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LP

maxx1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

3/48



The Example

x1

x3

x2

1©

4©

2©

3©

5©

6©

7©

A

B C

4/48



LP

The point of final contact is the optimal vertex: (0, 300, 100), with total profit $3100.

Q: How would the simplex algorithm behave on this modified problem?

A possible trajectory
(0, 0, 0)

$0
→

(200, 0, 0)

$200
→

(200, 200, 0)

$1400
→

(200, 0, 200)

$2800
→

(0, 300, 100)

$3100

5/48
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LP and Its Dual

Primal LP Dual LP

max cTx

Ax ≤ b

x ≥ 0

minyT b

yTA ≥ cT

y ≥ 0

Primal LP:

max c1x1 + · · · + cnxn

ai1x1 + · · ·+ ainxn ≤ bi for i ∈ I

ai1x1 + · · · + ainxn = bi for i ∈ E

xj ≥ 0 for j ∈ N

Dual LP:

min b1y1 + · · ·+ bmym

a1jy1 + · · ·+ amjym ≥ cj for j ∈ N

a1jy1 + · · ·+ amjym = cj for j 6∈ N

yi ≥ 0 for i ∈ I
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LP and Its Dual

maxx1 + 6x2

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

min 200y1 + 300y2 + 400y3
y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0
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Complementary Slackness

Theorem

Assume LP problem (P) has a solution x∗ and its dual problem (D) has a solution y∗.

1 If x∗j > 0, then the j-th constraint in (D) is binding.

2 If the j-th constraint in (D) is not binding, then x∗j = 0.

3 If y∗i > 0, then the i-th constraint in (P) is binding.

4 If the i-th constraint in (P) is not binding, then y∗i = 0.
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Standard Linear Programming
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Variants of Linear Programming

A general linear program has many degrees of freedom:

1 It can be either a maximization or a minimization problem.

2 Its constraints can be equations and/or inequalities.

3 The variables are often restricted to be nonnegative, but they can also be unrestricted in sign.

We will now show that these various LP options can all be reduced to one another via simple
transformations.
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Variants of Linear Programming

To turn a maximization problem into a minimization (or vice versa), multiply the coefficients of the
objective function by −1.
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Variants of Linear Programming

To turn an inequality constraint like
∑n

i=1 aixi ≤ b into an equation, introduce a new variable s and
use

n∑
i=1

aixi + s = b

s ≥ 0

This s is called the slack variable for the inequality.

To change an equality constraint into inequalities is easy: rewrite ax = b as the equivalent pair of
constraints ax ≤ b and ax ≥ b.
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Variants of Linear Programming

Finally, to deal with a variable x that is unrestricted in sign, do the following:

• Introduce two nonnegative variables, x+, x− ≥ 0.
• Replace x, wherever it occurs in the constraints or the objective function, by x+ − x−.
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Standard Form

We can reduce any LP into an LP of a much more constrained kind that we call the standard form:

• the variables are all nonnegative.
• the constraints are all equations.
• and the objective function is to be minimized.

maxx1 + 6x2 min−x1 − 6x2

x1 ≤ 200 x1 + s1 = 200

x2 ≤ 300 =⇒ x2 + s2 = 300

x1 + x2 ≤ 400 x1 + x2 + s3 = 400

x1, x2 ≥ 0 x1, x2, s1, s2, s3 ≥ 0
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The Simplex Algorithm
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General Description

Simplex

let v be any vertex of the feasible region, while there is a neighbor v′ of v with better objective value:
set v = v′
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Vertices and Neighbors

Definition (Vertex)

Each vertex is the unique point at which some subset of hyperplanes meet.

Pick a subset of the inequalities. If there is a unique point that satisfies them with equality, and this
point happens to be feasible, then it is a vertex.

Each vertex is specified by a set of n inequalities (say there are n variables).

Definition (Neighbors)

Two vertices are neighbors if they have n− 1 defining inequalities in common.
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The Algorithm

Algorithm

On each iteration, simplex has two tasks:

1 Check whether the current vertex is optimal (and if so, halt).

2 Determine where to move next.

Both tasks are easy if the vertex is at the origin. If the vertex is elsewhere, we transform the
coordinate system to move it to the origin.
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The Convenience for the Origin

Suppose we have some generic LP:
max cTx

Ax ≤ b

x ≥ 0

where x is the vector of variables, x = (x1, . . . , xn).

