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Matching

Definition

Given an undirected graph G = (V,E), subset of edges M ⊆ E is a matching if each node appears
in at most one edge in M .

Maximum matching. Given a graph G, find a max-cardinality matching.

3/50



Matching

Definition

Given an undirected graph G = (V,E), subset of edges M ⊆ E is a matching if each node appears
in at most one edge in M .

Maximum matching. Given a graph G, find a max-cardinality matching.

3/50



Bipartite Matching

Definition

A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge
connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G = (L ∪R,E), find a max-cardinality matching.
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Bipartite Matching

Definition

A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge
connects a node in L with a node in R.

Bipartite matching. Given a bipartite graph G = (L ∪R,E), find a max-cardinality matching.
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Max-Flow Formulation

Formulation.

• Create digraph G′ = (L ∪R ∪ {s, t}, E′).
• Direct all edges from L to R, and assign infinite (or unit) capacity.
• Add unit-capacity edges from s to each node in L.
• Add unit-capacity edges from each node in R to t.
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Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G′.

Proof. ⇒

• Let M be a matching in G of cardinality k.
• Consider flow f that sends 1 unit on each of the k corresponding paths.
• f is a flow of value k.
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Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G′.

Proof. ⇐

• Let f be an integral flow in G′ of value k.
• Consider M = set of edges from L to R with f(e) = 1.

• each node in L and R participates in at most one edge in M .
• |M | = k: apply flow-value lemma to cut (L ∪ {s}, R ∪ {t}).
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Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G′.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

• Integrality theorem⇒ there exists a max flow f∗ in G′ that is integral.
• 1-1 correspondence⇒ f∗ corresponds to max-cardinality matching.

8/50



Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G′.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

• Integrality theorem⇒ there exists a max flow f∗ in G′ that is integral.
• 1-1 correspondence⇒ f∗ corresponds to max-cardinality matching.

8/50



Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G′.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

• Integrality theorem⇒ there exists a max flow f∗ in G′ that is integral.
• 1-1 correspondence⇒ f∗ corresponds to max-cardinality matching.

8/50



Proof of Correctness

Theorem

1-1 correspondence between matchings of cardinality k in G and integral flows of value k in G′.

Corollary

Can solve bipartite matching problem via max-flow formulation.

Proof.

• Integrality theorem⇒ there exists a max flow f∗ in G′ that is integral.
• 1-1 correspondence⇒ f∗ corresponds to max-cardinality matching.

8/50



Quiz 1

What is running time of Ford–Fulkerson algorithms to find a max-cardinality matching in a bipartite
graph?

A. O(|E|+ |V |)
B. O(|E||V |)
C. O(|E||V |2)
D. O(|E|2|V |)
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Quiz 2

Which max-flow algorithm to use for bipartite matching?

A. Ford–Fulkerson: O(|E| · |V | · C).

B. Capacity scaling: O
(
|E|2 · logC

)
.

C. Shortest augmenting path: O
(
|E|2|V |

)
.

D. Dinitz’ algorithm: O
(
|E||V |2

)
.
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Perfect Matchings in Bigraphs

Definition

Given a graph G = (V,E), a subset of edges M ⊆ E is a perfect matching if each node appears in
exactly one edge in M .

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

• Clearly, we must have |L| = |R|.
• Which other conditions are necessary?
• Which other conditions are sufficient?
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Perfect Matchings in Bigraphs

Notation.

Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph G = (L ∪R,E) has a perfect matching, then |N(S)| ≥ |S| for all
subsets S ⊆ L.

Proof. Each node in S has to be matched to a different node in N(S).
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Hall’s Marriage Theorem

Theorem (Frobenius 1917, Hall 1935)

Let G = (L ∪R,E) be a bipartite graph with |L| = |R|. Then, graph G has a perfect matching iff
|N(S)| ≥ |S| for all subsets S ⊆ L.

Proof. ⇒

This was the previous observation.
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Hall’s Marriage Theorem

Proof. ⇐

Suppose G does not have a perfect matching.

Formulate as a max-flow problem and let (A,B) be a min cut in G′.

By max-flow min-cut theorem, cap(A,B) < |L|.

