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An Introduction to Linear Programming
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Linear Programming

A linear programming problem gives a set of variables, and assigns real values to them so as to

1 satisfy a set of linear equations and/or linear inequalities involving these variables, and

2 maximize or minimize a given linear objective function.
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Example: Profit Maximization

A boutique chocolatier has two products:

• triangular chocolates, called Pyramide,
• and the more decadent and deluxe Pyramide Nuit.

Q: How much of each should it produce to maximize profits?

• Every box of Pyramide has a a profit of $1.
• Every box of Nuit has a profit of $6.
• The daily demand is limited to at most 200 boxes of Pyramide and 300 boxes of Nuit.
• The current workforce can produce a total of at most 400 boxes of chocolate per day.
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LP Formulation

Objective function maxx1 + 6x2

Constraints x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane, and a linear
inequality designates a half-space, the region on one side of the line.

The set of all feasible solutions of this linear program is the intersection of five half-spaces.

It is a convex polygon.
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The Convex Polygon
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The Optimal Solution

We want to find the point in this polygon at which the objective function is maximized.

The points with a profit of c dollars lie on the line x1 + 6x2 = c, which has a slope of −1/6.

As c increases, this “profit line” moves parallel to itself, up and to the right.

Since the goal is to maximize c, we must move the line as far up as possible, while still touching the
feasible region.

The optimum solution will be the very last feasible point that the profit line sees and must therefore
be a vertex of the polygon.
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The Convex Polygon
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The Optimal Solution

It is a general rule of linear programs that the optimum is achieved at a vertex of the feasible region.

The only exceptions are cases in which there is no optimum; this can happen in two ways:

1 The linear program is infeasible; that is, the constraints are so tight that it is impossible to satisfy
all of them.

• For instance, x ≤ 1, x ≥ 2.

2 The constraints are so loose that the feasible region is unbounded, and it is possible to achieve
arbitrarily high objective values.

• For instance, maxx1 + x2
• x1, x2 ≥ 0
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Solving Linear Programs

Linear programs (LPs) can be solved by the simplex method, devised by George Dantzig in 1947.

This algorithm starts at a vertex, and repeatedly looks for an adjacent vertex of better objective
value.

It does hill-climbing on the vertices of the polygon, walking from neighbor to neighbor so as to
steadily increase profit along the way.

Upon reaching a vertex that has no better neighbor, simplex declares it to be optimal and halts.
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Solving Linear Programs

Q: Why does this local test imply global optimality?

By simple geometry. Since all the vertex’s neighbors lie below the line, the rest of the feasible
polygon must also lie below this line.
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The Example
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More Products

The chocolatier introduces a third and even more exclusive chocolates, called Pyramide Luxe. One
box of these will bring in a profit of $13.

Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to Luxe.

The old constraints on x1 and x2 persist. The labor restriction now extends to x3 as well: the sum of
all three variables is at most 400.

Nuit and Luxe require the same packaging machinery. Luxe uses it three times as much, which
imposes another constraint x2 + 3x3 ≤ 600.

13/45



More Products

The chocolatier introduces a third and even more exclusive chocolates, called Pyramide Luxe. One
box of these will bring in a profit of $13.

Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to Luxe.

The old constraints on x1 and x2 persist. The labor restriction now extends to x3 as well: the sum of
all three variables is at most 400.

Nuit and Luxe require the same packaging machinery. Luxe uses it three times as much, which
imposes another constraint x2 + 3x3 ≤ 600.

13/45



More Products

The chocolatier introduces a third and even more exclusive chocolates, called Pyramide Luxe. One
box of these will bring in a profit of $13.

Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to Luxe.

The old constraints on x1 and x2 persist. The labor restriction now extends to x3 as well: the sum of
all three variables is at most 400.

Nuit and Luxe require the same packaging machinery. Luxe uses it three times as much, which
imposes another constraint x2 + 3x3 ≤ 600.

13/45



More Products

The chocolatier introduces a third and even more exclusive chocolates, called Pyramide Luxe. One
box of these will bring in a profit of $13.

Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to Luxe.

The old constraints on x1 and x2 persist. The labor restriction now extends to x3 as well: the sum of
all three variables is at most 400.

Nuit and Luxe require the same packaging machinery. Luxe uses it three times as much, which
imposes another constraint x2 + 3x3 ≤ 600.