Suppose the origin is feasible. Then it is certainly a vertex, since it is the unique point at which the n

inequalities
{x1 ≥ 0, . . . , xn ≥ 0}

are tight.
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Task 1 in the Origin

Lemma

The origin is optimal if and only if all ci ≤ 0.

Proof.

If all ci ≤ 0, then considering the constraints x ≥ 0, we can’t hope for a better objective value.

Conversely, if some ci > 0, then the origin is not optimal, since we can increase the objective
function by raising xi.
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Task 2 in the Origin

We can move by increasing some xi for which ci > 0.

Q: How much can we increase it?

A: Until we hit some other constraint.

We release the tight constraint xi ≥ 0 and increase xi until some other inequality, previously loose,
now becomes tight.

We have exactly n tight inequalities, so we are at a new vertex.
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An Example

max 2x1 + 5x2

2x1 − x2 ≤ 4

x1 + 2x2 ≤ 9

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0
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Vertex Elsewhere

The trick is to transform u into the origin, by shifting the coordinate system from the usual
(x1, . . . , xn) to the “local view” from u.

These local coordinates consist of distances y1, . . . , yn to the n hyperplanes (inequalities) that
define and enclose u.

If one of these enclosing inequalities is ai · x ≤ bi, then the distance from a point x to that particular
“wall” is

yi = bi − ai · x

The n equations of this type, one per wall, define the yi’s as linear functions of the xi’s, and this
relationship can be inverted to express the xi’s as a linear function of the yi’s.
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An Example

max 2x1 + 5x2

2x1 − x2 ≤ 4

x1 + 2x2 ≤ 9

−x1 + x2 ≤ 3

x1 ≥ 0

x2 ≥ 0

max 15 + 7y1 − 5y2

y1 + y2 ≤ 7

3y1 − 2y2 ≤ 3

y2 ≥ 0

y1 ≥ 0

−y1 + y2 ≤ 3
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An Example

max 15 + 7y1 − 5y2

y1 + y2 ≤ 7

3y1 − 2y2 ≤ 3

y2 ≥ 0

y1 ≥ 0

−y1 + y2 ≤ 3

max 22− 7/3z1 − 1/3z2
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z2 ≥ 0
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Rewriting the LP

We can rewrite the entire LP in terms of the y’s.

This doesn’t fundamentally change, but expresses it in a different coordinate frame.

The revised “local” LP has the following three properties:

1 It includes the inequalities y ≥ 0, which are simply the transformed versions of the inequalities
defining u.

2 u itself is the origin in y-space.

3 The cost function becomes max cu + c̃Ty, where cu is the value of the objective function at u
and c̃ is a transformed cost vector.
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Loose End
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The Starting Vertex

In a general LP, the origin might not be feasible and thus not a vertex.

It turns out that finding a starting vertex can be reduced to an LP and solved by simplex!

Start with any linear program in standard form:

min cTx such that Ax = b and x ≥ 0.

We make sure that the right-hand sides of the equations are all nonnegative: if bi < 0, multiply both
sides of the i-th equation by −1.
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The Starting Vertex

Then we create a new LP as follows:

• Create m new artificial variables z1, . . . , zm ≥ 0, where m is the number of equations.

• Add zi to the left-hand side of the i-th equation.
• Let the objective, to be minimized, be z1 + z2 + . . .+ zm.
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An Example

min−x1 − 6x2

x1 + s1 = 200

x2 + s2 = 300

x1 + x2 + x3 = 400

x1, x2, x3 ≥ 0

min z1 + z2 + z3
x1 + s1 + z1 = 200

x2 + s2 + z2 = 300

x1 + x2 + x3 + z3 = 400

x1, x2, x3 ≥ 0

z1, z2, z3 ≥ 0
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The Starting Vertex

For this new LP, it’s easy to come up with a starting vertex, namely, the one with zi = bi for all i and
all other variables zero.

Therefore we can solve it by simplex, to obtain the optimum solution.

There are two cases:

1 If the optimum value of z1 + . . .+ zm is zero,then all zi’s obtained by simplex are zero, and
hence from the optimum vertex of the new LP we get a starting feasible vertex of the original LP.

