

Design and Analysis of Algorithms (X)

Simple Unit-Capacity Networks

Guoqiang Li School of Software

Bipartite Matching

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ へ ○ 2/50

Matching

Definition

Given an undirected graph G = (V, E), subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Definition

Given an undirected graph G = (V, E), subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Maximum matching. Given a graph G, find a max-cardinality matching.

Bipartite Matching

Definition

A graph *G* is bipartite if the nodes can be partitioned into two subsets *L* and *R* such that every edge connects a node in *L* with a node in *R*.

Bipartite Matching

Definition

A graph *G* is bipartite if the nodes can be partitioned into two subsets *L* and *R* such that every edge connects a node in *L* with a node in *R*.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max-cardinality matching.

Max-Flow Formulation

Formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add unit-capacity edges from *s* to each node in *L*.
- Add unit-capacity edges from each node in *R* to *t*.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Proof. \Rightarrow

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Proof. \Rightarrow

- Let M be a matching in G of cardinality k.
- Consider flow *f* that sends 1 unit on each of the *k* corresponding paths.
- f is a flow of value k.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Proof. ←

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Proof. ←

- Let f be an integral flow in G' of value k.
- Consider M = set of edges from L to R with f(e) = 1.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Proof. ⇐

- Let f be an integral flow in G' of value k.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in *L* and *R* participates in at most one edge in *M*.
 - |M| = k: apply flow-value lemma to cut $(L \cup \{s\}, R \cup \{t\})$.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G'.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

- Integrality theorem \Rightarrow there exists a max flow f^* in G' that is integral.
- 1-1 correspondence $\Rightarrow f^*$ corresponds to max-cardinality matching.

Quiz 1

What is running time of Ford–Fulkerson algorithms to find a max-cardinality matching in a bipartite graph?

```
A. O(|E| + |V|)
B. O(|E||V|)
C. O(|E||V|^2)
D. O(|E|^2|V|)
```

Quiz 2

Which max-flow algorithm to use for bipartite matching?

- **A.** Ford–Fulkerson: $O(|E| \cdot |V| \cdot C)$.
- **B.** Capacity scaling: $O(|E|^2 \cdot \log C)$.
- **C.** Shortest augmenting path: $O(|E|^2|V|)$.
- **D.** Dinitz' algorithm: $O(|E||V|^2)$.

Definition

Given a graph G = (V, E), a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Definition

Given a graph G = (V, E), a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Definition

Given a graph G = (V, E), a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly, we must have |L| = |R|.
- Which other conditions are necessary?
- Which other conditions are sufficient?

Notation.

Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Notation.

Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Notation.

Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Proof. Each node in S has to be matched to a different node in N(S).

Theorem (Frobenius 1917, Hall 1935)

Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Theorem (Frobenius 1917, Hall 1935)

Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Proof. \Rightarrow

Theorem (Frobenius 1917, Hall 1935)

Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Proof. \Rightarrow

This was the previous observation.

Proof. ⇐

Proof. \Leftarrow

Suppose *G* does not have a perfect matching.

Proof. \Leftarrow

Suppose *G* does not have a perfect matching.

Formulate as a max-flow problem and let (A, B) be a min cut in G'.

Proof. \Leftarrow

Suppose *G* does not have a perfect matching.

Formulate as a max-flow problem and let (A, B) be a min cut in G'.

By max-flow min-cut theorem, cap(A, B) < |L|.

Proof. ←

Suppose *G* does not have a perfect matching.

Formulate as a max-flow problem and let (A, B) be a min cut in G'.

By max-flow min-cut theorem, cap(A, B) < |L|.

Define $L_A = L \cap A, L_B = L \cap B, R_A = R \cap A$.

Proof. \Leftarrow

Suppose *G* does not have a perfect matching.

Formulate as a max-flow problem and let (A, B) be a min cut in G'.

By max-flow min-cut theorem, cap(A, B) < |L|.

Define $L_A = L \cap A, L_B = L \cap B, R_A = R \cap A$.

 $\operatorname{cap}(A,B) = |L_B| + |R_A| \Rightarrow |R_A| < |L_A|$

Min cut can't use ∞ edges $\Rightarrow N(L_A) \subseteq R_A$.

 $|N(L_A)| \le |R_A| < |L_A|.$

Choose $S = L_A$.

Bipartite Matching

Problem. Given a bipartite graph, find a max-cardinality matching.

year	worst case	technique	discovered by
1955	O(E V)	augmenting path	Ford–Fulkerson
1973	$O\left(E V ^{1/2}\right)$	blocking flow	Hopcroft–Karp, Karzanov
2004	$O(V ^{2.378})$	fast matrix multiplication	Mucha-Sankowsi
2013	$\tilde{O}\left(E ^{10/7}\right)$	electrical flow	Madry
20xx	???		

Quiz 3

Which of the following are properties of the graph G = (V, E)?

