

Design and Analysis of Algorithms (X)
Simple Unit-Capacity Networks

Guoqiang Li
School of Software

Bipartite Matching

Definition

Given an undirected graph $G=(V, E)$, subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Definition

Given an undirected graph $G=(V, E)$, subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

Maximum matching. Given a graph G, find a max-cardinality matching.

Bipartite Matching

Definition

A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite Matching

Definition

A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph $G=(L \cup R, E)$, find a max-cardinality matching.

Max－Flow Formulation

Formulation．

－Create digraph $G^{\prime}=\left(L \cup R \cup\{s, t\}, E^{\prime}\right)$ ．
－Direct all edges from L to R ，and assign infinite（or unit）capacity．
－Add unit－capacity edges from s to each node in L ．
－Add unit－capacity edges from each node in R to t ．

Proof of Correctness

Theorem

1－1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime} ．

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Proof.

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Proof.

- Let M be a matching in G of cardinality k.
- Consider flow f that sends 1 unit on each of the k corresponding paths.
- f is a flow of value k.

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Proof.

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Proof.

- Let f be an integral flow in G^{\prime} of value k.
- Consider $M=$ set of edges from L to R with $f(e)=1$.

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Proof. \Leftarrow

- Let f be an integral flow in G^{\prime} of value k.
- Consider $M=$ set of edges from L to R with $f(e)=1$.
- each node in L and R participates in at most one edge in M.
- $|M|=k$: apply flow-value lemma to cut ($L \cup\{s\}, R \cup\{t\}$).

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G^{\prime}.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

- Integrality theorem \Rightarrow there exists a max flow f^{*} in G^{\prime} that is integral.
- 1-1 correspondence $\Rightarrow f^{*}$ corresponds to max-cardinality matching.

Quiz 1

What is running time of Ford－Fulkerson algorithms to find a max－cardinality matching in a bipartite graph？

A．$O(|E|+|V|)$
B．$O(|E||V|)$
C．$O\left(|E \| V|^{2}\right)$
D．$O\left(|E|^{2}|V|\right)$

Quiz 2

Which max－flow algorithm to use for bipartite matching？

A．Ford－Fulkerson：$O(|E| \cdot|V| \cdot C)$ ．
B．Capacity scaling：$O\left(|E|^{2} \cdot \log C\right)$ ．
C．Shortest augmenting path：$O\left(|E|^{2}|V|\right)$ ．
D．Dinitz＇algorithm：$O\left(|E \| V|^{2}\right)$ ．

Perfect Matchings in Bigraphs

Definition

Given a graph $G=(V, E)$, a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Perfect Matchings in Bigraphs

Definition

Given a graph $G=(V, E)$, a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.
Q. When does a bipartite graph have a perfect matching?

Perfect Matchings in Bigraphs

Definition

Given a graph $G=(V, E)$, a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.
Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

- Clearly, we must have $|L|=|R|$.
- Which other conditions are necessary?
- Which other conditions are sufficient?

Perfect Matchings in Bigraphs

Notation.

Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Perfect Matchings in Bigraphs

Notation.

Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.
Observation. If a bipartite graph $G=(L \cup R, E)$ has a perfect matching, then $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

Perfect Matchings in Bigraphs

Notation.

Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.
Observation. If a bipartite graph $G=(L \cup R, E)$ has a perfect matching, then $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

Proof. Each node in S has to be matched to a different node in $N(S)$.

Hall's Marriage Theorem

Theorem (Frobenius 1917, Hall 1935)

Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R|$. Then, graph G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

Hall's Marriage Theorem

Theorem (Frobenius 1917, Hall 1935)

Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R|$. Then, graph G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq L$.

Proof.
\Rightarrow

Hall＇s Marriage Theorem

Theorem（Frobenius 1917，Hall 1935）

Let $G=(L \cup R, E)$ be a bipartite graph with $|L|=|R|$ ．Then，graph G has a perfect matching iff $|N(S)| \geq|S|$ for all subsets $S \subseteq L$ ．

Proof．
This was the previous observation．

Hall's Marriage Theorem

Proof. \Leftarrow

Hall's Marriage Theorem

Proof.

Suppose G does not have a perfect matching.

Hall's Marriage Theorem

Proof.

Suppose G does not have a perfect matching.
Formulate as a max-flow problem and let (A, B) be a min cut in G^{\prime}.

Hall's Marriage Theorem

Proof.

Suppose G does not have a perfect matching.
Formulate as a max-flow problem and let (A, B) be a min cut in G^{\prime}.
By max-flow min-cut theorem, $\operatorname{cap}(A, B)<|L|$.

Hall's Marriage Theorem

Proof.

