
Design and Analysis of Algorithms (XX)
Polynomial Time Approximation Scheme

Guoqiang Li
School of Software

1/40

Polynomial Time Approximation Scheme

2/40

Approximation Scheme

Let Π be an NP-hard optimization problem with objective function fΠ. We will say that algorithm A
is an approximation scheme for Π if on input (I, ϵ), where I is an instance of Π and ϵ > 0 is an error
parameter, it outputs a solution s such that:

• fΠ(I, s) ≤ (1 + ϵ) ·OPT if Π is a minimization problem.
• fΠ(I, s) ≥ (1− ϵ) ·OPT if Π is a maximization problem.

3/40

Approximation Scheme

Let Π be an NP-hard optimization problem with objective function fΠ. We will say that algorithm A
is an approximation scheme for Π if on input (I, ϵ), where I is an instance of Π and ϵ > 0 is an error
parameter, it outputs a solution s such that:

• fΠ(I, s) ≤ (1 + ϵ) ·OPT if Π is a minimization problem.
• fΠ(I, s) ≥ (1− ϵ) ·OPT if Π is a maximization problem.

3/40

PTAS and FPTAS

A will be said to be a polynomial-time approximation scheme, abbreviated PTAS, if for each fixed
ϵ > 0, its running time is bounded by a polynomial in the size of instance I.

If we require that the running time of A be bounded by a polynomial in the size of instance I and
1/ϵ, then A will be said to be a fully polynomial-time approximation scheme, abbreviated FPTAS.

4/40

PTAS and FPTAS

A will be said to be a polynomial-time approximation scheme, abbreviated PTAS, if for each fixed
ϵ > 0, its running time is bounded by a polynomial in the size of instance I.

If we require that the running time of A be bounded by a polynomial in the size of instance I and
1/ϵ, then A will be said to be a fully polynomial-time approximation scheme, abbreviated FPTAS.

4/40

Knapsack

5/40

Knapsack: Problem Statement

KNAPSACK

Given a set S = {a1, . . . , an} of objects, with specified sizes and profits, size(ai) ∈ Z+ and
profit(ai) ∈ Z+, and a “knapsack capacity” B ∈ Z+, find a subset of objects whose total size is
bounded by B and total profit is maximized.

6/40

An Example

Objects A B C D E
Sizes 7 2 9 3 1
Profits 3 2 3 1 2

Knapsack size: B

7/40

Greedy is Bad

An obvious algorithm for this problem is to sort the objects by decreasing ratio of profit to size, and
then greedily pick objects in this order.

It is easy to see that as such this algorithm can be made to perform arbitrarily badly.

100/1, (100 ∗B − 1)/B

8/40

Greedy is Bad

An obvious algorithm for this problem is to sort the objects by decreasing ratio of profit to size, and
then greedily pick objects in this order.

It is easy to see that as such this algorithm can be made to perform arbitrarily badly.

100/1, (100 ∗B − 1)/B

8/40

Greedy is Bad

An obvious algorithm for this problem is to sort the objects by decreasing ratio of profit to size, and
then greedily pick objects in this order.

It is easy to see that as such this algorithm can be made to perform arbitrarily badly.

100/1, (100 ∗B − 1)/B

8/40

Greedy is Bad

An obvious algorithm for this problem is to sort the objects by decreasing ratio of profit to size, and
then greedily pick objects in this order.

It is easy to see that as such this algorithm can be made to perform arbitrarily badly.

100/1, (100 ∗B − 1)/B

8/40

Some Concepts and Notations

For any optimization problem Π, an instance consists of objects, such as sets or graphs, and
numbers, such as cost, profit, size, etc.

We assume that all numbers occurring in a problem instance I are written in binary.

The size of the instance, denoted |I|, was defined as the number of bits needed to write I under this
assumption.

Let us say that Iu will denote instance I with all numbers occurring in it written in unary.

The unary size of instance I, denoted |Iu|, is defined as the number of bits needed to write Iu.

9/40

Some Concepts and Notations

For any optimization problem Π, an instance consists of objects, such as sets or graphs, and
numbers, such as cost, profit, size, etc.

We assume that all numbers occurring in a problem instance I are written in binary.

The size of the instance, denoted |I|, was defined as the number of bits needed to write I under this
assumption.

