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Why SAT Solving
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The First Example

Let S = {s1, . . . , sn} be a set of radio stations, each of which has to be allocated one of k
transmission frequencies, for some k < n. Two stations that are too close to each other cannot have
the same frequency. The set of pairs having this constraint is denoted by E. Satisfying

• Every station is assigned at least one frequency.
• Every station is assigned not more than one frequency.
• Close stations are not assigned the same frequency.

Give solution to work out that whether k is enough for a given situation.
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The Solution

Define a set of propositional variables

{xij |i ∈ {1, . . . , n}, j ∈ {1, . . . , k}}

Intuitively, variable xij is set to true if and only if station i is assigned the frequency j.
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The Solution

Every station is assigned at least one frequency:

n∧
i=1

k∨
j=1

xij

Every station is assigned not more than one frequency:

n∧
i=1

k−1∧
j=1

(xij → ∧j<t≤k¬xit)

Close stations are not assigned the same frequency. For each (i, j) ∈ E,
k∧

t=1

xit → ¬xjt
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The Second Example

Consider the two code fragments. The fragment on the right-hand side might have been generated
from the fragment on the left-hand side by an optimizing compiler. We would like to check if the two
programs are equivalent.

26 2 Decision Procedures for Propositional Logic

• Every station is assigned not more than one frequency:

n∧

i=1

k−1∧

j=1

(xij =⇒
∧

j<t≤k

¬xit) . (2.2)

• Close stations are not assigned the same frequency. For each (i, j) ∈ E,

k∧

t=1

(xit =⇒ ¬xjt) . (2.3)

Note that the input of this problem can be represented by a graph, where
the stations are the graph’s nodes and E corresponds to the graph’s edges.
Checking whether the allocation problem is solvable corresponds to solving
what is known in graph theory as the k-colorability problem: can all nodes be
assigned one of k colors such that two adjacent nodes are assigned different
colors? Indeed, one way to solve k-colorability is by reducing it to propositional
logic.

Example 2.2. Consider the two code fragments in Fig. 2.1. The fragment
on the right-hand side might have been generated from the fragment on the
left-hand side by an optimizing compiler.

if(!a && !b) h();
else

if(!a) g();
else f();

if(a) f();
else

if(b) g();
else h();

Fig. 2.1. Two code fragments – are they equivalent?

We would like to check if the two programs are equivalent. The first step
in building the verification condition is to model the variables a and b and
the procedures that are called using the Boolean variables a, b, f , g, and h,
as can be seen in Fig. 2.2.

if ¬a ∧ ¬b then h
else

if ¬a then g
else f

if a then f
else

if b then g
else h

Fig. 2.2. In the process of building a formula – the verification condition – we
replace the program variables and the function symbols with new Boolean variables

The if-then-else construct can be replaced by an equivalent proposi-
tional logic expression as follows:
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The Solution

(if x then y else z) ≡ (x ∧ y) ∨ (¬x ∧ z)

(¬a ∧ ¬b) ∧ h ∨ ¬(¬a ∧ ¬b) ∧ (¬a ∧ g ∨ a ∧ f)
↔ a ∧ f ∨ ¬a ∧ (b ∧ g ∨ ¬b ∧ h)
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Before Beginning

Q: Can a proportional formula be transformed into an equivalent CNF formula effectively?

A: It can, however, while potentially increasing the size of the formula exponentially.

The propositional formula can be transformed into an equisatisfiable CNF formula with only a linear
increase in the size of the formula.

