

Design and Analysis of Algorithms (XVI)

Beyond NP: PSPACE

Guoqiang Li School of Software

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?

Geography on graphs. Given a directed graph G=(V,E) and a start node s, two players alternate turns by following, if possible, an edge leaving the current node to an unvisited node.

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?

Geography on graphs. Given a directed graph G=(V,E) and a start node s, two players alternate turns by following, if possible, an edge leaving the current node to an unvisited node.

Can first player guarantee to make the last legal move?

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue.

Does Alice have a forced win?

Geography on graphs. Given a directed graph G = (V, E) and a start node s, two players alternate turns by following, if possible, an edge leaving the current node to an unvisited node.

Can first player guarantee to make the last legal move?

Remark. Some problems (especially involving 2-player games and AI) defy classification according to **P,EXPTIME**, **NP**, and **NP**-complete.

PSPACE Complexity Class

P. Decision problems solvable in polynomial time.

P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

Observation. $P \subseteq PSPACE$.

Binary counter. Count from 0 to $2^n - 1$ in binary.

Binary counter. Count from 0 to $2^n - 1$ in binary. Algorithm. Use n bit odometer.

Binary counter. Count from 0 to $2^n - 1$ in binary. Algorithm. Use n bit odometer.

Claim

3- $SAT \in PSPACE$.

Binary counter. Count from 0 to $2^n - 1$ in binary.

Algorithm. Use n bit odometer.

Claim

3- $SAT \in PSPACE$.

Proof.

Binary counter. Count from 0 to $2^n - 1$ in binary.

Algorithm. Use n bit odometer.

Claim

3- $SAT \in PSPACE$.

Proof.

- Enumerate all 2^n possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Binary counter. Count from 0 to $2^n - 1$ in binary.

Algorithm. Use n bit odometer.

Claim

3- $SAT \in PSPACE$.

Proof.

- Enumerate all 2^n possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Theorem

 $NP \subseteq PSPACE$

Binary counter. Count from 0 to $2^n - 1$ in binary.

Algorithm. Use n bit odometer.

Claim

3- $SAT \in PSPACE$.

Proof.

- Enumerate all 2^n possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Theorem

 $NP \subseteq PSPACE$

Proof.

Binary counter. Count from 0 to $2^n - 1$ in binary.

Algorithm. Use n bit odometer.

Claim

3- $SAT \in PSPACE$.

Proof.

- Enumerate all 2^n possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Theorem

NP ⊆ **PSPACE**

Proof. Consider arbitrary problem $Y \in \mathbb{NP}$.

- Since Y ≤_P 3-SAT, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3-SAT black box.
- Can implement black box in poly-space.

Quiz

Show that $Co-NP \subseteq PSPACE$

QSAT. Let $\Phi(x_1,\ldots,x_n)$ be a boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \dots \ \forall x_{n-1} \ \exists x_n \ \Phi(\mathbf{x}_1, \dots, \mathbf{x}_n)$$

Intuition. Amy picks truth value for x_1 , then Bob for x_2 , then Amy for x_3 , and so on. Can Amy satisfy Φ no matter what Bob does?

QSAT. Let $\Phi(x_1,\ldots,x_n)$ be a boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \dots \ \forall x_{n-1} \ \exists x_n \ \Phi(x_1, \dots, x_n)$$

Intuition. Amy picks truth value for x_1 , then Bob for x_2 , then Amy for x_3 , and so on. Can Amy satisfy Φ no matter what Bob does?

Example.

$$(x_1 \lor x_2) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

QSAT. Let $\Phi(x_1, \dots, x_n)$ be a boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \dots \ \forall x_{n-1} \ \exists x_n \ \Phi(x_1, \dots, x_n)$$

Intuition. Amy picks truth value for x_1 , then Bob for x_2 , then Amy for x_3 , and so on. Can Amy satisfy Φ no matter what Bob does?

Example.

$$(x_1 \lor x_2) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

Yes. Amy sets x_1 true; Bob sets x_2 ; Amy sets x_3 to be same as x_2 .

QSAT. Let $\Phi(x_1,\ldots,x_n)$ be a boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \dots \ \forall x_{n-1} \ \exists x_n \ \Phi(x_1, \dots, x_n)$$

Intuition. Amy picks truth value for x_1 , then Bob for x_2 , then Amy for x_3 , and so on. Can Amy satisfy Φ no matter what Bob does?

Example.

$$(x_1 \lor x_2) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

Yes. Amy sets x_1 true; Bob sets x_2 ; Amy sets x_3 to be same as x_2 .