Let us say that Iu will denote instance I with all numbers occurring in it written in unary.

The unary size of instance I, denoted |Iu|, is defined as the number of bits needed to write Iu.

9/40

Some Concepts and Notations

For any optimization problem Π, an instance consists of objects, such as sets or graphs, and
numbers, such as cost, profit, size, etc.

We assume that all numbers occurring in a problem instance I are written in binary.

The size of the instance, denoted |I|, was defined as the number of bits needed to write I under this
assumption.

Let us say that Iu will denote instance I with all numbers occurring in it written in unary.

The unary size of instance I, denoted |Iu|, is defined as the number of bits needed to write Iu.

9/40

Some Concepts and Notations

For any optimization problem Π, an instance consists of objects, such as sets or graphs, and
numbers, such as cost, profit, size, etc.

We assume that all numbers occurring in a problem instance I are written in binary.

The size of the instance, denoted |I|, was defined as the number of bits needed to write I under this
assumption.

Let us say that Iu will denote instance I with all numbers occurring in it written in unary.

The unary size of instance I, denoted |Iu|, is defined as the number of bits needed to write Iu.

9/40

Some Concepts and Notations

For any optimization problem Π, an instance consists of objects, such as sets or graphs, and
numbers, such as cost, profit, size, etc.

We assume that all numbers occurring in a problem instance I are written in binary.

The size of the instance, denoted |I|, was defined as the number of bits needed to write I under this
assumption.

Let us say that Iu will denote instance I with all numbers occurring in it written in unary.

The unary size of instance I, denoted |Iu|, is defined as the number of bits needed to write Iu.

9/40

Some Concepts and Notations

For any optimization problem Π, an instance consists of objects, such as sets or graphs, and
numbers, such as cost, profit, size, etc.

We assume that all numbers occurring in a problem instance I are written in binary.

The size of the instance, denoted |I|, was defined as the number of bits needed to write I under this
assumption.

Let us say that Iu will denote instance I with all numbers occurring in it written in unary.

The unary size of instance I, denoted |Iu|, is defined as the number of bits needed to write Iu.

9/40

Pseudo-Polynomial Time Algorithm

An algorithm for problem Π is said to be efficient if its running time on instance I is bounded by a
polynomial in |I|.

An algorithm for problem Π whose running time on instance I is bounded by a polynomial in |Iu| will
be called a pseudo-polynomial time algorithm.

10/40

Pseudo-Polynomial Time Algorithm

An algorithm for problem Π is said to be efficient if its running time on instance I is bounded by a
polynomial in |I|.

An algorithm for problem Π whose running time on instance I is bounded by a polynomial in |Iu| will
be called a pseudo-polynomial time algorithm.

10/40

Pseudo-Polynomial Time Algorithm

An algorithm for problem Π is said to be efficient if its running time on instance I is bounded by a
polynomial in |I|.

An algorithm for problem Π whose running time on instance I is bounded by a polynomial in |Iu| will
be called a pseudo-polynomial time algorithm.

10/40

Dynamic Programming

Knapsack with Repetition

K(w) = max
ai:size(ai)≤w

{K(w − size(ai)) + profit(ai)}

The running time is O(n ·B).

Knapsack without Repetition

K(w, j) = max{K(w − size(aj), j − 1) + profit(aj),K(w, j − 1)}

The running time is O(n ·B).

11/40

Dynamic Programming

Knapsack with Repetition

K(w) = max
ai:size(ai)≤w

{K(w − size(ai)) + profit(ai)}

The running time is O(n ·B).

Knapsack without Repetition

K(w, j) = max{K(w − size(aj), j − 1) + profit(aj),K(w, j − 1)}

The running time is O(n ·B).

11/40

Dynamic Programming

Knapsack with Repetition

K(w) = max
ai:size(ai)≤w

{K(w − size(ai)) + profit(ai)}

The running time is O(n ·B).

Knapsack without Repetition

K(w, j) = max{K(w − size(aj), j − 1) + profit(aj),K(w, j − 1)}

The running time is O(n ·B).

11/40

Dynamic Programming

Let P be the profit of the most profitable object, i.e.,

P = max
a∈S

profit(a)

Then nP is a trivial upper bound on the profit that can be achieved by any solution.