The price to be paid is n new Boolean variables, known as Tseitin’s encoding.
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Tseitin’s Encoding
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The Exponential Way

CNF (ϕ){

case

• ϕ is a literal: return ϕ
• ϕ is φ1 ∧ φ2: return CNF (φ1) ∧ CNF (φ2)

• ϕ is φ1 ∨ φ2: return Dist(CNF (φ1), CNF (φ2))

}

Dist(φ1, φ2){

case

• φ1 is ψ11 ∧ ψ12: return Dist(ψ11, φ2) ∧Dist(ψ12, φ2)

• φ2 is ψ21 ∧ ψ22: return Dist(φ1, ψ21) ∧Dist(φ1, ψ22)

}
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The Exponential Way

Consider the formula ϕ = (x1 ∧ y1) ∨ (x2 ∧ y2)

CNF (ϕ) = (x1 ∨ x2) ∧ (x1 ∨ y2) ∧ (y1 ∨ x2) ∧ (y1 ∨ y2)

Now consider: ϕn = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn)

Q: How many clauses CNF (ϕn) returns?

A: 2n
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Tseitin’s Encoding

Consider the formula (A→ (B ∧ C))

The parse tree:

Associate a new auxiliary variable with each gate.

Add constraints that define these new variables.

Finally, enforce the root node.
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Tseitin’s Encoding

(a1 ↔ (A→ a2)) ∧ (a2 ↔ (B ∧ C)) ∧ (a1)

Each such constraint has a CNF representation with 3 or 4 clauses.

First: (a1 ∨A) ∧ (a1 ∨ ¬a2) ∧ (¬a1 ∨A ∨ a2)

Second: (¬a2 ∨B) ∧ (¬a2 ∨ C) ∧ (a2 ∨ ¬B ∨ ¬C)
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Tseitin’s Encoding

ϕn = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ . . . ∨ (xn ∧ yn)

With Tseitin’s encoding we need:

• n auxiliary variables a1, . . . , an.
• Each adds 3 constraints.
• Top clause: (a1 ∨ . . . ∨ an)

Hence, we have

• 3n+ 1 clauses, instead of 2n.
• 3n variables rather than 2n.
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Methodologies
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Two Usual Ways to Implement

Exhaustive Search (DPLL Algorithm): traversing and backtracking on a binary tree.

Stochastic Search: guessing a full assignment, and flipping values of variables according to some
heuristic.
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A Brief History

Originally, DPLL was incomplete method for SAT in FO logic

First paper (Davis and Putnam) in 1960: memory problems

Second paper (Davis, Logemann and Loveland) in 1962: Depth-first-search with backtracking

Late 90’s and early 00’s improvements make DPLL efficient:

Break-through systems: GRASP, SATO, zChaff, MiniSAT, Z3

UPC

Departament de Llenguatges i Sistemes Informatics

UNIVERSITAT POLITECNICA DE CATALUNYA‘

‘
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Stalmarck:1k var
1996

SATO:1k var
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2001
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1986

DP:10 var
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2003

The DPLL algorithm – p. 5
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A Brief History

28 2 Decision Procedures for Propositional Logic
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Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cate-
gories. The first category is based on the Davis–Putnam–Loveland–Logemann
(DPLL) framework: in this framework the tool can be thought of as traversing
and backtracking on a binary tree, in which internal nodes represent partial
assignments, and the leaves represent full assignments, i.e., an assignment to
all the variables.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. DPLL solvers,
however, are considered better in most cases, at least at the time of writ-
ing this chapter (2007), according to annual competitions that measure their
performance with numerous CNF instances. DPLL solvers also have the ad-
vantage that, unlike most stochastic search methods, they are complete (see
Definition 1.6). Stochastic methods seem to have an average advantage in
solving randomly generated (satisfiable) CNF instances, which is not surpris-
ing: in these instances there is no structure to exploit and learn from, and no
obvious choices of variables and values, which makes the heuristics adopted
by DPLL solvers ineffective. We shall focus on DPLL solvers only.

2.2.2 The DPLL Framework

In its simplest form, a DPLL solver progresses by making a decision about a
variable and its value, propagates implications of this decision that are easy
to detect, and backtracks in the case of a conflict. Viewing the process as a
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Backtracking
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Backtracking

It is often possible to reject a solution by looking at just a small portion of it.
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An Solution of SAT

For example, if an instance of SAT contains the clause (x1 ∨ x2), then all assignments with
x1 = x2 = false can be instantly eliminated.

