

Design and Analysis of Algorithms (XVI)
Beyond NP: PSPACE

Guoqiang Li
School of Software

Geography game

Geography. Alice names capital city c of country she is in. Bob names a capital city c^{\prime} that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Geography game

Geography. Alice names capital city c of country she is in. Bob names a capital city c^{\prime} that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?

Geography game

Geography. Alice names capital city c of country she is in. Bob names a capital city c^{\prime} that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?
Example. Budapest \rightarrow Tokyo \rightarrow Ottawa \rightarrow Ankara \rightarrow Amsterdam \rightarrow Moscow \rightarrow Washington \rightarrow Nairobi \rightarrow...

Geography game

Geography. Alice names capital city c of country she is in. Bob names a capital city c^{\prime} that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?
Example. Budapest \rightarrow Tokyo \rightarrow Ottawa \rightarrow Ankara \rightarrow Amsterdam \rightarrow Moscow \rightarrow Washington \rightarrow Nairobi \rightarrow. .

Geography on graphs. Given a directed graph $G=(V, E)$ and a start node s, two players alternate turns by following, if possible, an edge leaving the current node to an unvisited node.

Geography game

Geography. Alice names capital city c of country she is in. Bob names a capital city c^{\prime} that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?
Example. Budapest \rightarrow Tokyo \rightarrow Ottawa \rightarrow Ankara \rightarrow Amsterdam \rightarrow Moscow \rightarrow Washington \rightarrow Nairobi \rightarrow...

Geography on graphs. Given a directed graph $G=(V, E)$ and a start node s, two players alternate turns by following, if possible, an edge leaving the current node to an unvisited node.

Can first player guarantee to make the last legal move?

Geography game

Geography. Alice names capital city c of country she is in. Bob names a capital city c^{\prime} that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?
Example. Budapest \rightarrow Tokyo \rightarrow Ottawa \rightarrow Ankara \rightarrow Amsterdam \rightarrow Moscow \rightarrow Washington \rightarrow Nairobi \rightarrow. .

Geography on graphs. Given a directed graph $G=(V, E)$ and a start node s, two players alternate turns by following, if possible, an edge leaving the current node to an unvisited node.

Can first player guarantee to make the last legal move?
Remark. Some problems (especially involving 2-player games and AI) defy classification according to P,EXPTIME, NP, and NP-complete.

PSPACE Complexity Class
P. Decision problems solvable in polynomial time.

P．Decision problems solvable in polynomial time．
PSPACE．Decision problems solvable in polynomial space．
P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

Observation. $\mathbf{P} \subseteq$ PSPACE.

Binary counter. Count from 0 to $2^{n}-1$ in binary.

Binary counter．Count from 0 to $2^{n}-1$ in binary．
Algorithm．Use n bit odometer．

Binary counter. Count from 0 to $2^{n}-1$ in binary.
Algorithm. Use n bit odometer.

Claim

3-SAT \in PSPACE.

Binary counter. Count from 0 to $2^{n}-1$ in binary.
Algorithm. Use n bit odometer.

Claim

$3-S A T \in$ PSPACE.
Proof.

Binary counter. Count from 0 to $2^{n}-1$ in binary.
Algorithm. Use n bit odometer.

Claim

$3-S A T \in$ PSPACE.
Proof.

- Enumerate all 2^{n} possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Binary counter. Count from 0 to $2^{n}-1$ in binary.
Algorithm. Use n bit odometer.

Claim

$3-S A T \in$ PSPACE.
Proof.

- Enumerate all 2^{n} possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Theorem

$N P \subseteq P S P A C E$

Binary counter．Count from 0 to $2^{n}-1$ in binary．
Algorithm．Use n bit odometer．

Claim

$3-S A T \in$ PSPACE．
Proof．
－Enumerate all 2^{n} possible truth assignments using counter．
－Check each assignment to see if it satisfies all clauses．

Theorem

NP \subseteq PSPACE
Proof．

Binary counter. Count from 0 to $2^{n}-1$ in binary.
Algorithm. Use n bit odometer.

Claim

$3-S A T \in$ PSPACE.