For each i ∈ {1, . . . , n} and p ∈ {1, . . . , nP}, let Si,p denote a subset of {a1, . . . , ai} whose total
profit is exactly p and whose total size is minimized.

12/40

Dynamic Programming

Let P be the profit of the most profitable object, i.e.,

P = max
a∈S

profit(a)

Then nP is a trivial upper bound on the profit that can be achieved by any solution.

For each i ∈ {1, . . . , n} and p ∈ {1, . . . , nP}, let Si,p denote a subset of {a1, . . . , ai} whose total
profit is exactly p and whose total size is minimized.

12/40

Dynamic Programming

Let P be the profit of the most profitable object, i.e.,

P = max
a∈S

profit(a)

Then nP is a trivial upper bound on the profit that can be achieved by any solution.

For each i ∈ {1, . . . , n} and p ∈ {1, . . . , nP}, let Si,p denote a subset of {a1, . . . , ai} whose total
profit is exactly p and whose total size is minimized.

12/40

Dynamic Programming

Let P be the profit of the most profitable object, i.e.,

P = max
a∈S

profit(a)

Then nP is a trivial upper bound on the profit that can be achieved by any solution.

For each i ∈ {1, . . . , n} and p ∈ {1, . . . , nP}, let Si,p denote a subset of {a1, . . . , ai} whose total
profit is exactly p and whose total size is minimized.

12/40

Dynamic Programming

A(i, p) denote the size of the set Si,p (A(i, p) = ∞ if no such set exists).

A(1, p) is known for every p ∈ {1, . . . , nP}.

The following recurrence helps compute all values A(i, p) in O(n2P) time:

A(i+ 1, p) ={
min{A(i, p), size(ai+1) +A(i, p− profit(ai+1))} if profit(ai+1) ≤ p

A(i, p) otherwise

The maximum profit achievable by objects of total size bounded by B is max{p | A(n, p) ≤ B}.

13/40

Dynamic Programming

A(i, p) denote the size of the set Si,p (A(i, p) = ∞ if no such set exists).

A(1, p) is known for every p ∈ {1, . . . , nP}.

The following recurrence helps compute all values A(i, p) in O(n2P) time:

A(i+ 1, p) ={
min{A(i, p), size(ai+1) +A(i, p− profit(ai+1))} if profit(ai+1) ≤ p

A(i, p) otherwise

The maximum profit achievable by objects of total size bounded by B is max{p | A(n, p) ≤ B}.

13/40

Dynamic Programming

A(i, p) denote the size of the set Si,p (A(i, p) = ∞ if no such set exists).

A(1, p) is known for every p ∈ {1, . . . , nP}.

The following recurrence helps compute all values A(i, p) in O(n2P) time:

A(i+ 1, p) ={
min{A(i, p), size(ai+1) +A(i, p− profit(ai+1))} if profit(ai+1) ≤ p

A(i, p) otherwise

The maximum profit achievable by objects of total size bounded by B is max{p | A(n, p) ≤ B}.

13/40

Dynamic Programming

A(i, p) denote the size of the set Si,p (A(i, p) = ∞ if no such set exists).

A(1, p) is known for every p ∈ {1, . . . , nP}.

The following recurrence helps compute all values A(i, p) in O(n2P) time:

A(i+ 1, p) ={
min{A(i, p), size(ai+1) +A(i, p− profit(ai+1))} if profit(ai+1) ≤ p

A(i, p) otherwise

The maximum profit achievable by objects of total size bounded by B is max{p | A(n, p) ≤ B}.

13/40

Dynamic Programming

A(i, p) denote the size of the set Si,p (A(i, p) = ∞ if no such set exists).

A(1, p) is known for every p ∈ {1, . . . , nP}.

The following recurrence helps compute all values A(i, p) in O(n2P) time:

A(i+ 1, p) ={
min{A(i, p), size(ai+1) +A(i, p− profit(ai+1))} if profit(ai+1) ≤ p

A(i, p) otherwise

The maximum profit achievable by objects of total size bounded by B is max{p | A(n, p) ≤ B}.