- **A.** *G* has a perfect matching.
- **B.** Hall's condition is satisfied: $|N(S)| \ge |S|$ for all subsets $S \subseteq V$.
- C. Both A and B.
- D. Neither A nor B.

Problem. Given an undirected graph, find a max-cardinality matching.

Nonbipartite Matching

Problem. Given an undirected graph, find a max-cardinality matching.

- Structure of nonbipartite graphs is more complicated.
- But well understood. [Tutte-Berge formula, Edmonds-Gallai]
- Blossom algorithm: O(n⁴). [Edmonds 1965]
- Best known: $O(mn^{1/2})$. [Micali–Vazirani 1980, Vazirani 1994]

Hackathon problem.

- Hackathon attended by *n* Harvard students and *n* Princeton students.
- Each Harvard student is friends with exactly k > 0 Princeton students; each Princeton student is friends with exactly k Harvard students.
- Is it possible to arrange the hackathon so that each Princeton student pair programs with a different friend from Harvard?

Mathematical reformulation. Does every *k*-regular bipartite graph have a perfect matching?

Example. Boolean hypercube.

Theorem

Every k-regular bipartite graph G has a perfect matching.

Theorem

Every k-regular bipartite graph G has a perfect matching.

Proved by Hall's Marriage Theorem, DIY!

Hackathon Problem: Another Proof

Proof.

- Size of max matching = value of max flow in G'.
- · It is easy to construct the following flow

• The value of flow f is $n \Rightarrow G'$ has a perfect matching.

Hall's Theorem by Max-Flow

▲□▶ ▲□▶ ▲ 토▶ ▲ 토▶ 토 - 키익() 22/50

Definition

A flow network is a simple unit-capacity network if:

- Every edge has capacity 1.
- Every node (other than *s* or *t*) has exactly one entering edge, or exactly one leaving edge, or both.

Property. Let *G* be a simple unit-capacity network and let *f* be a 0–1 flow. Then, residual network G_f is also a simple unit-capacity network.

Property. Let *G* be a simple unit-capacity network and let *f* be a 0–1 flow. Then, residual network G_f is also a simple unit-capacity network.

Example. Bipartite matching.

Property. Let *G* be a simple unit-capacity network and let *f* be a 0–1 flow. Then, residual network G_f is also a simple unit-capacity network.

Example. Bipartite matching.

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem (Even–Tarjan 1975)

In simple unit-capacity networks, Dinitz'algorithm computes a maximum flow in $O(|E||V|^{1/2})$ time.

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem (Even–Tarjan 1975)

In simple unit-capacity networks, Dinitz'algorithm computes a maximum flow in $O(|E||V|^{1/2})$ time.

Proof.

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem (Even–Tarjan 1975)

In simple unit-capacity networks, Dinitz'algorithm computes a maximum flow in $O(|E||V|^{1/2})$ time.

Proof.

- Lemma 1. Each phase of normal augmentations takes O(|E|) time.
- Lemma 2. After $|V|^{1/2}$ phases, $val(f) \ge val(f^*) |V|^{1/2}$.
- Lemma 3. After $\leq |V|^{1/2}$ additional augmentations, flow is optimal.

Lemma 3

After $\leq |V|^{1/2}$ additional augmentations, flow is optimal.

Lemma 3

After $\leq |V|^{1/2}$ additional augmentations, flow is optimal.

Proof. Each augmentation increases flow value by at least 1.

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

construct level graph

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

advance

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

advance

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

retreat

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

advance

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

augment

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

Lemma 1

A phase of normal augmentations takes O(|E|) time.

Phase of normal augmentations.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and go to previous node.

Lemma 1

A phase of normal augmentations takes O(|E|) time.

Proof.

- O(|E|) to create level graph L_G .
- O(1) per edge (each edge involved in at most one advance, retreat, and augmentation).
- O(1) per node (each node deleted at most once)

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Proof.

▲□▶▲@▶▲콜▶▲콜▶ 콜 - ∽�♡ 37/50

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Proof.

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Proof.

After $|V|^{1/2}$ phases, length of shortest augmenting path is $> |V|^{1/2}$.

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Proof.

After $|V|^{1/2}$ phases, length of shortest augmenting path is $> |V|^{1/2}$.

Thus, level graph has $\geq |V|^{1/2}$ levels (not including levels for s or t)

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Proof.

After $|V|^{1/2}$ phases, length of shortest augmenting path is $> |V|^{1/2}$.

Thus, level graph has $\geq |V|^{1/2}$ levels (not including levels for s or t)

Let $1 \le h \le |V|^{1/2}$ be a level with min number of nodes $\Rightarrow |V_h| \le |V|^{1/2}$.

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Proof.

After $|V|^{1/2}$ phases, length of shortest augmenting path is $> |V|^{1/2}$.