Suppose G does not have a perfect matching.
Formulate as a max-flow problem and let (A, B) be a min cut in G^{\prime}.
By max-flow min-cut theorem, $\operatorname{cap}(A, B)<|L|$.
Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A$.

Hall's Marriage Theorem

Proof. \Leftarrow

Suppose G does not have a perfect matching.
Formulate as a max-flow problem and let (A, B) be a min cut in G^{\prime}.
By max-flow min-cut theorem, $\operatorname{cap}(A, B)<|L|$.
Define $L_{A}=L \cap A, L_{B}=L \cap B, R_{A}=R \cap A$.
$\operatorname{cap}(A, B)=\left|L_{B}\right|+\left|R_{A}\right| \Rightarrow\left|R_{A}\right|<\left|L_{A}\right|$
Min cut can't use ∞ edges $\Rightarrow N\left(L_{A}\right) \subseteq R_{A}$.
$\left|N\left(L_{A}\right)\right| \leq\left|R_{A}\right|<\left|L_{A}\right|$.
Choose $S=L_{A}$.

Bipartite Matching

Problem. Given a bipartite graph, find a max-cardinality matching.

year	worst case	technique	discovered by
1955	$O(\|E\|\|V\|)$	augmenting path	Ford-Fulkerson
1973	$O\left(\|E\|\|V\|^{1 / 2}\right)$	blocking flow	Hopcroft-Karp, Karzanov
2004	$O\left(\|V\|^{2.378}\right)$	fast matrix multiplication	Mucha-Sankowsi
2013	$\tilde{O}\left(\|E\|^{10 / 7}\right)$	electrical flow	Madry
$20 x x$	$? ? ?$		

Quiz 3

Which of the following are properties of the graph $G=(V, E)$?
A. G has a perfect matching.
B. Hall's condition is satisfied: $|N(S)| \geq|S|$ for all subsets $S \subseteq V$.
C. Both A and B.
D. Neither A nor B.

Nonbipartite Matching

Problem. Given an undirected graph, find a max-cardinality matching.

Nonbipartite Matching

Problem. Given an undirected graph, find a max-cardinality matching.

- Structure of nonbipartite graphs is more complicated.
- But well understood. [Tutte-Berge formula, Edmonds-Gallai]
- Blossom algorithm: $O\left(n^{4}\right)$. [Edmonds 1965]
- Best known: $O\left(m n^{1 / 2}\right)$. [Micali-Vazirani 1980, Vazirani 1994]

Hackathon Problem

Hackathon problem.

- Hackathon attended by n Harvard students and n Princeton students.
- Each Harvard student is friends with exactly $k>0$ Princeton students; each Princeton student is friends with exactly k Harvard students.
- Is it possible to arrange the hackathon so that each Princeton student pair programs with a different friend from Harvard?

Hackathon Problem

Mathematical reformulation. Does every k-regular bipartite graph have a perfect matching?
Example. Boolean hypercube.

Hackathon Problem

Theorem

Every k-regular bipartite graph G has a perfect matching.

Hackathon Problem

Theorem

Every k-regular bipartite graph G has a perfect matching.

Proved by Hall's Marriage Theorem, DIY!

Hackathon Problem: Another Proof

Proof.

- Size of max matching = value of max flow in G^{\prime}.
- It is easy to construct the following flow

$$
f(u, v)= \begin{cases}1 & \text { if } u=s \text { or } v=t \\ 1 / k & \text { otherwise }\end{cases}
$$

- The value of flow f is $n \Rightarrow G^{\prime}$ has a perfect matching.

Hall's Theorem by Max-Flow

Simple Unit-Capacity Networks

Simple Unit-Capacity Networks

Definition

A flow network is a simple unit-capacity network if:

- Every edge has capacity 1.
- Every node (other than s or t) has exactly one entering edge, or exactly one leaving edge, or both.

Simple Unit-Capacity Networks

Property. Let G be a simple unit-capacity network and let f be a $0-1$ flow. Then, residual network G_{f} is also a simple unit-capacity network.

Simple Unit-Capacity Networks

Property. Let G be a simple unit-capacity network and let f be a $0-1$ flow. Then, residual network G_{f} is also a simple unit-capacity network.

Example. Bipartite matching.

Simple Unit-Capacity Networks

Property. Let G be a simple unit-capacity network and let f be a $0-1$ flow. Then, residual network G_{f} is also a simple unit-capacity network.

Example. Bipartite matching.

Simple Unit-Capacity Networks

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem (Even-Tarjan 1975)

In simple unit-capacity networks, Dinitz'algorithm computes a maximum flow in $O\left(|E \| V|^{1 / 2}\right)$ time.