13/40

An Example

Objects A B C D E
Sizes 7 2 9 3 1
Profits 3 2 3 1 2

Knapsack size: B

14/40

An Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 ∞ ∞ 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 ∞ 2 7 ∞ 9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
3 ∞ 2 7 ∞ 9 16 ∞ 18 ∞ ∞ ∞ ∞ ∞ ∞ ∞
4 3 2 5 10 9 14 19 18 21 ∞ ∞ ∞ ∞ ∞ ∞
5 3 1 4 3 8 11 10 13 20 19 22 ∞ ∞ ∞ ∞

15/40

An FPTAS for Knapsack

If the profits of objects were small numbers, say, bounded by a polynomial in n, then the algorithm
would be a regular polynomial time algorithm, since its running time would be bounded by a
polynomial in |I|.

In FPTAS we will ignore a certain number of least significant bits of profits of objects (depending on
ϵ), so that the modified profits can be viewed as numbers bounded by a polynomial in n and 1/ϵ.

16/40

An FPTAS for Knapsack

If the profits of objects were small numbers, say, bounded by a polynomial in n, then the algorithm
would be a regular polynomial time algorithm, since its running time would be bounded by a
polynomial in |I|.

In FPTAS we will ignore a certain number of least significant bits of profits of objects (depending on
ϵ), so that the modified profits can be viewed as numbers bounded by a polynomial in n and 1/ϵ.

16/40

An FPTAS for Knapsack

If the profits of objects were small numbers, say, bounded by a polynomial in n, then the algorithm
would be a regular polynomial time algorithm, since its running time would be bounded by a
polynomial in |I|.

In FPTAS we will ignore a certain number of least significant bits of profits of objects (depending on
ϵ), so that the modified profits can be viewed as numbers bounded by a polynomial in n and 1/ϵ.

16/40

An FPTAS for Knapsack

1 Given ϵ > 0, let

K =
ϵP

n

2 For each object ai, define

profit′(ai) = ⌊profit(ai)

K
⌋

3 With these as profits of objects, using the dynamic programming algorithm, find the most
profitable set, say S′.

4 Output S′.

17/40

An FPTAS for Knapsack

1 Given ϵ > 0, let

K =
ϵP

n

2 For each object ai, define

profit′(ai) = ⌊profit(ai)

K
⌋

3 With these as profits of objects, using the dynamic programming algorithm, find the most
profitable set, say S′.

4 Output S′.

17/40

An FPTAS for Knapsack

1 Given ϵ > 0, let

K =
ϵP

n

2 For each object ai, define

profit′(ai) = ⌊profit(ai)

K
⌋

3 With these as profits of objects, using the dynamic programming algorithm, find the most
profitable set, say S′.

4 Output S′.

17/40

An FPTAS for Knapsack

1 Given ϵ > 0, let

K =
ϵP

n

2 For each object ai, define

profit′(ai) = ⌊profit(ai)

K
⌋

3 With these as profits of objects, using the dynamic programming algorithm, find the most
profitable set, say S′.

4 Output S′.

17/40

An FPTAS for Knapsack

1 Given ϵ > 0, let

K =
ϵP

n

2 For each object ai, define

profit′(ai) = ⌊profit(ai)

K
⌋

3 With these as profits of objects, using the dynamic programming algorithm, find the most
profitable set, say S′.

4 Output S′.

17/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

Let O denote the optimal set.

For any object a,

• because of rounding down, K · profit′(a) can be smaller than profit(a),
• but by not more than K. Say, profit(a)−K · profit′(a) ≤ K

Therefore,
profit(O)−K · profit′(O) ≤ nK

18/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

Let O denote the optimal set.

For any object a,

• because of rounding down, K · profit′(a) can be smaller than profit(a),
• but by not more than K. Say, profit(a)−K · profit′(a) ≤ K

Therefore,
profit(O)−K · profit′(O) ≤ nK

18/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

Let O denote the optimal set.

For any object a,

• because of rounding down, K · profit′(a) can be smaller than profit(a),
• but by not more than K. Say, profit(a)−K · profit′(a) ≤ K

Therefore,
profit(O)−K · profit′(O) ≤ nK

18/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

Let O denote the optimal set.

For any object a,

• because of rounding down, K · profit′(a) can be smaller than profit(a),
• but by not more than K. Say, profit(a)−K · profit′(a) ≤ K

Therefore,
profit(O)−K · profit′(O) ≤ nK

18/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

Let O denote the optimal set.