Define LA = L ∩A,LB = L ∩B,RA = R ∩A.

cap(A,B) = |LB |+ |RA| ⇒|RA| < |LA|

Min cut can’t use∞ edges⇒ N(LA) ⊆ RA.

|N (LA)| ≤ |RA| < |LA|.

Choose S = LA.
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Bipartite Matching

Problem. Given a bipartite graph, find a max-cardinality matching.

year worst case technique discovered by

1955 O(|E||V |) augmenting path Ford–Fulkerson

1973 O
(
|E||V |1/2

)
blocking flow Hopcroft–Karp, Karzanov

2004 O
(
|V |2.378

)
fast matrix multiplication Mucha–Sankowsi

2013 Õ
(
|E|10/7

)
electrical flow Madry

20xx ???
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Quiz 3

Which of the following are properties of the graph G = (V,E)?

A. G has a perfect matching.

B. Hall’s condition is satisfied: |N(S)| ≥ |S| for all subsets S ⊆ V .

C. Both A and B.

D. Neither A nor B.
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Nonbipartite Matching

Problem. Given an undirected graph, find a max-cardinality matching.

• Structure of nonbipartite graphs is more complicated.
• But well understood. [Tutte–Berge formula, Edmonds–Gallai]
• Blossom algorithm: O(n4). [Edmonds 1965]
• Best known: O(mn1/2). [Micali–Vazirani 1980, Vazirani 1994]
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Hackathon Problem

Hackathon problem.

• Hackathon attended by n Harvard students and n Princeton students.
• Each Harvard student is friends with exactly k > 0 Princeton students;

each Princeton student is friends with exactly k Harvard students.
• Is it possible to arrange the hackathon so that each Princeton student pair programs with a

different friend from Harvard?

18/50



Hackathon Problem

Mathematical reformulation. Does every k-regular bipartite graph have a perfect matching?

Example. Boolean hypercube.
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Hackathon Problem

Theorem

Every k-regular bipartite graph G has a perfect matching.

Proved by Hall’s Marriage Theorem, DIY!
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Theorem

Every k-regular bipartite graph G has a perfect matching.

Proved by Hall’s Marriage Theorem, DIY!
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Hackathon Problem: Another Proof

Proof.

• Size of max matching = value of max flow in G′.
• It is easy to construct the following flow

f(u, v) =

{
1 if u = s or v = t

1/k otherwise

• The value of flow f is n⇒ G′ has a perfect matching.

21/50



Hall’s Theorem by Max-Flow
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Simple Unit-Capacity Networks
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Simple Unit-Capacity Networks

Definition

A flow network is a simple unit-capacity network if:
• Every edge has capacity 1.
• Every node (other than s or t) has exactly one entering edge,

or exactly one leaving edge, or both.
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Simple Unit-Capacity Networks

Property. Let G be a simple unit-capacity network and let f be a 0–1 flow. Then, residual network
Gf is also a simple unit-capacity network.

Example. Bipartite matching.
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Simple Unit-Capacity Networks

Shortest-augmenting-path algorithm.

• Normal augmentation: length of shortest path does not change.
• Special augmentation: length of shortest path strictly increases.

Theorem (Even–Tarjan 1975)

In simple unit-capacity networks, Dinitz’algorithm computes a maximum flow in O(|E||V |1/2) time.

Proof.

• Lemma 1. Each phase of normal augmentations takes O(|E|) time.
• Lemma 2. After |V |1/2 phases, val(f) ≥ val (f∗)− |V |1/2.
• Lemma 3. After ≤ |V |1/2 additional augmentations, flow is optimal.
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Simple Unit-Capacity Networks

Lemma 3

After ≤ |V |1/2 additional augmentations, flow is optimal.

Proof. Each augmentation increases flow value by at least 1.

27/50



Simple Unit-Capacity Networks

Lemma 3

After ≤ |V |1/2 additional augmentations, flow is optimal.

Proof. Each augmentation increases flow value by at least 1.
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Simple Unit-Capacity Networks

Phase of normal augmentations.

