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Textbook

Algorithms

• Sanjoy Dasgupta
• San Diego Christos Papadimitriou
• Umesh Vazirani
• McGraw-Hill, 2007.
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Reference Book

Algorithm Design

• Jon Kleinberg, Éva Tardos
• Addison-Wesley, 2005.
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Reference Book

Introduction to Algorithms

• Thomas H. Cormen
• Charles E. Leiserson
• Ronald L. Rivest
• Clifford Stein
• The MIT Press (3rd edition), 2009.
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Scoring Policy

0% Attendees.

40% Homework.

• Eight assignments.
• Each one is 5pts.
• Work out individually.
• Each assignment will be evaluated by A, B, C, D, F (Excellent(5), Good(5), Fair(4), Delay(3),

Fail(0))

60% Final exam.
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Any Questions?
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Two Things Change the World
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Johann Gutenberg

Johann Gutenberg (1398 - 1468)
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Johann Gutenberg

Johann Gutenberg (1398 - 1468)

In 1448 in the German city of Mainz a goldsmith
named Johann Gutenberg discovered a way to
print books by putting together movable metallic
pieces.

11/47



Sheng BI

Bı̀ Shēng (972-1051)

Bı̀ Shēng was a Chinese artisan, engineer, and
inventor of the world’s first movable type
technology, with printing being one of the Four
Great Inventions of Ancient China.
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Two Ideas Changed the World

Because of the typography, literacy spread, the Dark Ages ended, the human intellect was liberated,
science and technology triumphed, the Industrial Revolution happened.

Many historians say we owe all this to typography.

Others insist that the key development was not typography, but algorithms.
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Decimal System

Gutenberg would write the number 1448 as MCDXLV III.

How to add two Roman numerals? What is

MCDXLV III +DCCCXII

The decimal system was invented in India around AD 600. Using only 10 symbols, even very large
numbers were written down compactly, and arithmetic is done efficiently by elementary steps.
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Al Khwarizmi

Al Khwarizmi (780 - 850)
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Al Khwarizmi

Al Khwarizmi (780 - 850)

In the 12th century, Latin translations of his work on the
Indian numerals, introduced the decimal system to the
Western world. (Source: Wikipedia)
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Algorithms

Al Khwarizmi laid out the basic methods for

• adding,
• multiplying,
• dividing numbers,
• extracting square roots,
• calculating digits of π.

These procedures were precise, unambiguous, mechanical, efficient, correct.

They were algorithms, a term coined to honor the wise man after the decimal system was finally
adopted in Europe, many centuries later.
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Chongzhi ZU

Chongzhi ZU (429 – 500)

A Chinese astronomer, inventor, mathematician,
politician, and writer during the Liu Song and
Southern Qi dynasties. He was most notable for
calculating π as between 3.1415926 and
3.1415927, a record in precision which would not
be surpassed for nearly 900 years.
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What Is An Algorithm

18/47



What Is An Algorithm

A step by step procedure for solving a problem or accomplishing some end.

An abstract recipe, prescribing a process which may be carried out by a human, a
computer or by other means.

Any well-defined computational procedure that makes some value, or set of values, as
input and produces some value, of set of values, as output. An algorithm is thus a
finite sequence of computational steps that transform the input into the output.
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What Is An Algorithm

An algorithm is a procedure that consists of

• a finite set of instructions which,
• given an input from some set of possible inputs,
• enables us to obtain an output through a systematic execution of the instructions
• that terminates in a finite number of steps.

A program is

• an implementation of an algorithm, or algorithms.
• A program does not necessarily terminate.
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Fibonacci Algorithm

21/47



Leonardo Fibonacci

Leonardo Fibonacci (1170 - 1250)

Fibonacci helped the spread of the decimal system in Europe, primarily through the publication in
the early 13th century of his Book of Calculation, the Liber Abaci. (Source: Wikipedia)
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Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

Formally,

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n > 1

Q: What is F100 or F200?
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An Exponential Algorithm

FIBO1(n)

a nature number n;

if n = 0 then return(0);
if n = 1 then return(1);
return(FIBO1(n− 1)+FIBO1(n− 2));
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Three Questions about An Algorithm

1 Is it correct?

2 How much time does it take, as a function of n?

3 Can we do better?

The first question is trivial, as this algorithm is precisely Fibonacci’s definition of Fn
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How Much Time

Let T (n) be the number of computer steps needed to compute FIBO1(n)

For n ≤ 1,
T (n) ≤ 2

For n ≥ 1,
T (n) = T (n− 1) + T (n− 2) + 3

It is easy to shown, for all n ∈ N,
T (n) ≥ Fn

It is exponential to n.
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Why Exponential Is Bad?