For any object a,

• because of rounding down, K · profit′(a) can be smaller than profit(a),

• but by not more than K. Say, profit(a)−K · profit′(a) ≤ K

Therefore,
profit(O)−K · profit′(O) ≤ nK

18/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

Let O denote the optimal set.

For any object a,

• because of rounding down, K · profit′(a) can be smaller than profit(a),
• but by not more than K. Say, profit(a)−K · profit′(a) ≤ K

Therefore,
profit(O)−K · profit′(O) ≤ nK

18/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

Let O denote the optimal set.

For any object a,

• because of rounding down, K · profit′(a) can be smaller than profit(a),
• but by not more than K. Say, profit(a)−K · profit′(a) ≤ K

Therefore,
profit(O)−K · profit′(O) ≤ nK

18/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

The dynamic programming step must return a set at least as good as O under the new profits.

Therefore,

profit(S) ≥ K · profit′(S) ≥ K · profit′(O)

≥ profit(O)− nK = OPT− ϵP ≥ (1− ϵ) ·OPT

19/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

The dynamic programming step must return a set at least as good as O under the new profits.

Therefore,

profit(S) ≥ K · profit′(S) ≥ K · profit′(O)

≥ profit(O)− nK = OPT− ϵP ≥ (1− ϵ) ·OPT

19/40

Analysis

Lemma

Let A denote the set output by the algorithm. Then

profit(A) ≥ (1− ϵ) ·OPT.

Proof.

The dynamic programming step must return a set at least as good as O under the new profits.

Therefore,

profit(S) ≥ K · profit′(S) ≥ K · profit′(O)

≥ profit(O)− nK = OPT− ϵP ≥ (1− ϵ) ·OPT

19/40

Analysis

By previous Lemma, the solution found is within (1− ϵ) factor of OPT. Since the running time of the
algorithm is

O(n2⌊ P
K

⌋) = O(n2⌊n
ϵ
⌋)

which is polynomial in n and 1/ϵ, thus it is a FPTAS for knapsack.

20/40

Analysis

By previous Lemma, the solution found is within (1− ϵ) factor of OPT. Since the running time of the
algorithm is

O(n2⌊ P
K

⌋) = O(n2⌊n
ϵ
⌋)

which is polynomial in n and 1/ϵ, thus it is a FPTAS for knapsack.

20/40

Bin Packing

21/40

Bin Packing: Problem Statement

BIN PACKING

Given n items with sizes a1, . . . , an ∈ (0, 1], find a packing in unit-sized bins that minimizes the
number of bins used.

22/40

An 2-approximation Algorithm

First-Fit Algorithm

• Consider items in arbitrary order.
• In the i-th step, it has a list of partially packed bins, say B1, . . . , Bk.
• It attempts to put the next item, ai, in one of these bins, in this order.
• If ai does not fit into any of these bins, it opens a new bin Bk+1, and puts ai in it.

23/40

An 2-approximation Algorithm

First-Fit Algorithm
• Consider items in arbitrary order.

• In the i-th step, it has a list of partially packed bins, say B1, . . . , Bk.
• It attempts to put the next item, ai, in one of these bins, in this order.
• If ai does not fit into any of these bins, it opens a new bin Bk+1, and puts ai in it.

23/40

An 2-approximation Algorithm

First-Fit Algorithm
• Consider items in arbitrary order.
• In the i-th step, it has a list of partially packed bins, say B1, . . . , Bk.

• It attempts to put the next item, ai, in one of these bins, in this order.
• If ai does not fit into any of these bins, it opens a new bin Bk+1, and puts ai in it.

23/40

An 2-approximation Algorithm

First-Fit Algorithm
• Consider items in arbitrary order.
• In the i-th step, it has a list of partially packed bins, say B1, . . . , Bk.
• It attempts to put the next item, ai, in one of these bins, in this order.

• If ai does not fit into any of these bins, it opens a new bin Bk+1, and puts ai in it.

23/40

An 2-approximation Algorithm

First-Fit Algorithm
• Consider items in arbitrary order.
• In the i-th step, it has a list of partially packed bins, say B1, . . . , Bk.
• It attempts to put the next item, ai, in one of these bins, in this order.
• If ai does not fit into any of these bins, it opens a new bin Bk+1, and puts ai in it.

23/40

Analysis

If the algorithm uses m bins, then at least m− 1 bins are more than half full.