Simple Unit-Capacity Networks

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem (Even-Tarjan 1975)

In simple unit-capacity networks, Dinitz'algorithm computes a maximum flow in $O\left(|E \| V|^{1 / 2}\right)$ time.

Proof.

Simple Unit-Capacity Networks

Shortest-augmenting-path algorithm.

- Normal augmentation: length of shortest path does not change.
- Special augmentation: length of shortest path strictly increases.

Theorem (Even-Tarjan 1975)

In simple unit-capacity networks, Dinitz'algorithm computes a maximum flow in $O\left(|E \| V|^{1 / 2}\right)$ time.

Proof.

- Lemma 1. Each phase of normal augmentations takes $O(|E|)$ time.
- Lemma 2. After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.
- Lemma 3. After $\leq|V|^{1 / 2}$ additional augmentations, flow is optimal.

Simple Unit－Capacity Networks

Lemma 3

After $\leq|V|^{1 / 2}$ additional augmentations，flow is optimal．

Simple Unit－Capacity Networks

Lemma 3

After $\leq|V|^{1 / 2}$ additional augmentations，flow is optimal．

Proof．Each augmentation increases flow value by at least 1.

Simple Unit－Capacity Networks

Phase of normal augmentations．
－Construct level graph L_{G} ．
－Start at s ，advance along an edge in L_{G} until reach t or get stuck．
－If reach t ，augment flow；update L_{G} ；and restart from s ．
－If get stuck，delete node from L_{G} and go to previous node．
construct level graph

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.
advance

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.
advance

Simple Unit－Capacity Networks

Phase of normal augmentations．
－Construct level graph L_{G} ．
－Start at s ，advance along an edge in L_{G} until reach t or get stuck．
－If reach t ，augment flow；update L_{G} ；and restart from s ．
－If get stuck，delete node from L_{G} and go to previous node．

retreat

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.
advance

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.
augment

Simple Unit－Capacity Networks

Phase of normal augmentations．

－Construct level graph L_{G} ．
－Start at s ，advance along an edge in L_{G} until reach t or get stuck．
－If reach t ，augment flow；update L_{G} ；and restart from s ．
－If get stuck，delete node from L_{G} and go to previous node．

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.

Lemma 1

A phase of normal augmentations takes $O(|E|)$ time.

Simple Unit-Capacity Networks

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and go to previous node.

Lemma 1

A phase of normal augmentations takes $O(|E|)$ time.

Proof.

- $O(|E|)$ to create level graph L_{G}.
- $O(1)$ per edge (each edge involved in at most one advance, retreat, and augmentation).
- $O(1)$ per node (each node deleted at most once)

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.

Proof.

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.

Proof.
level graph Lc for flow \mathbf{f}

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases， $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$ ．

Proof．
After $|V|^{1 / 2}$ phases，length of shortest augmenting path is $>|V|^{1 / 2}$ ．

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.

Proof.
After $|V|^{1 / 2}$ phases, length of shortest augmenting path is $>|V|^{1 / 2}$.
Thus, level graph has $\geq|V|^{1 / 2}$ levels (not including levels for s or t)

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.

Proof.

After $|V|^{1 / 2}$ phases, length of shortest augmenting path is $>|V|^{1 / 2}$.
Thus, level graph has $\geq|V|^{1 / 2}$ levels (not including levels for s or t)
Let $1 \leq h \leq|V|^{1 / 2}$ be a level with min number of nodes $\Rightarrow\left|V_{h}\right| \leq|V|^{1 / 2}$.

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.

Proof.

After $|V|^{1 / 2}$ phases, length of shortest augmenting path is $>|V|^{1 / 2}$.
Thus, level graph has $\geq|V|^{1 / 2}$ levels (not including levels for s or t)
Let $1 \leq h \leq|V|^{1 / 2}$ be a level with min number of nodes $\Rightarrow\left|V_{h}\right| \leq|V|^{1 / 2}$.
Let $A=\{v: \ell(v)<h\} \cup\{v: \ell(v)=h$ and v has ≤ 1 outgoing residual edge $\}$.

Computational Geometry

Lemma 2

After $|V|^{1 / 2}$ phases, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$.

Proof.

After $|V|^{1 / 2}$ phases, length of shortest augmenting path is $>|V|^{1 / 2}$.

Thus, level graph has $\geq|V|^{1 / 2}$ levels (not including levels for s or t)

Let $1 \leq h \leq|V|^{1 / 2}$ be a level with min number of nodes $\Rightarrow\left|V_{h}\right| \leq|V|^{1 / 2}$.