To put it differently, by quickly checking and discrediting this partial assignment, we are able to prune
a quarter of the entire search space.

A promising direction, but can it be systematically exploited?

21/79



An Solution of SAT

For example, if an instance of SAT contains the clause (x1 ∨ x2), then all assignments with
x1 = x2 = false can be instantly eliminated.

To put it differently, by quickly checking and discrediting this partial assignment, we are able to prune
a quarter of the entire search space.

A promising direction, but can it be systematically exploited?

21/79



An Solution of SAT

For example, if an instance of SAT contains the clause (x1 ∨ x2), then all assignments with
x1 = x2 = false can be instantly eliminated.

To put it differently, by quickly checking and discrediting this partial assignment, we are able to prune
a quarter of the entire search space.

A promising direction, but can it be systematically exploited?

21/79



An Example

(w ∨ x ∨ y ∨ z)(w ∨ x)(x ∨ y)(y ∨ z)(z ∨ w)(w ∨ z)

Initial formula φ

w = 1w = 0

Plugging w = 0 and w = 1 into Φ, we find that no clause is immediately violated and thus neither of
these two partial assignments can be eliminated outright.

22/79



An Example

(w ∨ x ∨ y ∨ z)(w ∨ x)(x ∨ y)(y ∨ z)(z ∨ w)(w ∨ z)

Initial formula φ

w = 1w = 0

Plugging w = 0 and w = 1 into Φ, we find that no clause is immediately violated and thus neither of
these two partial assignments can be eliminated outright.

22/79



An Example

Φ = (w ∨ x ∨ y ∨ z)(w ∨ x)(x ∨ y)(y ∨ z)(z ∨ w)(w ∨ z)

Initial formula φ

w = 1w = 0

x = 0 x = 1

The partial assignment w = 0, x = 1 violates the clause (w ∨ x) and can be terminated, thereby
pruning a good chunk of the search space.
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An Example

Φ = (w ∨ x ∨ y ∨ z)(w ∨ x)(x ∨ y)(y ∨ z)(z ∨ w)(w ∨ z)

Backtracking explores the space of assignments, only growing the tree only at nodes where there is
uncertainty.

Each node of the search tree can be described either by a partial assignment or by the clauses that
remain.

If w = 0 and x = 0 then any clause with w or x is instantly satisfied and any literal w or x is not
satisfied and can be removed.

What’s left is
(y ∨ z)(y)(y ∨ z)

Thus the nodes of the search tree, representing partial assignments, are themselves SAT
subproblems.
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What’s left is
(y ∨ z)(y)(y ∨ z)

Thus the nodes of the search tree, representing partial assignments, are themselves SAT
subproblems.
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An Example

(), (y ∨ z)(y ∨ z), (y), (y ∨ z)

(z), (z)

(x ∨ y), (y ∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z)

(x ∨ y ∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0
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Basic Functions

Decide(): Choose the next variable and value. Return False if all variables are assigned.

BCP(): Apply repeatedly the unit clause rule. Return False if reached a conflict.

Resolve-conflict(): Backtrack until no conflict. Return False if impossible.
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Algorithm

SAT()

while true do
if ¬ Decide () then

return true ;
end
else

while ¬ BCP () do
if ¬ Resolve-conflict () then return false;

end
end

end
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Basic Backtracking Search

Organize the search in the form of a decision tree

• Each node corresponds to a decision.
• Definition: Decision Level (DL) is the depth of the node in the decision tree.
• Notation: x = v@d, where x ∈ {0, 1} is assigned to v at decision level d.
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Backtracking Search in Action

(x2 ∨ x3), (¬x1∨,¬x4), (¬x2 ∨ x4)

x1

x2

x1 = 0@1

{(x1, 0), (x2, 0), (x3, 1)}

x2 = 0@2 ⇒
x3 = 1@2 {(x1, 1), (x2, 0), (x3, 1), (x4, 0)}

x1 = 1@1 ⇒ x4 = 0@1 ⇒
x2 = 0@1 ⇒ x3 = 1@1

1

No backtrack in this example, regardless of the decision!
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Backtracking Search in Action

