010*0101010*0\dots$

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other *
 by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

 $0010101000101010*0101010*0101010*0101010*0\dots$

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other * by 0, starting with the first *.
- If that bit is 1, replace every other * by 1, starting with the second *.

 $001010100010101000101010* \\ 010101000101010* \\ 0...$

Rule 1: Read bit of input. In output, replace first * by that bit.

Rule 2:

- If that bit is 0, replace every other *
 by 0, starting with the first *.
 - If that bit is 1, replace every other * by 1, starting with the second *.

 $001010100010101000101010* \\ 010101000101010* \\ 0...$

AND SO ON FOREVER

Claim. This procedure is injective and produces a chain.

Proof. Let a and b be two different input sequences.

Let i be the first coordinate where $a_i \neq b_i$.

Let's assume $a_i = 0$, $b_i = 1$.

Let's run the previous procedure on a and b and stop just before it reads the i^{th} bit.

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

Input, just before reading bit *i*:

$$f(\mathbf{a}) = \cdots + \cdots$$

$$f(\mathbf{b}) = \cdots + \cdots$$

These parts of $f(\mathbf{a})$ and $f(\mathbf{b})$ consist of 0's and 1's. They are equal, because the parts of \mathbf{a} and \mathbf{b} read so far as identical.

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

Now we read the next bit of a and b

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

$$f(\mathbf{a}) = \cdots + \cdots$$

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

Now we read the next bit of a and b

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

Now we read the next bit of a and b

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

Now we read the next bit of a and b

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

Input, just before reading bit *i*:

Whatever happens from now on, it is clear that $f(\mathbf{a}) < f(\mathbf{b})$.

$$\mathbf{a} = a_1 a_2 \dots a_{i-1} 0 a_{i+1} a_{i+2} \dots$$

Now we read the next bit of a and b

$$\mathbf{b} = a_1 a_2 \dots a_{i-1} 1 b_{i+1} b_{i+2} \dots$$

Input, just before reading bit *i*:

Whatever happens from now on, it is clear that $f(\mathbf{a}) < f(\mathbf{b})$.

So f is injective and Im(f) is a chain.