Let $A=\{v: \ell(v)<h\} \cup\{v: \ell(v)=h$ and v has ≤ 1 outgoing residual edge $\}$.
$\operatorname{cap}_{f}(A, B) \leq\left|V_{h}\right| \leq|V|^{1 / 2} \Rightarrow \operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$

Computational Geometry

Theorem (Even-Tarjan 1975)

In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O\left(|E||V|^{1 / 2}\right)$ time.

Proof.

- Lemma 1. Each phase take $O(|E|)$ time.
- Lemma 2. After $|V|^{1 / 2}$ phase, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$
- Lemma 3. After $\leq|V|^{1 / 2}$ additional augmentations.

Theorem (Even-Tarjan 1975)

In simple unit-capacity networks, Dinitz' algorithm computes a maximum flow in $O\left(|E||V|^{1 / 2}\right)$ time.

Proof.

- Lemma 1. Each phase take $O(|E|)$ time.
- Lemma 2. After $|V|^{1 / 2}$ phase, $\operatorname{val}(f) \geq \operatorname{val}\left(f^{*}\right)-|V|^{1 / 2}$
- Lemma 3. After $\leq|V|^{1 / 2}$ additional augmentations.

Corollary

Dinitz' algorithm computes maximum-cardinality bipartite matching in $O\left(|E||V|^{1 / 2}\right)$ time.

Disjoint Paths

Edge-Disjoint Paths

Definition

Two paths are edge-disjoint if they have no edge in common.

Edge-Disjoint Paths

Definition

Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint $s \rightsquigarrow t$ paths.

Edge-Disjoint Paths

Definition

Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph $G=(V, E)$ and two nodes s and t, find the max number of edge-disjoint $s \rightsquigarrow t$ paths.

Max-flow formulation. Assign unit capacity to every edge.

Edge－Disjoint Paths

Theorem

1－1 correspondence between k edge－disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime} ．

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Proof.

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Proof.

- Let P_{1}, \ldots, P_{k} be k edge-disjoint $s \rightsquigarrow t$ paths in G.

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Proof.

- Let P_{1}, \ldots, P_{k} be k edge-disjoint $s \rightsquigarrow t$ paths in G.
- Set $f(e)= \begin{cases}1 & \text { edge } e \text { participates in some path } P_{j} \\ 0 & \text { otherwise }\end{cases}$

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Proof.

- Let P_{1}, \ldots, P_{k} be k edge-disjoint $s \rightsquigarrow t$ paths in G.
- Set $f(e)= \begin{cases}1 & \text { edge } e \text { participates in some path } P_{j} \\ 0 & \text { otherwise }\end{cases}$
- Since paths are edge-disjoint, f is a flow of value k.

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Proof.

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Proof.

- Let f be an integral flow in G^{\prime} of value k.
- Consider edge (s, u) with $f(s, u)=1$.
- by flow conservation, there exists an edge (u, v) with $f(u, v)=1$.
- continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

Edge－Disjoint Paths

Theorem

1－1 correspondence between k edge－disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime} ．

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Proof.

Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint $s \rightsquigarrow t$ paths in G and integral flows of value k in G^{\prime}.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Proof.

- Integrality theorem \Rightarrow there exists a max flow f^{*} in G^{\prime} that is integral.
- 1-1 correspondence $\Rightarrow f^{*}$ corresponds to max number of edge-disjoint $s \rightsquigarrow t$ paths in G.

Network Connectivity

Definition

A set of edges $F \subseteq E$ disconnects t from s if every $s \rightsquigarrow t$ path uses at least one edge in F ．

Network Connectivity

Definition

A set of edges $F \subseteq E$ disconnects t from s if every $s \rightsquigarrow t$ path uses at least one edge in F ．

Network connectivity．Given a digraph $G=(V, E)$ and two nodes s and t ，find minimal number of edges whose removal disconnects t from s ．

Menger's Theorem

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Menger's Theorem

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof.

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof.

- Suppose the removal of $F \subseteq E$ disconnects t from s, and $|F|=k$.
- Every $s \rightsquigarrow t$ path uses at least one edge in F.
- Hence, the number of edge-disjoint paths is $\leq k$.

Menger＇s Theorem

Theorem（Menger 1927）

The max number of edge－disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s ．

Proof．

Menger's Theorem

Theorem (Menger 1927)

The max number of edge-disjoint $s \rightsquigarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Proof.

- Suppose max number of edge-disjoint $s \rightsquigarrow t$ paths is k.
- Then value of max flow $=k$.
- Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- $|F|=k$ and disconnects t from s.

Referred Materials

Referred Materials

- Content of this lecture comes from Section 7.5 in [KT05].