(x2 ∨ x3), (¬x1∨,¬x4), (¬x2 ∨ x4), (¬x1 ∨ x2 ∨ ¬x3)

x1

x2

x1 = 0@1

{(x1, 0), (x2, 0), (x3, 1)}

x2 = 0@2 ⇒
x3 = 1@2CONFLICT

x1 = 1@1 ⇒ x4 = 0@1 ⇒
x2 = 0@1 ⇒ x3 = 1@1

1
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Status of a Clause

A clause can be

• Satisfied: at least one literal is satisfied
• Unsatisfied: all literals are assigned but non are satisfied
• Unit: all but one literals are assigned but none are satisfied
• Unresolved: all other cases

Example: C = (x1 ∨ x2 ∨ x3)

x1 x2 x3 C

1 0 Satisfied
0 0 0 Unsatisfied
0 0 Unit

0 Unresolved
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Decision Heuristics - DLIS

DLIS (Dynamic Largest Individual Sum)

Choose the assignment that increases the most the number of satisfied clauses.

For a given variable x:

• Cxp: ♯ unresolved clauses in which x appears positively
• Cxn: ♯ unresolved clauses in which x appears negatively
• Let x be the literal for which Cxp is maximal
• Let y be the literal for which Cyn is maximal
• If Cxp > Cyn choose x and assign it TRUE
• Otherwise choose y and assign it FALSE

Requires l (♯ literals) queries for each decision.
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Decision Heuristics - JW

Jeroslow-Wang

Compute for every clause w and every literal l in each phase

J(l) =
∑

l∈w,w∈φ

2−|w|

where |w| the length.

Choose the literal l that maximizes J(l).

This gives an exponentially higher weight to literals in shorter clauses.
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Next

We will see other (more advanced) decision Heuristics soon.

These heuristics are integrated with a mechanism called Learning with Conflict-Clauses, which we
will learn next.
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Learning New Clause
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Implication Graphs and Learning

Current truth assignment {x9 = 0@1, x10 = 0@3, x11 = 0@3, x12 = 1@2, x13 = 1@2}

Current decision assignment {x1 = 1@6}

w1 = ¬x1 ∨ x2
w2 = ¬x1 ∨ x3 ∨ x9
w3 = ¬x2 ∨ ¬x3 ∨ x4
w4 = ¬x4 ∨ x5 ∨ x10
w5 = ¬x4 ∨ x6 ∨ x11
w6 = ¬x5 ∨ ¬x6
w7 = x1 ∨ x7 ∨ ¬x12
w8 = x1 ∨ x8
w9 = ¬x7 ∨ ¬x8 ∨ ¬x13

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

w1

w2

w3

w3

w4

w5

w6

w6

w4

w2 w5

1
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Implication Graphs and Learning

Current truth assignment {x9 = 0@1, x10 = 0@3, x11 = 0@3, x12 = 1@2, x13 = 1@2}

Current decision assignment {x1 = 1@6}

w1 = ¬x1 ∨ x2
w2 = ¬x1 ∨ x3 ∨ x9
w3 = ¬x2 ∨ ¬x3 ∨ x4
w4 = ¬x4 ∨ x5 ∨ x10
w5 = ¬x4 ∨ x6 ∨ x11
w6 = ¬x5 ∨ ¬x6
w7 = x1 ∨ x7 ∨ ¬x12
w8 = x1 ∨ x8
w9 = ¬x7 ∨ ¬x8 ∨ ¬x13

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

w1

w2

w3

w3

w4

w5

w6

w6

w4

w2 w5

1

We learn the conflict clause w10 : (¬x1 ∨ x9 ∨ x11 ∨ x10)
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Flipped Assignment