13/45



LP

maxx1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0
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LP

The space of solutions is now three-dimensional.

Each linear equation defines a 3D plane, and each inequality a half-space on one side of the plane.

The feasible region is an intersection of seven half-spaces, a polyhedron.

A profit of c corresponds to the plane x1 + 6x2 + 13x3 = c.

As c increases, this profit-plane moves parallel to itself, further into the positive orthant until it no
longer touches the feasible region.
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The Example
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LP

The point of final contact is the optimal vertex: (0, 300, 100), with total profit $3100.

Q: How would the simplex algorithm behave on this modified problem?

A possible trajectory
(0, 0, 0)

$0
→

(200, 0, 0)

$200
→

(200, 200, 0)

$1400
→

(200, 0, 200)

$2800
→

(0, 300, 100)

$3100
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The Example
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Example: Production Planning

The company makes handwoven carpets, a product for which the demand is extremely seasonal.

Our analyst has just obtained demand estimates for all months of the next calendar year:
d1, d2, . . . , d12, ranging from 440 to 920.

Currently with 30 employees, each of whom makes 20 carpets per month and gets a monthly salary
of $2000.

With no initial surplus of carpets.
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Example: Production Planning

Q: How can we handle the fluctuations in demand? There are three ways:

1 Overtime. Overtime pay is 80% more than regular pay. Workers can put in at most 30%
overtime.

2 Hiring and firing, costing $320 and $400, respectively, per worker.

3 Storing surplus production, costing $8 per carpet per month. Currently without stored carpets
on hand, and without any carpets stored at the end of year.
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LP Formulations

wi = number of workers during i-th month; w0 = 30.

xi = number of carpets made during i-th month.
oi = number of carpets made by overtime in month i.

hi, fi = number of workers hired and fired, respectively,
at beginning of month i.

si = number of carpets stored at end of month i; s0 = 0.
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LP Formulation

All variables must be nonnegative:

wi, xi, oi, hi, fi, si ≥ 0, i = 1, . . . , 12

The total number of carpets made per month consists of regular production plus overtime:

xi = 20wi + oi

i = 1, . . . , 12.

The number of workers can potentially change at the start of each month:

wi = wi−1 + hi − fi
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LP Formulation

The number of carpets stored at the end of each month is what we started with, plus the number we
made, minus the demand for the month:

si = si−1 + xi − di

And overtime is limited:
oi ≤ 6wi
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LP Formulation

The objective function is to minimize the total cost:

min 2000
∑
i

wi + 320
∑
i

hi + 400
∑
i

fi + 8
∑
i

si + 180
∑
i

oi
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Integer Linear Programming

The optimum solution might turn out to be fractional;

for instance, it might involve hiring 10.6 workers
in the month of March.

This number would have to be rounded to either 10 or 11 in order to make sense, and the overall
cost would then increase correspondingly.

In the example, most of the variables take on fairly large values, and thus rounding is unlikely to
affect things too much.
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Integer Linear Programming

There are other LPs, in which rounding decisions have to be made very carefully to end up with an
integer solution of reasonable quality.

There is a tension in linear programming between the ease of obtaining fractional solutions and the
desirability of integer ones.

In NP problems, finding the optimum integer solution of an LP is an important but very hard problem,
called integer linear programming.
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Duality

27/45



Product Planning Revisit

Recall:
maxx1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

Simplex declares the optimum solution to be (x1, x2) = (100, 300), with objective value 1900.

Can this answer be checked somehow?

We take the first inequality and add it to six times the second inequality:

x1 + 6x2 ≤ 2000
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Product Planning Revisit

Multiplying the three inequalities by 0, 5, and 1, respectively, and adding them up yields

x1 + 6x2 ≤ 1900
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Multipliers

Let’s investigate the issue by describing what we expect of these three multipliers, call them y1, y2,
y3.

Multiplier Inequality
y1
y2
y3

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

These yi’s must be nonnegative, otherwise they are unqualified to multiply inequalities.

After the multiplication and addition steps, we get the bound:

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3

We want the left-hand side to look like the objective function x1 + 6x2 so that the right-hand side is
an upper bound on the optimum solution.
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Multipliers

x1 + 6x2 ≤ 200y1 + 300y2 + 400y3

if
y1, y2, y3 ≥ 0

y1 + y3 ≥ 1

y2 + y3 ≥ 6
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The Dual Program

We can easily find y’s that satisfy the inequalities on the right by simply making them large enough,
for example (y1, y2, y3) = (5, 3, 6).