Therefore,
n∑

i=1

ai >
m− 1

2

Since the sum of the item sizes is a lower bound on OPT, m− 1 < 2 ·OPT, i.e., m ≤ 2 ·OPT.

24/40

Analysis

If the algorithm uses m bins, then at least m− 1 bins are more than half full.

Therefore,
n∑

i=1

ai >
m− 1

2

Since the sum of the item sizes is a lower bound on OPT, m− 1 < 2 ·OPT, i.e., m ≤ 2 ·OPT.

24/40

Analysis

If the algorithm uses m bins, then at least m− 1 bins are more than half full.

Therefore,
n∑

i=1

ai >
m− 1

2

Since the sum of the item sizes is a lower bound on OPT, m− 1 < 2 ·OPT, i.e., m ≤ 2 ·OPT.

24/40

Analysis

If the algorithm uses m bins, then at least m− 1 bins are more than half full.

Therefore,
n∑

i=1

ai >
m− 1

2

Since the sum of the item sizes is a lower bound on OPT, m− 1 < 2 ·OPT, i.e., m ≤ 2 ·OPT.

24/40

A Hardness Result

For any ϵ > 0, there is no approximation algorithm having a guarantee of 3/2− ϵ for the bin packing
problem, assuming P = NP.

Proof.

If there were such an algorithm, then the NPC problem of deciding if there is a way to partition n

nonnegative numbers a1, . . . , an into two sets, each adding up to 1/2
∑

i ai.

The answer to this question is “yes” iff the n items can be packed in 2 bins of size 1/2
∑

i ai.

If the answer is “yes” the 3/2− ϵ factor algorithm will have to give an optimal packing.

25/40

A Hardness Result

For any ϵ > 0, there is no approximation algorithm having a guarantee of 3/2− ϵ for the bin packing
problem, assuming P = NP.

Proof.

If there were such an algorithm, then the NPC problem of deciding if there is a way to partition n

nonnegative numbers a1, . . . , an into two sets, each adding up to 1/2
∑

i ai.

The answer to this question is “yes” iff the n items can be packed in 2 bins of size 1/2
∑

i ai.

If the answer is “yes” the 3/2− ϵ factor algorithm will have to give an optimal packing.

25/40

A Hardness Result

For any ϵ > 0, there is no approximation algorithm having a guarantee of 3/2− ϵ for the bin packing
problem, assuming P = NP.

Proof.

If there were such an algorithm, then the NPC problem of deciding if there is a way to partition n

nonnegative numbers a1, . . . , an into two sets, each adding up to 1/2
∑

i ai.

The answer to this question is “yes” iff the n items can be packed in 2 bins of size 1/2
∑

i ai.

If the answer is “yes” the 3/2− ϵ factor algorithm will have to give an optimal packing.

25/40

A Hardness Result

For any ϵ > 0, there is no approximation algorithm having a guarantee of 3/2− ϵ for the bin packing
problem, assuming P = NP.

Proof.

If there were such an algorithm, then the NPC problem of deciding if there is a way to partition n

nonnegative numbers a1, . . . , an into two sets, each adding up to 1/2
∑

i ai.

The answer to this question is “yes” iff the n items can be packed in 2 bins of size 1/2
∑

i ai.

If the answer is “yes” the 3/2− ϵ factor algorithm will have to give an optimal packing.

25/40

A Hardness Result

For any ϵ > 0, there is no approximation algorithm having a guarantee of 3/2− ϵ for the bin packing
problem, assuming P = NP.

Proof.

If there were such an algorithm, then the NPC problem of deciding if there is a way to partition n

nonnegative numbers a1, . . . , an into two sets, each adding up to 1/2
∑

i ai.

The answer to this question is “yes” iff the n items can be packed in 2 bins of size 1/2
∑

i ai.

If the answer is “yes” the 3/2− ϵ factor algorithm will have to give an optimal packing.

25/40

APTAS

APTAS

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithm {Aϵ} along
with a constant c where there is an algorithm Aϵ for each ϵ > 0 such that Aϵ returns a solution of
value at most (1 + ϵ)OPT + c for minimization problems.

26/40

An APTAS for Bin-Packing

For any ϵ, 0 < ϵ ≤ 1/2, there is an algorithm Aϵ that runs in time polynomial in n and finds a packing
using at most (1 + 2ϵ)OPT + 1 bins.