Current truth assignment {x9 = 0@1, x10 = 0@3, x11 = 0@3, x12 = 1@2, x13 = 1@2}

Current flipped assignment {x1 = 0@6}
w1 = ¬x1 ∨ x2
w2 = ¬x1 ∨ x3 ∨ x9
w3 = ¬x2 ∨ ¬x3 ∨ x4
w4 = ¬x4 ∨ x5 ∨ x10
w5 = ¬x4 ∨ x6 ∨ x11
w6 = ¬x5 ∨ ¬x6
w7 = x1 ∨ x7 ∨ ¬x12
w8 = x1 ∨ x8
w9 = ¬x7 ∨ ¬x8 ∨ ¬x13
w10 = ¬x1 ∨ x9 ∨ x11 ∨ x10

x9 = 0@1 x8 = 1@6

x10 = 0@3 x1 = 0@6 κ

x11 = 0@3 x7 = 1@6

x12 = 1@2

x13 = 1@2

w10

w10

w10

w8

w7

w7

w9

w9

w9

1

Another conflict clause: w11 : (¬x13 ∨ ¬x12 ∨ x11 ∨ x10 ∨ x9)

Where should we backtrack to now?
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w9

w9

1
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Non-Chronological Backtracking

Which assignments caused the conflicts?

• x9 = 0@1

• x10 = 0@3

• x11 = 0@3

• x12 = 1@2

• x13 = 1@2

These assignments are sufficient for causing a conflict.

Backtrack to DL = 3
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Non-Chronological Backtracking

So the rule is: backtrack to the largest decision level in the conflict clause.

This works for both the initial conflict and the conflict after the flip.

Q: What if the flipped assignment works?

A: Change the decision retroactively.
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A: Change the decision retroactively.
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Non-Chronological Backtracking

x1 = 0

x2 = 0

x3 = 1

x4 = 0

x5 = 0
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Non-Chronological Backtracking

x1 = 0

x2 = 0

x3 = 1

x4 = 0

x5 = 0
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Non-Chronological Backtracking

x1 = 0

x2 = 0

x3 = 1

x4 = 0

x5 = 0 x5 = 1

x7 = 0

x9 = 1
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Non-Chronological Backtracking

x1 = 0

x2 = 0

x3 = 1

x4 = 0

x5 = 0 x5 = 1

x7 = 0

x9 = 1 x9 = 0
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Non-Chronological Backtracking

x1 = 0

x2 = 0

x3 = 1 x3 = 0

x4 = 0

x5 = 0 x5 = 1

x7 = 0

x9 = 1 x9 = 0
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Non-Chronological Backtracking

x1 = 0

x2 = 0

x3 = 0

x6 = 0

. . .

. . .
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More Conflict Clauses

Definition

A Conflict Clause is any clause implied by the formula.

Let L be a set of literals labeling nodes that form a cut in the implication graph, separating the
conflict node from the roots.

Claim:
∨

l∈L ¬l is a Conflict Clause.

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

w1

w2

w3

w3

w4

w5

w6

w6

w4

w2 w5

1

x10 ∨ ¬x1 ∨ x9 ∨ x11
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More Conflict Clauses

Definition

A Conflict Clause is any clause implied by the formula.

Let L be a set of literals labeling nodes that form a cut in the implication graph, separating the
conflict node from the roots.

Claim:
∨

l∈L ¬l is a Conflict Clause.

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

w1

w2

w3

w3

w4

w5

w6

w6

w4

w2 w5

1

x10 ∨ ¬x1 ∨ x9 ∨ x11
x10 ∨ ¬x4 ∨ x11
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More Conflict Clauses

Definition

A Conflict Clause is any clause implied by the formula.

Let L be a set of literals labeling nodes that form a cut in the implication graph, separating the
conflict node from the roots.

Claim:
∨

l∈L ¬l is a Conflict Clause.

x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

x3 = 1@6 x6 = 1@6

x9 = 0@1 x11 = 0@3

w1

w2

w3

w3

w4

w5

w6

w6

w4

w2 w5

1

x10 ∨ ¬x1 ∨ x9 ∨ x11
x10 ∨ ¬x4 ∨ x11
x10 ∨ ¬x2 ∨ ¬x3 ∨ x11
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Conflict Clause

How many clauses should we add?