Proof.

- Enumerate all 2^{n} possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Theorem

NP \subseteq PSPACE
Proof. Consider arbitrary problem $Y \in \mathbf{N P}$.

- Since $Y \leq_{P}$ 3-SAT, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3-SAT black box.
- Can implement black box in poly-space.

Quiz

Show that Co-NP \subseteq PSPACE

Quantified Satisfiability

Quantified satisfiability

QSAT. Let $\Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a boolean CNF formula. Is the following propositional formula true?

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

Intuition. Amy picks truth value for x_{1}, then Bob for x_{2}, then Amy for x_{3}, and so on.
Can Amy satisfy Φ no matter what Bob does?

Quantified satisfiability

QSAT. Let $\Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a boolean CNF formula. Is the following propositional formula true?

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

Intuition. Amy picks truth value for x_{1}, then Bob for x_{2}, then Amy for x_{3}, and so on.
Can Amy satisfy Φ no matter what Bob does?
Example.

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)
$$

Quantified satisfiability

QSAT. Let $\Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a boolean CNF formula. Is the following propositional formula true?

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

Intuition. Amy picks truth value for x_{1}, then Bob for x_{2}, then Amy for x_{3}, and so on.
Can Amy satisfy Φ no matter what Bob does?
Example.

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)
$$

Yes. Amy sets x_{1} true; Bob sets x_{2}; Amy sets x_{3} to be same as x_{2}.

Quantified satisfiability

QSAT. Let $\Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a boolean CNF formula. Is the following propositional formula true?

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

Intuition. Amy picks truth value for x_{1}, then Bob for x_{2}, then Amy for x_{3}, and so on.
Can Amy satisfy Φ no matter what Bob does?
Example.

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)
$$

Yes. Amy sets x_{1} true; Bob sets x_{2}; Amy sets x_{3} to be same as x_{2}.
Example.

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)
$$

Quantified satisfiability

QSAT. Let $\Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be a boolean CNF formula. Is the following propositional formula true?

$$
\exists x_{1} \forall x_{2} \exists x_{3} \forall x_{4} \ldots \forall x_{n-1} \exists x_{n} \Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)
$$

Intuition. Amy picks truth value for x_{1}, then Bob for x_{2}, then Amy for x_{3}, and so on.
Can Amy satisfy Φ no matter what Bob does?
Example.

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(x_{2} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)
$$

Yes. Amy sets x_{1} true; Bob sets x_{2}; Amy sets x_{3} to be same as x_{2}.
Example.

$$
\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{2}} \vee \overline{x_{3}}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}\right)
$$

No. If Amy sets x_{1} false; Bob sets x_{2} false; Amy loses;
If Amy sets x_{1} true; Bob sets x_{2} true; Amy loses.

Quantified satisfiability is in PSPACE

Theorem

$Q-S A T \in$ PSPACE .

Quantified satisfiability is in PSPACE

Theorem

$Q-S A T \in$ PSPACE.
Proof.

Quantified satisfiability is in PSPACE

Theorem

$Q-S A T \in$ PSPACE.
Proof. Recursively try all possibilities.

- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.

Quantified satisfiability is in PSPACE

Theorem

$Q-S A T \in$ PSPACE .

Proof. Recursively try all possibilities.

- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.

Planning Problem

15-puzzle

8-puzzle, 15-puzzle.[Noyes Chapman 1874]

- Board: 3-by-3 grid of tiles labeled 1-8.
- Legal move: slide neighboring tile into blank (white) square.
- Find sequence of legal moves to transform initial configuration into goal configuration.

1	2	3
4	5	6
8	7	

1	2	3
4	5	
8	7	6

1	2	3
4	5	6
7	8	

goal configuration

Planning problem

Conditions. Set $C=\left\{C_{1}, \ldots, C_{n}\right\}$.
Initial configuration. Subset $c_{0} \subseteq C$ of conditions initially satisfied.
Goal configuration. Subset $c^{*} \subseteq C$ of conditions we seek to satisfy.
Operators. Set $O=\left\{O_{1}, \ldots, O_{k}\right\}$.