We will introduce the algorithm in three steps.

27/40

An APTAS for Bin-Packing

For any ϵ, 0 < ϵ ≤ 1/2, there is an algorithm Aϵ that runs in time polynomial in n and finds a packing
using at most (1 + 2ϵ)OPT + 1 bins.

We will introduce the algorithm in three steps.

27/40

Instances with Large Items

Lemma

Let ϵ > 0 be fixed, and let K be a fixed nonnegative integer. Consider the restriction of the bin
packing problem to instances in which each item is of size at least ϵ and the number of distinct item
sizes is K. There is a polynomial time algorithm that optimally solves this restricted problem.

28/40

Instances with Large Items

Proof.

The number of items in a bin is bounded by ⌊1/ϵ⌋. Denote this by M . Therefore, the number of
different bin types is bounded by

R =

(
M +K

M

)
which is a large constant.

The total number of bins used is at most n. Therefore, the number of possible feasible packings is
bounded by

P =

(
n+R

R

)
which is polynomial in n.

Enumerating them and picking the best packing gives the optimal answer.

29/40

Instances with Large Items

Proof.

The number of items in a bin is bounded by ⌊1/ϵ⌋. Denote this by M . Therefore, the number of
different bin types is bounded by

R =

(
M +K

M

)
which is a large constant.

The total number of bins used is at most n. Therefore, the number of possible feasible packings is
bounded by

P =

(
n+R

R

)
which is polynomial in n.

Enumerating them and picking the best packing gives the optimal answer.

29/40

Instances with Large Items

Proof.

The number of items in a bin is bounded by ⌊1/ϵ⌋. Denote this by M . Therefore, the number of
different bin types is bounded by

R =

(
M +K

M

)
which is a large constant.

The total number of bins used is at most n. Therefore, the number of possible feasible packings is
bounded by

P =

(
n+R

R

)
which is polynomial in n.

Enumerating them and picking the best packing gives the optimal answer.

29/40

Instances with Large Items

Proof.

The number of items in a bin is bounded by ⌊1/ϵ⌋. Denote this by M . Therefore, the number of
different bin types is bounded by

R =

(
M +K

M

)
which is a large constant.

The total number of bins used is at most n. Therefore, the number of possible feasible packings is
bounded by

P =

(
n+R

R

)
which is polynomial in n.

Enumerating them and picking the best packing gives the optimal answer.

29/40

k Composition of M

x1 + x2 + . . .+ xk = M

• k composition of M : xi ≥ 1

• weak k composition of M : xi ≥ 0

30/40

k Composition of M

x1 + x2 + . . .+ xk = M

• k composition of M : xi ≥ 1

• weak k composition of M : xi ≥ 0

30/40

k Composition of M

x1 + x2 + . . .+ xk = M

• k composition of M : xi ≥ 1 (
M − 1

k − 1

)

• weak k composition of M : xi ≥ 0

30/40

k Composition of M

x1 + x2 + . . .+ xk = M

• k composition of M : xi ≥ 1 (
M − 1

k − 1

)

• weak k composition of M : xi ≥ 0

30/40

k Composition of M

x1 + x2 + . . .+ xk = M

• k composition of M : xi ≥ 1 (
M − 1

k − 1

)

• weak k composition of M : xi ≥ 0 (
M + k − 1

k − 1

)

30/40

Removing the Restriction of K

Lemma

Let ϵ > 0 be fixed. Consider the restriction of the bin packing problem to instances in which each
item is of size at least ϵ. There is a polynomial time approximation algorithm that solves this
restricted problem within a factor of (1 + ϵ).

31/40

Removing the Restriction of K

Let I denote the given instance. Sort the n items by increasing size, and partition them into
K = ⌈1/ϵ2⌉ groups each having at most Q = ⌊nϵ2⌋ items. Notice that two groups may contain items
of the same size.

32/40

Removing the Restriction of K

Construct instance J by rounding up the size of each item to the size of the largest item in its group.
Instance J has at most K different item sizes.

Then we can find an optimal packing for J , this will also be a valid packing for the original item size.