If not all, then which ones?

• Shorter ones?
• Check their influence on the backtracking level?
• The most “influential”?
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Conflict Clause

Definition

An Asserting Clause is a Conflict Clause with a single literal from the current decision level.
Backtracking (to the right level) makes it a Unit clause.

Asserting clauses are those that force an immediate change in the search path.

Modern solvers only consider Asserting Clauses.
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Unique Implication Points (UIPs)

Definition (Unique Implication Point (UIP))

A Unique Implication Point (UIP) is an internal node in the Implication Graph that all paths from the
decision to the conflict node go through it.

The First-UIP is the closest UIP to the conflict.

x2@2

x4@7

UIPUIP

κ

x1@4
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κ
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Alternative Backtracking
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Conflict-Driven Backtracking

Conflict clause: (x10 ∨ ¬x4 ∨ ¬x11)

With standard Non-Chronological Backtracking we
backtracked to DL = 6.

Conflict-driven Backtrack: backtrack to the second
highest decision level in the clause (without erasing it).

In this case, to DL = 3.

Q: why?
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Conflict-Driven Backtracking

x1 = 0

x2 = 0

x3 = 1

x4 = 0

x5 = 0
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x1 = 0

x2 = 0

x3 = 1

x4 = 0

x5 = 0
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Conflict-Driven Backtracking

x1 = 0

x2 = 0

x3 = 1

x4 = 0

x5 = 0
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Conflict-Driven Backtracking

x1 = 0

x2 = 0

x5 = 1

x7 = 0

x9 = 1
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Conflict-Driven Backtracking

x1 = 0

x2 = 0

x5 = 1

x7 = 0

x9 = 1
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Conflict-Driven Backtracking

x1 = 0

x2 = 0

x5 = 1

x7 = 0

x9 = 1
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Conflict-Driven Backtracking

x1 = 0

x2 = 0

x5 = 1

x9 = 0

x6 = 0
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Conflict-Driven Backtracking

2.2 SAT Solvers 35

of them after a while to prevent the formula from growing too much. The
reason is the following.

Theorem 2.8. It is never the case that the solver enters decision level dl
again with the same partial assignment.

Proof. Consider a partial assignment up to decision level dl− 1 that does
not end with a conflict, and assume falsely that this state is repeated later,
after the solver backtracks to some lower decision level dl− (0 ≤ dl− < dl).
Any backtracking from a decision level dl+ (dl+ ≥ dl) to decision level
dl− adds an implication at level dl− of a variable that was assigned at
decision level dl+. Since this variable has not so far been part of the partial
assignment up to decision level dl, once the solver reaches dl again, it is
with a different partial assignment, which contradicts our assumption.

The (hypothetical) progress of a SAT solver based on this strategy is illus-
trated in Fig. 2.7. More details of this graph are explained in the caption.

Conflict

D
ec

is
io

n
L
ev

el

x = 1

Refutation of x = 1

c1

c3
BCP

c5

c4

c2

Time Decision

Fig. 2.7. Illustration of the progress of a SAT solver based on conflict-driven back-
tracking. Every conflict results in a conflict clause (denoted by c1, . . . , c5 in the
drawing). If the top left decision is x = 1, then this drawing illustrates the work
done by the SAT solver to refute this wrong decision. Only some of the work during
this time was necessary for creating c5, refuting this decision, and computing the
backtracking level. The “wasted work” (which might, after all, become useful later
on) is due to the imperfection of the decision heuristic

2.2.4 Conflict Clauses and Resolution

Now consider Analyze-Conflict (Algorithm 2.2.2). The description of the
algorithm so far has relied on the fact that the conflict clause generated is
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Conflict-Driven Backtracking

So the rule is: backtrack to the second highest decision level dl, but do not erase it.

This way the literal with the currently highest decision level will be implied in DL = dl.

Q: what if the conflict clause has a single literal?