- To invoke operator O_{i}, must satisfy certain prereq conditions.
- After invoking O_{i} certain conditions become true, and certain conditions become false.

Planning problem

Conditions. Set $C=\left\{C_{1}, \ldots, C_{n}\right\}$.
Initial configuration. Subset $c_{0} \subseteq C$ of conditions initially satisfied.
Goal configuration. Subset $c^{*} \subseteq C$ of conditions we seek to satisfy.
Operators. Set $O=\left\{O_{1}, \ldots, O_{k}\right\}$.

- To invoke operator O_{i}, must satisfy certain prereq conditions.
- After invoking O_{i} certain conditions become true, and certain conditions become false.

Planning. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Planning problem

Conditions. Set $C=\left\{C_{1}, \ldots, C_{n}\right\}$.
Initial configuration. Subset $c_{0} \subseteq C$ of conditions initially satisfied.
Goal configuration. Subset $c^{*} \subseteq C$ of conditions we seek to satisfy.
Operators. Set $O=\left\{O_{1}, \ldots, O_{k}\right\}$.

- To invoke operator O_{i}, must satisfy certain prereq conditions.
- After invoking O_{i} certain conditions become true, and certain conditions become false.

Planning. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.

- 15-puzzle.
- Rubik's cube.
- Logistical operations to move people, equipment, and materials.

Planning problem: 8-puzzle

Planning example. Can we solve the 8 -puzzle?
Conditions. $C_{i j}, 1 \leq i, j \leq 9$.
Initial state. $c_{0}=\left\{C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99}\right\}$.
Goal state. $c^{*}=\left\{C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99}\right\}$.

1	2	3	
4	5	6	
8	7	9	
$\downarrow O_{i}$			

Operators.

1	2	3
4	5	6
8	9	7

Solution. No solution to 8 -puzzle or 15 -puzzle!

Diversion: Why is 8 -puzzle unsolvable?

8-puzzle invariant. Any legal move preserves the parity of the number of pairs of pieces in reverse order (inversions).

3	1	2
4	5	6
8	7	

3 inversions
1-3, 2-3, 7-8

3	1	2
4	5	6
8		7

3 inversions
1-3, 2-3, 7-8

5 inversions 1-3, 2-3, 7-8, 5-8, 5-6

0 inversions

1 inversion: 7-8

Planning problem: binary counter

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?

Planning problem: binary counter

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?
Conditions. C_{1}, \ldots, C_{n}.
Initial state. $c_{0}=\Phi$.
Goal state. $c^{*}=\left\{C_{1}, \ldots, C_{n}\right\}$.
Operators. O_{1}, \ldots, O_{n}.

- To invoke operator O_{i}, must satisfy C_{1}, \ldots, C_{i-1}.
- After invoking O_{i}, condition C_{i} becomes true.
- After invoking O_{i}, conditions C_{1}, \ldots, C_{i-1} become false.

Planning problem: binary counter

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?
Conditions. C_{1}, \ldots, C_{n}.
Initial state. $c_{0}=\Phi$.
Goal state. $c^{*}=\left\{C_{1}, \ldots, C_{n}\right\}$.
Operators. O_{1}, \ldots, O_{n}.

- To invoke operator O_{i}, must satisfy C_{1}, \ldots, C_{i-1}.
- After invoking O_{i}, condition C_{i} becomes true.
- After invoking O_{i}, conditions C_{1}, \ldots, C_{i-1} become false.

Solution. $\quad\left\} \Rightarrow\left\{C_{1}\right\} \Rightarrow\left\{C_{2}\right\} \Rightarrow\left\{C_{1}, C_{2}\right\} \Rightarrow\left\{C_{3}\right\} \Rightarrow\left\{C_{3}, C_{1}\right\} \Rightarrow \ldots\right.$

Planning problem: binary counter

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?
Conditions. C_{1}, \ldots, C_{n}.
Initial state. $c_{0}=\Phi$.
Goal state. $c^{*}=\left\{C_{1}, \ldots, C_{n}\right\}$.
Operators. O_{1}, \ldots, O_{n}.