Thus, level graph has $\geq |V|^{1/2}$ levels (not including levels for s or t)

Let $1 \le h \le |V|^{1/2}$ be a level with min number of nodes $\Rightarrow |V_h| \le |V|^{1/2}$.

Let $A = \{v : \ell(v) < h\} \cup \{v : \ell(v) = h \text{ and } v \text{ has } \leq 1 \text{ outgoing residual edge} \}$.
Computational Geometry

Lemma 2

After $|V|^{1/2}$ phases, $\operatorname{val}(f) \ge \operatorname{val}(f^*) - |V|^{1/2}$.

Proof.

After $|V|^{1/2}$ phases, length of shortest augmenting path is $> |V|^{1/2}$.

Thus, level graph has $\geq |V|^{1/2}$ levels (not including levels for s or t)

Let $1 \le h \le |V|^{1/2}$ be a level with min number of nodes $\Rightarrow |V_h| \le |V|^{1/2}$.

Let $A = \{v : \ell(v) < h\} \cup \{v : \ell(v) = h \text{ and } v \text{ has } \leq 1 \text{ outgoing residual edge} \}$.

 $\operatorname{cap}_{f}(A, B) \le |V_{h}| \le |V|^{1/2} \Rightarrow val(f) \ge \operatorname{val}(f^{*}) - |V|^{1/2}$

Computational Geometry

Theorem (Even–Tarjan 1975)

In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O(|E||V|^{1/2})$ time.

Proof.

- Lemma 1. Each phase take O(|E|) time.
- Lemma 2. After $|V|^{1/2}$ phase, $\operatorname{val}(f) \ge \operatorname{val}(f^*) |V|^{1/2}$
- Lemma 3. After $\leq |V|^{1/2}$ additional augmentations.

Theorem (Even–Tarjan 1975)

In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O(|E||V|^{1/2})$ time.

Proof.

- Lemma 1. Each phase take O(|E|) time.
- Lemma 2. After $|V|^{1/2}$ phase, $val(f) \ge val(f^*) |V|^{1/2}$
- Lemma 3. After $\leq |V|^{1/2}$ additional augmentations.

Corollary

Dinitz' algorithm computes maximum-cardinality bipartite matching in $O(|E||V|^{1/2})$ time.

Disjoint Paths

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへぐ 41/50

Definition

Two paths are edge-disjoint if they have no edge in common.

Definition

Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \rightsquigarrow t$ paths.

Definition

Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V, E) and two nodes s and t, find the max number of edge-disjoint $s \rightsquigarrow t$ paths.

Max-flow formulation. Assign unit capacity to every edge.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Proof. \Rightarrow

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Proof. \Rightarrow

• Let P_1, \ldots, P_k be k edge-disjoint $s \rightsquigarrow t$ paths in G.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Proof. \Rightarrow

- Let P_1, \ldots, P_k be k edge-disjoint $s \rightsquigarrow t$ paths in G.
- Set $f(e) = \begin{cases} 1 & \text{edge } e \text{ participates in some path } P_j \\ 0 & \text{otherwise} \end{cases}$

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Proof. \Rightarrow

- Let P_1, \ldots, P_k be k edge-disjoint $s \rightsquigarrow t$ paths in G.
- Set $f(e) = \begin{cases} 1 & \text{edge } e \text{ participates in some path } P_j \\ 0 & \text{otherwise} \end{cases}$
- Since paths are edge-disjoint, *f* is a flow of value *k*.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Proof. (

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Proof. ←

- Let f be an integral flow in G' of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by flow conservation, there exists an edge (u, v) with f(u, v) = 1.
 - continue until reach *t*, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

Theorem

1-1 correspondence between k edge-disjoint $s \rightarrow t$ paths in G and integral flows of value k in G'.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Proof.

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G'.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Proof.

- Integrality theorem \Rightarrow there exists a max flow f^* in G' that is integral.
- 1-1 correspondence $\Rightarrow f^*$ corresponds to max number of edge-disjoint $s \rightsquigarrow t$ paths in G.

Network Connectivity

Definition

A set of edges $F \subseteq E$ disconnects t from s if every $s \rightsquigarrow t$ path uses at least one edge in F.

Network Connectivity

Definition

A set of edges $F \subseteq E$ disconnects t from s if every $s \rightsquigarrow t$ path uses at least one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t, find minimal number of edges whose removal disconnects t from s.

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof. \leq

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof. \leq

- Suppose the removal of $F \subseteq E$ disconnects t from s, and |F| = k.
- Every $s \rightsquigarrow t$ path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$.

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof. \geq

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof. \geq

- Suppose max number of edge-disjoint $s \rightsquigarrow t$ paths is k.
- Then value of max flow = k.
- Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
- Let *F* be set of edges going from *A* to *B*.
- |F| = k and disconnects *t* from *s*.

Referred Materials

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ • 𝔅 𝔅 49/50</p>

Referred Materials

• Content of this lecture comes from Section 7.5 in [KT05].