For example, from (x ∨ ¬y) ∧ (x ∨ y) and decision x = 0, we learn the conflict clause (x).
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Resolution
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Resolution

The binary resolution is a sound inference rule:

(a1 ∨ . . . ∨ an ∨ β) (b1 ∨ . . . ∨ bm ∨ ¬β)
(a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm)

Binary Resolution

Example
x1 ∨ x2 ¬x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4
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Example

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Conflict Clause : c5 = (¬x4 ∨ x2 ∨ x10)

66/79



Example

c1 = (¬x4 ∨ x2 ∨ x5)
c2 = (¬x4 ∨ x10 ∨ x6)
c3 = (¬x5 ∨ ¬x6 ∨ ¬x7)
c4 = (¬x6 ∨ x7)

c2

x4@5

¬x10@3

¬x2@3

c1

c2 c4

c4

c3

c3

¬x7@5

x6@5

c1

x5@5

κ

Assume that the implication order in the BCP was x4, x5, x6, x7.

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3
(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1
c5 (¬x4 ∨ x2 ∨ x10)
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The Algorithm

ANALYZE-CONFLICT()

if current desicion level = 0 then return False;
;
while ¬ STOP-CRITERION-MET (cl) do

lit := LAST-ASSIGNED-LITERAL (cl);
var := VARIABLE-OF-LITERAL (lit);
ante := Antecedent(lit);
cl := RESOLVE (cl, ante, var);

end
ADD-CLAUSE-TO-DATABASE (cl);

name cl lit var ante

c4 (¬x6 ∨ x7) x7 x7 c3
(¬x5 ∨ ¬x6) ¬x6 x6 c2

(¬x4 ∨ x10 ∨ ¬x5) ¬x5 x5 c1
c5 (¬x4 ∨ x2 ∨ x10)
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Resolution Graph

The resolution graph keeps track of the inference relation.
x10 = 0@3

x2 = 1@6 x5 = 1@6

x1 = 1@6 x4 = 1@6 κ

x3 = 1@6 x6 = 1@6
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Resolution Graph

What is it good for?

Example: for computing an unsatisfiable core

from SAT’03
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Decision Heuristics - VSIDS

VSIDS (Variable State Independent Decaying Sum)

Each literal has a counter initialized to 0.

When a clause is added, the counters are updated.

The unassigned variable with the highest counter is chosen.

Periodically, all the counters are divided by a constant.

firstly implemented in Chaff
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Decision Heuristics - VSIDS

Chaff holds a list of unassigned variables sorted by the counter value.

Updates are needed only when adding conflict clauses.

Thus, decision is made in constant time.
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Decision Heuristics - VSIDS

VSIDS is a quasi-static strategy:

• static because it does not depend on current assignment
• dynamic because it gradually changes. Variables that appear in recent conflicts have higher

priority.

This strategy is a conflict-driven decision strategy, which dramatically improves performance.
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Decision Heuristics - Berkmin

Keep conflict clauses in a stack

Choose the first unresolved clause in the stack (If there is no such clause, use VSIDS)

Choose from this clause a variable + value accvrding to some scoring (e.g. VSIDS)

This gives absolute priority to conflicts.

74/79



Decision Heuristics - Berkmin

Keep conflict clauses in a stack

Choose the first unresolved clause in the stack (If there is no such clause, use VSIDS)

Choose from this clause a variable + value accvrding to some scoring (e.g. VSIDS)

This gives absolute priority to conflicts.

74/79



SAT Solver

SAT solver is to be said as the ”most successful formal tools”.

There are a SAT Competitions every one or two years.

• http://www.satcompetition.org/

Zchaff(The champion of 2004) can handle 100,000 variables with millions of clauses (Experiments:
800 variables with 9,000 clauses in 0.0sec).
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Zchaff
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More on SAT Society

SMT solver, string solver.
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Referred Materials

Daniel Kroening, Ofer Strichman. Decision Procedures: An Algorithmic Point of View, Springer, 2008

Suggest to read:

Marijn J. H. Heule, Oliver Kullmann. The Science of Brute Force. Communications of the ACM, Vol.
60(8), 70-79, 2017
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