- To invoke operator O_{i}, must satisfy C_{1}, \ldots, C_{i-1}.
- After invoking O_{i}, condition C_{i} becomes true.
- After invoking O_{i}, conditions C_{1}, \ldots, C_{i-1} become false.

Solution. $\quad\left\} \Rightarrow\left\{C_{1}\right\} \Rightarrow\left\{C_{2}\right\} \Rightarrow\left\{C_{1}, C_{2}\right\} \Rightarrow\left\{C_{3}\right\} \Rightarrow\left\{C_{3}, C_{1}\right\} \Rightarrow \ldots\right.$
Observation. Any solution requires at least $2^{n}-1$ steps.

Planning problem is in EXPTIME

Configuration graph G.

- Include node for each of 2^{n} possible configurations.
- Include an edge from configuration c^{\prime} to configuration c " if one of the operators can convert from c^{\prime} to $c^{\prime \prime}$.

Planning problem is in EXPTIME

Configuration graph G.

- Include node for each of 2^{n} possible configurations.
- Include an edge from configuration c^{\prime} to configuration c " if one of the operators can convert from c^{\prime} to $c^{\prime \prime}$.

Planning. Is there a path from c_{0} to c^{*} in configuration graph?

Planning problem is in EXPTIME

Configuration graph G.

- Include node for each of 2^{n} possible configurations.
- Include an edge from configuration c^{\prime} to configuration c " if one of the operators can convert from c^{\prime} to $c^{\prime \prime}$.

Planning. Is there a path from c_{0} to c^{*} in configuration graph?

Claim

Planning \in EXPTIME.

Planning problem is in EXPTIME

Configuration graph G.

- Include node for each of 2^{n} possible configurations.
- Include an edge from configuration c^{\prime} to configuration c " if one of the operators can convert from c^{\prime} to $c^{\prime \prime}$.

Planning. Is there a path from c_{0} to c^{*} in configuration graph?

Claim

Planning \in EXPTIME.

Proof.

Planning problem is in EXPTIME

Configuration graph G.

- Include node for each of 2^{n} possible configurations.
- Include an edge from configuration c^{\prime} to configuration c " if one of the operators can convert from c^{\prime} to $c^{\prime \prime}$.

Planning. Is there a path from c_{0} to c^{*} in configuration graph?

Claim

Planning \in EXPTIME.

Proof. Run BFS to find path from c_{0} to c^{*} in configuration graph.

Planning problem is in EXPTIME

Configuration graph G.

- Include node for each of 2^{n} possible configurations.
- Include an edge from configuration c^{\prime} to configuration c " if one of the operators can convert from c^{\prime} to $c^{\prime \prime}$.

Planning. Is there a path from c_{0} to c^{*} in configuration graph?

Claim

Planning \in EXPTIME.

Proof. Run BFS to find path from c_{0} to c^{*} in configuration graph.
Note. Configuration graph can have 2^{n} nodes, and shortest path can be of length $=2^{n}-1$.

Planning problem is in PSPACE

Theorem
Planning \in PSPACE.

Planning problem is in PSPACE

Theorem

PLANNING \in PSPACE.
Proof.

Planning problem is in PSPACE

Theorem

Planning \in PSPACE.
Proof.

- Suppose there is a path from c_{1} to c_{2} of length L.
- Path from c_{1} to midpoint and from c_{2} to midpoint are each $\leq L / 2$.
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion $=\log _{2} L$.

Planning problem is in PSPACE

Theorem

PLANNING \in PSPACE.
Proof.

- Suppose there is a path from c_{1} to c_{2} of length L.
- Path from c_{1} to midpoint and from c_{2} to midpoint are each $\leq L / 2$.
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion $=\log _{2} L$.

```
boolean hasPath( }\mp@subsup{c}{1}{},\mp@subsup{c}{2}{},L
    if (L\leq1) return correct answer
    for each configuration c'
        boolean }x=\mathrm{ hasPath( }\mp@subsup{c}{1}{},\mp@subsup{c}{}{\prime},\textrm{L}/2
        boolean }y=\mathrm{ hasPath( }\mp@subsup{c}{2}{},\mp@subsup{c}{}{\prime},\textrm{L}/2
        if (x and y) return true
    return false
```


PSPACE-Complete

PSPACE. Decision problems solvable in polynomial space.