These particular multipliers tell us that the optimum solution of the LP is at most

200 · 5 + 300 · 3 + 400 · 6 = 4300

What we want is a bound as tight as possible, so we minimize

200y1 + 300y2 + 400y3

subject to the preceding inequalities. This is a new linear program!
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The Dual Program

min 200y1 + 300y2 + 400y3
y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

Any feasible value of this dual LP is an upper bound on the original primal LP.

If we find a pair of primal and dual feasible values that are equal, then they must both be optimal.

Here is just such a pair:

• Primal: (x1, x2) = (100, 300);
• Dual: (y1, y2, y3) = (0, 5, 1).

They both have value 1900 and certify each other’s optimality.
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Matrix-Vector Form and Its Dual

Primal LP Dual LP

max cTx

Ax ≤ b

x ≥ 0

minyT b

yTA ≥ cT

y ≥ 0

Primal LP:

max c1x1 + · · · + cnxn

ai1x1 + · · ·+ ainxn ≤ bi for i ∈ I

ai1x1 + · · · + ainxn = bi for i ∈ E

xj ≥ 0 for j ∈ N

Dual LP:

min b1y1 + · · ·+ bmym

a1jy1 + · · ·+ amjym ≥ cj for j ∈ N

a1jy1 + · · ·+ amjym = cj for j 6∈ N

yi ≥ 0 for i ∈ I
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Matrix-Vector Form and Its Dual

maxx1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

min 200y1 + 300y2 + 400y3
y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0
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Matrix-Vector Form and Its Dual

Theorem (Duality)

If a linear program has a bounded optimum, then so does its dual, and the two optimum values
coincide.
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Complementary Slackness

The number of variables in the dual is equal to that of constraints in the primal and the number of
constraints in the dual is equal to that of variables in the primal.

An inequality constraint has slack if the slack variable is positive.

The complementary slackness refers to a relationship between the slackness in a primal constraint
and the associated dual variable.
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LP and Its Dual

maxx1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

x1 = 100, x2 = 300

min 200y1 + 300y2 + 400y3
y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0

y1 = 0, y2 = 5, y3 = 1
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Complementary Slackness

Theorem

Assume LP problem (P) has a solution x∗ and its dual problem (D) has a solution y∗.

1 If x∗
j > 0, then the j-th constraint in (D) is binding.

2 If the j-th constraint in (D) is not binding, then x∗
j = 0.

3 If y∗
i > 0, then the i-th constraint in (P) is binding.

4 If the i-th constraint in (P) is not binding, then y∗
i = 0.

Proof.

Assignment !
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A Concrete Example for Duality
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Brewery Problem

Small brewery produces ale and beer.

• Production limited by scarce resources: corn, hops, barley malt.
• Recipes for ale and beer require different proportions of resources.

Beverage Corn(pounds) Hops(ounces) Malt(pounds) Profit($)

Ale (barrel) 5 4 35 13

Beer (barrel) 15 4 20 23

constraint 480 160 1190
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LP and its Dual

max 13x1 + 23x2

5x1 + 15x2 ≤ 480

4x1 + 4x2 ≤ 160

35x1 + 20x2 ≤ 1190

x1, x2 ≥ 0

min 480y1 + 160y2 + 1190y3
5y1 + 4y2 + 35y3 ≥ 13

15y1 + 4y2 + 20y3 ≥ 23

y1, y2, y3 ≥ 0

x∗
1 = 12, x∗

2 = 28

Brewer: find optimal mix of beer
and ale to maximize profits.

y∗
1 = 1, y∗

2 = 2, y∗
3 = 0

Entrepreneur: buy individual
resources from brewer at min cost.
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LP Duality: Sensitivity Analysis

Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce
resources?

A. corn $1, hops $2, malt $0.

Q. Suppose a new product “light beer” is proposed. It requires 2 corn, 5 hops, 24 malt. How much
profit must be obtained from light beer to justify diverting resources from production of beer and ale?

A. At least 2 ($1) + 5 ($2) + 24 ($0) = $12 / barrel.
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Referred Materials

Content of this lecture comes from Section 7.1 and 7.4 in [DPV07], Section 29.2 in [CLRS09], and
Section 7.3 in [WS11].
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