Example.

$$(x_1 \lor x_2) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

QSAT. Let $\Phi(x_1, \dots, x_n)$ be a boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \ \forall x_2 \ \exists x_3 \ \forall x_4 \dots \ \forall x_{n-1} \ \exists x_n \ \Phi(x_1, \dots, x_n)$$

Intuition. Amy picks truth value for x_1 , then Bob for x_2 , then Amy for x_3 , and so on. Can Amy satisfy Φ no matter what Bob does?

Example.

$$(x_1 \lor x_2) \land (x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

Yes. Amy sets x_1 true; Bob sets x_2 ; Amy sets x_3 to be same as x_2 .

Example.

$$(x_1 \lor x_2) \land (\overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

No. If Amy sets x_1 false; Bob sets x_2 false; Amy loses; If Amy sets x_1 true; Bob sets x_2 true; Amy loses.

Theorem

Q- $SAT \in \mathbf{PSPACE}$.

Theorem

Q- $SAT \in \mathbf{PSPACE}$.

Proof.

Theorem

Q- $SAT \in \mathbf{PSPACE}$.

Proof. Recursively try all possibilities.

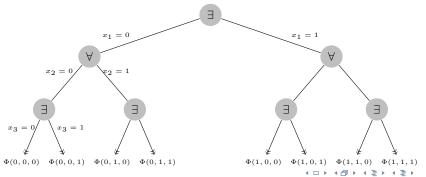
- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.

Theorem

Q- $SAT \in \mathbf{PSPACE}$.

Proof. Recursively try all possibilities.

- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.



Planning Problem

15-puzzle

8-puzzle, 15-puzzle. [Noyes Chapman 1874]

- Board: 3-by-3 grid of tiles labeled 1-8.
- Legal move: slide neighboring tile into blank (white) square.
- Find sequence of legal moves to transform initial configuration into goal configuration.

1	2	3
4	5	6
8	7	

initial configuration

 $move\ 6$

1	2	3
4	5	
8	7	6

$$\longrightarrow \cdots \longrightarrow$$

1	2	3
4	5	6
7	8	

goal configuration

Planning problem

Conditions. Set $C = \{C_1, \ldots, C_n\}$.

Initial configuration. Subset $c_0 \subseteq C$ of conditions initially satisfied.

Goal configuration. Subset $c^* \subseteq C$ of conditions we seek to satisfy.

Operators. Set $O = \{O_1, \ldots, O_k\}$.

- To invoke operator O_i , must satisfy certain prereq conditions.
- After invoking O_i certain conditions become true, and certain conditions become false.

Planning problem

Conditions. Set
$$C = \{C_1, \ldots, C_n\}$$
.

Initial configuration. Subset $c_0 \subseteq C$ of conditions initially satisfied.

Goal configuration. Subset $c^* \subseteq C$ of conditions we seek to satisfy.

Operators. Set
$$O = \{O_1, \ldots, O_k\}$$
.

- To invoke operator O_i , must satisfy certain prereq conditions.
- After invoking O_i certain conditions become true, and certain conditions become false.

Planning. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Planning problem

Conditions. Set
$$C = \{C_1, \ldots, C_n\}$$
.

Initial configuration. Subset $c_0 \subseteq C$ of conditions initially satisfied.

Goal configuration. Subset $c^* \subseteq C$ of conditions we seek to satisfy.

Operators. Set
$$O = \{O_1, \ldots, O_k\}$$
.

- To invoke operator O_i , must satisfy certain prereq conditions.
- After invoking O_i certain conditions become true, and certain conditions become false.

Planning. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.

- 15-puzzle.
- Rubik's cube.
- Logistical operations to move people, equipment, and materials.

Planning problem: 8-puzzle

Planning example. Can we solve the 8-puzzle?

Conditions. $C_{ij}, 1 \leq i, j \leq 9$.

Initial state.
$$c_0 = \{C_{11}, C_{22}, \dots, C_{66}, C_{78}, C_{87}, C_{99}\}.$$

Goal state.
$$c^* = \{C_{11}, C_{22}, \dots, C_{66}, C_{77}, C_{88}, C_{99}\}.$$

Operators.

- Precondition to apply $O_i = \{C_{11}, C_{22}, \dots, C_{66}, C_{78}, C_{87}, C_{99}\}.$
- After invoking O_i , conditions C_{89} and C_{97} become true.
- After invoking O_i , conditions C_{78} and C_{99} become false.

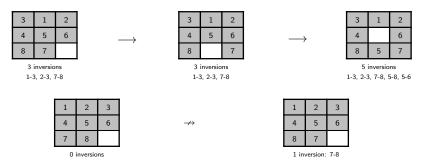
Solution. No solution to 8-puzzle or 15-puzzle!