• Construct level graph LG.
• Start at s, advance along an edge in LG until reach t or get stuck.
• If reach t, augment flow; update LG; and restart from s.
• If get stuck, delete node from LG and go to previous node.
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Simple Unit-Capacity Networks

Phase of normal augmentations.

• Construct level graph LG.
• Start at s, advance along an edge in LG until reach t or get stuck.
• If reach t, augment flow; update LG; and restart from s.
• If get stuck, delete node from LG and go to previous node.

Lemma 1

A phase of normal augmentations takes O(|E|) time.

Proof.

• O(|E|) to create level graph LG.
• O(1) per edge (each edge involved in at most one advance, retreat, and augmentation).
• O(1) per node (each node deleted at most once)
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Computational Geometry

Lemma 2

After |V |1/2 phases, val(f) ≥ val(f∗)− |V |1/2.

Proof.
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Computational Geometry

Lemma 2

After |V |1/2 phases, val(f) ≥ val(f∗)− |V |1/2.

Proof.

After |V |1/2 phases, length of shortest augmenting path is > |V |1/2.

Thus, level graph has ≥ |V |1/2 levels (not including levels for s or t)

Let 1 ≤ h ≤ |V |1/2 be a level with min number of nodes⇒ |Vh| ≤ |V |1/2.

Let A = {v : `(v) < h} ∪ {v : `(v) = h and v has ≤ 1 outgoing residual edge} .

capf (A,B) ≤ |Vh| ≤ |V |1/2 ⇒ val(f) ≥ val (f∗)− |V |1/2
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Computational Geometry
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Review

Theorem (Even–Tarjan 1975)

In simple unit-capacity networks, Dinitz’ algorithm computes a maximum flow in O(|E||V |1/2) time.

Proof.

• Lemma 1. Each phase take O(|E|) time.
• Lemma 2. After |V |1/2 phase, val(f) ≥ val (f∗)− |V |1/2

• Lemma 3. After ≤ |V |1/2 additional augmentations.

Corollary

Dinitz’ algorithm computes maximum-cardinality bipartite matching in O(|E||V |1/2) time.
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Disjoint Paths

41/50



Edge-Disjoint Paths

Definition

Two paths are edge-disjoint if they have no edge in common.

Edge-disjoint paths problem. Given a digraph G = (V,E) and two nodes s and t, find the max
number of edge-disjoint s t paths.

Max-flow formulation. Assign unit capacity to every edge.
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Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint s t paths in G and integral flows of value k in G′.

Proof. ⇒

• Let P1, . . . , Pk be k edge-disjoint s t paths in G.

• Set f(e) =

{
1 edge e participates in some path Pj

0 otherwise

• Since paths are edge-disjoint, f is a flow of value k.
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Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint s t paths in G and integral flows of value k in G′.

Proof. ⇐

• Let f be an integral flow in G′ of value k.
• Consider edge (s, u) with f(s, u) = 1.

- by flow conservation, there exists an edge (u, v) with f(u, v) = 1.
- continue until reach t, always choosing a new edge

• Produces k (not necessarily simple) edge-disjoint paths.
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Edge-Disjoint Paths

Theorem

1-1 correspondence between k edge-disjoint s t paths in G and integral flows of value k in G′.

Corollary

Can solve edge-disjoint paths problem via max-flow formulation.

Proof.

• Integrality theorem⇒ there exists a max flow f∗ in G′ that is integral.
• 1-1 correspondence⇒ f∗ corresponds to max number of edge-disjoint s t paths in G.
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Network Connectivity

Definition

A set of edges F ⊆ E disconnects t from s if every s t path uses at least one edge in F .

Network connectivity. Given a digraph G = (V,E) and two nodes s and t, find minimal number of
edges whose removal disconnects t from s.
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Menger’s Theorem

Theorem (Menger 1927)

The max number of edge-disjoint s t paths equals the min number of edges whose removal
disconnects t from s.

Proof. ≤

• Suppose the removal of F ⊆ E disconnects t from s, and |F | = k.
• Every s t path uses at least one edge in F .
• Hence, the number of edge-disjoint paths is ≤ k.
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Referred Materials

• Content of this lecture comes from Section 7.5 in [KT05].
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