T (200) ≥ F200 ≥ 2138 ≈ 2.56× 1042

In 2010, the fastest computer in the world is the Tianhe-1A system at the National Supercomputer
Center in Tianjin.

Its speed is
2.57× 1015

steps per second.

Thus to compute F200 Tianhe-1A needs roughly

1027 seconds ≥ 1022 years.

In 2022, the fastest is Frontier, 1.102× 1018 per second.
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Moore’s Law

Moore’s Law:

Computer speeds have been doubling roughly every 18 months.

The running time of FIBO1 is proportional to

20.694n ≈ 1.6n

Thus, it takes 1.6 times longer to compute Fn+1 than Fn.

So if we can reasonably compute F100 with this year’s technology, then next year we will manage
F101, and so on . . .

Just one more number every year!

Such is the curse of exponential time.
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Three Questions

1 Is it correct?

2 How much time does it take, as a function of n?

3 Can we do better?

Now we know FIB1(n) is correct and inefficient, so can we do better?
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An Polynomial Algorithm

FIBO2(n)

a nature number n;

if n = 0 then return(0);
create an array f [0 . . . n];
f [0] = 0; f [1] = 1;
for i = 2 to n do

f [i] = f [i− 1] + f [i− 2];
end
return(f [n]);
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An Analysis

The correctness of FIBO2 is trivial.

How long does it take?

The inner loop consists of a single computer step and is executed n− 1 times. Therefore the
number of computer steps used by FIBO2 is linear in n.
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A More Careful Analysis

We count the number of basic computer steps executed by each algorithm and regard these basic
steps as taking a constant amount of time.

It is reasonable to treat addition as a single computer step if small numbers are being added, e.g.,
32-bit numbers.

The n-th Fibonacci number is about 0.694n bits long, and this can far exceed 32 as n grows.

Arithmetic operations on arbitrarily large numbers cannot possibly be performed in a single,
constant-time step.
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A More Careful Analysis

The addition of two n-bit numbers takes time roughly proportional to n (next lecture).

FIBO1, which performs about Fn additions, uses a number of basic step roughly proportional to nFn.

The number of steps taken by FIBO2 is proportional to n2, and still polynomial in n.

Q: Can we do better?

• Exercise 0.4
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Big-O Notation
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Big O notation

Upper bounds. f(n) is O(g(n)) if there exist
constants c > 0 and n0 ≥ 0 such that
0 ≤ f(n) ≤ c · g(n) for all n ≥ n0.

Example

Let f(n) = 32n2 + 17n+ 1.
• f(n) is O(n2).
• f(n) is neither O(n) nor O(n logn).

Typical usage. Insertion sort makes O(n2) compares to sort n elements.
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Typical usage. Insertion sort makes O(n2) compares to sort n elements.
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Quiz

Let f(n) = 3n2 + 17n log2 n+ 1000. Which of the following are true?

A f(n) is O(n2).

B f(n) is O(n3).

C Both A and B.

D Neither A nor B.
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Big O notational abuses

One-way “equality”. O(g(n)) is a set of functions, but computer scientists often write f(n) = O(g(n))

instead of f(n) ∈ O(g(n)).

Example

Consider g1(n) = 5n3 and g2(n) = 3n2.
• We have g1(n) = O(n3) and g2(n) = O(n3).
• But, do not conclude g1(n) = g2(n).
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Big O notation: properties

Reflexivity. f is O(f).

Constants. If f is O(g) and c > 0, then c f is O(g).

Products. If f1 is O(g1) and f2 is O(g2), then f1f2 is O(g1g2).

Proof.

• ∃c1 > 0 and n1 ≥ 0 such that 0 ≤ f1(n) ≤ c1 · g1(n) for all n ≥ n1.
• ∃c2 > 0 and n2 ≥ 0 such that 0 ≤ f2(n) ≤ c2 · g2(n) for all n ≥ n2.
• Then, 0 ≤ f1(n) · f2(n) ≤ c1 · c2 · g1(n) · g2(n) for all n ≥ max{n1, n2}.