1	2	3
4	5	6
8	7	9

1	2	3
4	5	6
8	9	7

Diversion: Why is 8-puzzle unsolvable?

8-puzzle invariant. Any legal move preserves the parity of the number of pairs of pieces in reverse order (inversions).



Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?

Conditions. C_1,\dots,C_n . Initial state. $c_0=\Phi$. Goal state. $c^*=\{C_1,\dots,C_n\}$. Operators. O_1,\dots,O_n .

- To invoke operator O_i , must satisfy C_1, \ldots, C_{i-1} .
- After invoking O_i , condition C_i becomes true.
- After invoking O_i , conditions C_1, \ldots, C_{i-1} become false.

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?

Conditions. C_1, \ldots, C_n .

Initial state. $c_0 = \Phi$.

Goal state. $c^* = \{C_1, ..., C_n\}.$

Operators. O_1, \ldots, O_n .

- To invoke operator O_i , must satisfy C_1, \ldots, C_{i-1} .
- After invoking O_i , condition C_i becomes true.
- After invoking O_i , conditions C_1, \ldots, C_{i-1} become false.

Solution. $\{\} \Rightarrow \{C_1\} \Rightarrow \{C_2\} \Rightarrow \{C_1, C_2\} \Rightarrow \{C_3\} \Rightarrow \{C_3, C_1\} \Rightarrow \dots$

Planning example. Can we increment an n-bit counter from the all-zeroes state to the all-ones state?

Conditions. C_1, \ldots, C_n .

Initial state. $c_0 = \Phi$.

Goal state. $c^* = \{C_1, ..., C_n\}.$

Operators. O_1, \ldots, O_n .

- To invoke operator O_i , must satisfy C_1, \ldots, C_{i-1} .
- After invoking O_i , condition C_i becomes true.
- After invoking O_i , conditions C_1, \ldots, C_{i-1} become false.

Solution. $\{\} \Rightarrow \{C_1\} \Rightarrow \{C_2\} \Rightarrow \{C_1, C_2\} \Rightarrow \{C_3\} \Rightarrow \{C_3, C_1\} \Rightarrow \dots$

Observation. Any solution requires at least $2^n - 1$ steps.

Configuration graph G.

- Include node for each of 2^n possible configurations.
- Include an edge from configuration c' to configuration c" if one of the operators can convert from c' to c".

Configuration graph G.

- Include node for each of 2^n possible configurations.
- Include an edge from configuration c' to configuration c" if one of the operators can convert from c' to c".

Planning. Is there a path from c_0 to c^* in configuration graph?

Configuration graph G.

- Include node for each of 2^n possible configurations.
- Include an edge from configuration c' to configuration c" if one of the operators can convert from c' to c".

Planning. Is there a path from c_0 to c^* in configuration graph?

Claim

 $Planning \in EXPTIME.$

Configuration graph G.

- Include node for each of 2^n possible configurations.
- Include an edge from configuration c' to configuration c" if one of the operators can convert from c' to c".

Planning. Is there a path from c_0 to c^* in configuration graph?

Claim

Planning ∈ **EXPTIME**.

Configuration graph G.

- Include node for each of 2^n possible configurations.
- Include an edge from configuration c' to configuration c" if one of the operators can convert from c' to c".

Planning. Is there a path from c_0 to c^* in configuration graph?

Claim

Planning ∈ **EXPTIME**.

Proof. Run BFS to find path from c_0 to c^* in configuration graph.

Configuration graph G.

- Include node for each of 2^n possible configurations.
- Include an edge from configuration c' to configuration c" if one of the operators can convert from c' to c".

Planning. Is there a path from c_0 to c^* in configuration graph?

Claim

Planning ∈ **EXPTIME**.

Proof. Run BFS to find path from c_0 to c^* in configuration graph.

Note. Configuration graph can have 2^n nodes, and shortest path can be of length $= 2^n - 1$.

Theorem

PLANNING \in **PSPACE**.

Theorem

Planning \in **PSPACE**.

Theorem

PLANNING \in **PSPACE**.

- Suppose there is a path from c_1 to c_2 of length L.
- Path from c_1 to midpoint and from c_2 to midpoint are each $\leq L/2$.
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion = $\log_2 L$.

Theorem

PLANNING \in **PSPACE**.