PSPACE-complete

PSPACE. Decision problems solvable in polynomial space.
PSPACE-complete. Problem $Y \in$ PSPACE-complete if (i) $Y \in$ PSPACE and (ii) for every problem $X \in$ PSPACE, $X \leq_{P} Y$.

PSPACE. Decision problems solvable in polynomial space.
PSPACE-complete. Problem $Y \in$ PSPACE-complete if (i) $Y \in$ PSPACE and (ii) for every problem $X \in$ PSPACE, $X \leq_{P} Y$.

Theorem (Stockmeyer-Meyer 1973)
QSAT \in PSPACE-complete.

PSPACE. Decision problems solvable in polynomial space.
PSPACE-complete. Problem $Y \in$ PSPACE-complete if (i) $Y \in$ PSPACE and (ii) for every problem $X \in$ PSPACE, $X \leq_{P} Y$.

Theorem (Stockmeyer-Meyer 1973)
QSAT \in PSPACE-complete.

Theorem

PSPACE \subseteq EXPTIME.

PSPACE. Decision problems solvable in polynomial space.
PSPACE-complete. Problem $Y \in$ PSPACE-complete if (i) $Y \in$ PSPACE and (ii) for every problem $X \in$ PSPACE, $X \leq_{P} Y$.

Theorem (Stockmeyer-Meyer 1973)
QSAT \in PSPACE-complete.

Theorem

PSPACE \subseteq EXPTIME.

Proof. Previous algorithm solves QSAT in exponential time; and QSAT is PSPACE-complete.

$\mathbf{P} \subseteq \mathbf{N P} \subseteq$ PSPACE \subseteq EXPTIME

More PSPACE-complete problems.

- Competitive facility location.
- Natural generalizations of games.
- Othello, Hex, Geography, Rush-Hour, Instant Insanity
- Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

Competitive facility location

Input. Graph $G=(V, E)$ with positive edge weights, and target B.

Competitive facility location

Input. Graph $G=(V, E)$ with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location

Input. Graph $G=(V, E)$ with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Competitive facility location

Input. Graph $G=(V, E)$ with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Competitive facility location

Input. Graph $G=(V, E)$ with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Competitive facility location

Claim

Competitive facility location \in PSPACE-complete.

Competitive facility location

Claim

Competitive facility location \in PSPACE-complete.

Proof.

Competitive facility location

Claim

Competitive facility location \in PSPACE-complete.

Proof.

- To solve in poly-space, use recursion like Q-SAT, but at each step there are up to n choices instead of 2 .
- To show that it's complete, we show that Q-SAT polynomial reduces to it. Given an instance of Q-SAT, we construct an instance of Competitive facility location so that player 2 can force a win iff Q-SAT formula is true.

Competitive facility location

Construction. Given instance $\Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{C}_{1} \wedge \mathrm{C}_{1} \wedge \ldots \mathrm{C}_{\mathrm{k}}$ of Q-SAT.

- Include a node for each literal and its negation and connect them.
(at most one of x_{i} and its negation can be chosen)
- Choose $c \geq k+2$, and put weight c_{i} on literal x^{i} and its negation;
set $B=c^{n-1}+c^{n-3}+\ldots+c^{4}+c^{2}+1$.
(ensures variables are selected in order $x_{n}, x_{n-1}, \ldots, x_{1}$)
- As is, player 2 will lose by 1 unit: $c^{n-1}+c^{n-3}+\ldots+c^{4}+c^{2}$.

$100 \quad 100$

10
10

Competitive facility location

Construction. Given instance $\Phi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{C}_{1} \wedge \mathrm{C}_{1} \wedge \ldots \mathrm{C}_{\mathrm{k}}$ of Q-SAT.

- Given player 2 one last move on which she can try to win.
- For each clause C_{j}, add node with value 1 and an edge to each of its literals.
- Player 2 can make last move iff truth assignment defined alternately by the players failed to satisfy some clause.