Sums. If f1 is O(g1) and f2 is O(g2), then f1 + f2 is O(max{g1, g2}).

Transitivity. If f is O(g) and g is O(h), then f is O(h).

Ex. f(n) = 5n3 + 3n2 + n+ 1234 is O(n3).
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Big Ω notation

Lower bounds. f(n) is Ω(g(n)) if there exist constants c > 0 and
n0 ≥ 0 such that f(n) ≥ c · g(n) ≥ 0 for all n ≥ n0.

Example

Let f(n) = 32n2 + 17n+ 1.
• f(n) is both Ω(n2) and Ω(n).
• f(n) is not Ω(n3).

Typical usage. Any compare-based sorting algorithm requires Ω(n logn) compares in the worst
case.
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Quiz

Which is an equivalent definition of big Omega notation?

A f(n) is Ω(g(n)) iff g(n) is O(f(n)).

B f(n) is Ω(g(n)) iff there exist constants c > 0 such that

f(n) ≥ c · g(n) ≥ 0

for infinitely many n.

C Both A and B.

D Neither A nor B.
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Big Θ notation

Tight bounds. f(n) is Θ(g(n)) if there exist constants
c1 > 0, c2 > 0, and n0 ≥ 0 such that
0 ≤ c1 · g(n) ≤ f(n) ≤ c2 · g(n) for all n ≥ n0.

Example

Let f(n) = 32n2 + 17n+ 1.
• f(n) is Θ(n2).
• f(n) is neither Θ(n3) nor Ω(n).

Typical usage. Mergesort makes Θ(n logn) compares to sort n elements.
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Quiz

Which is an equivalent definition of big Theta notation?

A f(n) is Θ(g(n)) iff f(n) is both O(g(n)) and Ω(g(n)).

B f(n) is Θ(g(n)) iff lim
n→∞

f(n)

g(n)
= c for some constant 0 < c < +∞.

C Both A and B.

D Neither A nor B.
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Asymptotic bounds and limits

Proposition

If lim
n→∞

f(n)

g(n)
= c for some constant 0 < c <∞ then f(n) is Θ(g(n)).

Proof.

By definition of the limit, for any ε > 0, there exists n0 such that

c− ε ≤ f(n)

g(n)
≤ c+ ε

for all n ≥ n0.

Choose ε = 1/2c > 0.

Multiplying by g(n) yields 1/2c · g(n) ≤ f(n) ≤ 3/2c · g(n) for all n ≥ n0.

Thus, f(n) is Θ(g(n)) by definition, with c1 = 1/2c and c2 = 3/2c.
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Asymptotic bounds and limits

Proposition

If lim
n→∞

f(n)

g(n)
= 0, then f(n) is O(g(n)) but not Ω(g(n)).

Proposition

If lim
n→∞

f(n)

g(n)
=∞, then f(n) is Ω(g(n)) but not O(g(n)).
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Asymptotic bounds for some common functions

Polynomials. Let f(n) = a0 + a1n+ . . .+ adn
d with ad > 0. Then, f(n) is Θ(nd).

lim
n→∞

a0 + a1n+ . . .+ adn
d

nd
= ad > 0

Logarithms and polynomials. loga n is O(nd) for every a > 1 and every d > 0.

lim
n→∞

loga n

nd
= 0

Exponentials and polynomials. nd is O(rn) for every r > 1 and every d > 0.

lim
n→∞

nd

rn
= 0
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Asymptotic bounds for some common functions

Factorials. n! is 2Θ(n log n).

Stirling’s formula:
n! ∼

√
2πn(

n

e
)n
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Big O notation with multiple variables

Upper bounds. f(m,n) is O(g(m,n)) if there exist constants c > 0, m0 ≥ 0, andn0 ≥ 0 such that
f(m,n) ≤ c · g(m,n) for all n ≥ n0 and m ≥ m0.

Example

f(m,n) = 32mn2 + 17mn+ 32n3.
• f(m,n) is both O(mn2 + n3) and O(mn3).
• f(m,n) is neither O(n3) nor O(mn2).

Typical usage. Breadth-first search takes O(m+ n) time to find a shortest path from s to t in a
digraph with n nodes and m edges.
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