- Suppose there is a path from c_1 to c_2 of length L.
- Path from c_1 to midpoint and from c_2 to midpoint are each $\leq L/2$.
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion = $\log_2 L$.

```
boolean hasPath(c_1, c_2, L) if (L \le 1) return correct answer for each configuration c' boolean x = \text{hasPath}(c_1, c', L/2) boolean y = \text{hasPath}(c_2, c', L/2) if (x \text{ and } y) return true return false
```


PSPACE. Decision problems solvable in polynomial space.

PSPACE. Decision problems solvable in polynomial space.

PSPACE-complete. Problem $Y \in \textbf{PSPACE}$ -complete if (i) $Y \in \textbf{PSPACE}$ and (ii) for every problem $X \in \textbf{PSPACE}$, $X \leq_P Y$.

PSPACE. Decision problems solvable in polynomial space.

PSPACE-complete. Problem $Y \in \textbf{PSPACE}$ -complete if (i) $Y \in \textbf{PSPACE}$ and (ii) for every problem $X \in \textbf{PSPACE}$, $X \leq_P Y$.

Theorem (Stockmeyer–Meyer 1973)

 $QSAT \in PSPACE$ -complete.

PSPACE. Decision problems solvable in polynomial space.

PSPACE-complete. Problem $Y \in \textbf{PSPACE}$ -complete if (i) $Y \in \textbf{PSPACE}$ and (ii) for every problem $X \in \textbf{PSPACE}$, $X \leq_P Y$.

Theorem (Stockmeyer–Meyer 1973)

 $QSAT \in PSPACE$ -complete.

Theorem

 $PSPACE \subseteq EXPTIME.$

PSPACE. Decision problems solvable in polynomial space.

PSPACE-complete. Problem $Y \in \textbf{PSPACE}$ -complete if (i) $Y \in \textbf{PSPACE}$ and (ii) for every problem $X \in \textbf{PSPACE}$, $X \leq_P Y$.

Theorem (Stockmeyer–Meyer 1973)

 $QSAT \in \textbf{PSPACE}$ -complete.

Theorem

PSPACE \subseteq **EXPTIME**.

Proof. Previous algorithm solves QSAT in exponential time; and QSAT is **PSPACE**-complete.

 $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

PSPACE-complete problems

More PSPACE-complete problems.

- Competitive facility location.
- Natural generalizations of games.
 - Othello, Hex, Geography, Rush-Hour, Instant Insanity
 - Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

Input. Graph G = (V, E) with positive edge weights, and target B.

Input. Graph G = (V, E) with positive edge weights, and target B.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Input. Graph G = (V, E) with positive edge weights, and target B.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

COMPETITIVE FACILITY LOCATION. Can second player guarantee at least B units of profit?

Input. Graph G = (V, E) with positive edge weights, and target B.

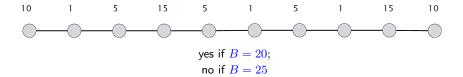
Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

COMPETITIVE FACILITY LOCATION. Can second player guarantee at least B units of profit?

Input. Graph G = (V, E) with positive edge weights, and target B.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

COMPETITIVE FACILITY LOCATION. Can second player guarantee at least B units of profit?



Claim

Competitive facility location \in **PSPACE**-complete.

Claim

COMPETITIVE FACILITY LOCATION ∈ PSPACE-complete.

Claim

COMPETITIVE FACILITY LOCATION ∈ **PSPACE**-complete.

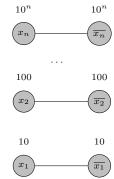
- To solve in poly-space, use recursion like Q-SAT, but at each step there are up to n choices instead of 2.
- To show that it's complete, we show that Q-SAT polynomial reduces to it. Given an instance of Q-SAT, we construct an instance of Competitive facility location so that player 2 can force a win iff Q-SAT formula is true.

Construction. Given instance $\Phi(x_1,\dots,x_n)=C_1\wedge C_1\wedge\dots C_k$ of Q-SAT.

- Include a node for each literal and its negation and connect them.
 - (at most one of x_i and its negation can be chosen)
- Choose $c \ge k+2$, and put weight c_i on literal x^i and its negation;

set
$$B = c^{n-1} + c^{n-3} + \ldots + c^4 + c^2 + 1$$
. (ensures variables are selected in order $x_n, x_{n-1}, \ldots, x_1$)

• As is, player 2 will lose by 1 unit: $c^{n-1} + c^{n-3} + \ldots + c^4 + c^2$.



Construction. Given instance $\Phi(x_1, \dots, x_n) = C_1 \wedge C_1 \wedge \dots C_k$ of Q-SAT.

- Given player 2 one last move on which she can try to win.
- For each clause C_j , add node with value 1 and an edge to each of its literals.
- Player 2 can make last move iff truth assignment defined alternately by the players failed to satisfy some clause.