2 If the optimum objective turns out to be positive: We tried to minimize the sum of the zi’s, but it
cannot be zero. This means that the original linear program is infeasible.
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Degeneracy

A vertex is degenerate if it is the intersection of more than n faces of the polyhedron, say n+ 1.

It means that if we choose any one of n sets of n+ 1 inequalities and solve the corresponding
system of these linear equations in n unknowns, we’ll get the same solution in all n+ 1 cases.
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An Example
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Degeneracy

This is a serious problem: simplex may return a suboptimal degenerate vertex simply because all its
neighbors are identical to it and thus have no better objective.

If we modify simplex so that it detects degeneracy and continues to hop from vertex to vertex despite
lack of any improvement in the cost, it may end up looping forever.
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Degeneracy

One way to fix this is by a perturbation:

change each bi by a tiny random amount to bi ± εi.

This doesn’t change the essence of the LP, but it has the effect of differentiating between the
solutions of the linear systems.
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Unboundedness

In some cases an LP is unbounded, in that its objective function can be made arbitrarily large (or
small, if it’s a minimization problem).

If this is the case, simplex will discover it:

• In exploring the neighborhood, it will notice that taking out an inequality and adding another
leads to an underdetermined system of equations.
• The space of solutions contains a whole line across which the objective can become larger and

larger, all the way to∞.

In this case simplex halts and complains.
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An Example

maxx1 + x2

x1 − x2 ≥ 0

x1, x2 ≥ 0
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The Running Time
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The Running Time of Simplex

Q: What is the running time of simplex, for a generic linear program:

max cTx such that Ax ≤ 0 and x ≥ 0

where there are n variables and A contains m inequality constraints?

It is an iterative algorithm that proceeds from vertex to vertex. Let u be the current vertex.

Each of its neighbors shares n− 1 of these inequalities, so u can have at most n ·m neighbors.
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The Running Time of Simplex

A naive way for an iteration:

1 check each potential neighbor to see whether it really is a vertex of the polyhedron,

2 determine its cost.

Finding the cost is quick, just a dot product.

Checking whether it is a true vertex involves: solve a system of n equations and check whether the
result is feasible.

By Gaussian elimination this takes O(n3) time, giving total O(mn4) per iteration.
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The Running Time of Simplex

A much better way: the mn4 can be improved to mn.

Recall the local view from vertex u. The per-iteration overhead of rewriting the LP in terms of the
current local coordinates is just O((m+ n)n).

The local view changes only slightly between iterations, in just one of its defining inequalities.

43/48



The Running Time of Simplex

A much better way: the mn4 can be improved to mn.

Recall the local view from vertex u. The per-iteration overhead of rewriting the LP in terms of the
current local coordinates is just O((m+ n)n).

The local view changes only slightly between iterations, in just one of its defining inequalities.

43/48



The Running Time of Simplex

A much better way: the mn4 can be improved to mn.

Recall the local view from vertex u. The per-iteration overhead of rewriting the LP in terms of the
current local coordinates is just O((m+ n)n).

The local view changes only slightly between iterations, in just one of its defining inequalities.

43/48



The Running Time of Simplex

To select the best neighbor, we recall that the objective function is of the form

max cu + c̃ · y

where cu is the value of the objective function at u.

This immediately identifies a promising direction to move: we pick any c̃i > 0.

Since the rest of the LP has now been rewritten in terms of the y-coordinates, it is easy to determine
how much yi can be increased before some other inequality is violated.
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The Running Time of Simplex

Q: How many iterations could there be?

A: At most
(
m+n

n

)
, i.e., the number of vertices.

It is exponential in n.

And in fact, there are examples of LPs for which simplex does indeed take an exponential number of
iterations.

Simplex is an exponential-time algorithm.

However, such exponential examples do not occur in practice, and it is this fact that makes simplex
so valuable and so widely used.
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A Notable Result

Smoothed analysis proposed by Daniel Spielman and Shanghua Teng is a way of
measuring the complexity of an algorithm. It gives a more realistic analysis of the
practical performance of the algorithm. It was used to explain that the simplex
algorithm runs in exponential-time in the worst-case and yet in practice it is a very
efficient algorithm, which was one of the main motivations for developing smoothed
analysis. The authors received the 2008 Gödel Prize and the 2009 Fulkerson Prize.
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Referred Materials

Content of this lecture comes from Section 7.6 in [DPV07].
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