We will show that
OPT(J) ≤ (1 + ϵ)OPT(I)

33/40

Removing the Restriction of K

Construct instance J by rounding up the size of each item to the size of the largest item in its group.
Instance J has at most K different item sizes.

Then we can find an optimal packing for J , this will also be a valid packing for the original item size.

We will show that
OPT(J) ≤ (1 + ϵ)OPT(I)

33/40

Removing the Restriction of K

Construct instance J by rounding up the size of each item to the size of the largest item in its group.
Instance J has at most K different item sizes.

Then we can find an optimal packing for J , this will also be a valid packing for the original item size.

We will show that
OPT(J) ≤ (1 + ϵ)OPT(I)

33/40

Removing the Restriction of K

Construct instance J by rounding up the size of each item to the size of the largest item in its group.
Instance J has at most K different item sizes.

Then we can find an optimal packing for J , this will also be a valid packing for the original item size.

We will show that
OPT(J) ≤ (1 + ϵ)OPT(I)

33/40

Removing the Restriction of K

Construct instance J by rounding up the size of each item to the size of the largest item in its group.
Instance J has at most K different item sizes.

Then we can find an optimal packing for J , this will also be a valid packing for the original item size.

We will show that
OPT(J) ≤ (1 + ϵ)OPT(I)

33/40

Proof

Let us construct another instance, say J ′ , by rounding down the size of each item to that of the
smallest item in its group.

Clearly OPT(J ′) ≤ OPT(I).

The crucial observation is that a packing for instance J yields a packing for all but the largest Q
items of instance J . Therefore,

OPT(J) ≤ OPT(J ′) +Q ≤ OPT(I) +Q

Since each item in I has size at least ϵ, OPT(I) ≥ nϵ. Therefore Q = ⌊nϵ2⌋ ≤ ϵOPT(I). Hence,
OPT(J) ≤ (1 + ϵ)OPT(I).

34/40

Proof

Let us construct another instance, say J ′ , by rounding down the size of each item to that of the
smallest item in its group.

Clearly OPT(J ′) ≤ OPT(I).

The crucial observation is that a packing for instance J yields a packing for all but the largest Q
items of instance J . Therefore,

OPT(J) ≤ OPT(J ′) +Q ≤ OPT(I) +Q

Since each item in I has size at least ϵ, OPT(I) ≥ nϵ. Therefore Q = ⌊nϵ2⌋ ≤ ϵOPT(I). Hence,
OPT(J) ≤ (1 + ϵ)OPT(I).

34/40

Proof

Let us construct another instance, say J ′ , by rounding down the size of each item to that of the
smallest item in its group.

Clearly OPT(J ′) ≤ OPT(I).

The crucial observation is that a packing for instance J yields a packing for all but the largest Q
items of instance J . Therefore,

OPT(J) ≤ OPT(J ′) +Q ≤ OPT(I) +Q

Since each item in I has size at least ϵ, OPT(I) ≥ nϵ. Therefore Q = ⌊nϵ2⌋ ≤ ϵOPT(I). Hence,
OPT(J) ≤ (1 + ϵ)OPT(I).

34/40

Proof

Let us construct another instance, say J ′ , by rounding down the size of each item to that of the
smallest item in its group.

Clearly OPT(J ′) ≤ OPT(I).

The crucial observation is that a packing for instance J yields a packing for all but the largest Q
items of instance J . Therefore,

OPT(J) ≤ OPT(J ′) +Q ≤ OPT(I) +Q

Since each item in I has size at least ϵ, OPT(I) ≥ nϵ. Therefore Q = ⌊nϵ2⌋ ≤ ϵOPT(I). Hence,
OPT(J) ≤ (1 + ϵ)OPT(I).

34/40

Proof

Let us construct another instance, say J ′ , by rounding down the size of each item to that of the
smallest item in its group.

Clearly OPT(J ′) ≤ OPT(I).

The crucial observation is that a packing for instance J yields a packing for all but the largest Q
items of instance J . Therefore,

OPT(J) ≤ OPT(J ′) +Q ≤ OPT(I) +Q

Since each item in I has size at least ϵ, OPT(I) ≥ nϵ. Therefore Q = ⌊nϵ2⌋ ≤ ϵOPT(I). Hence,
OPT(J) ≤ (1 + ϵ)OPT(I).

34/40

Proof

Let us construct another instance, say J ′ , by rounding down the size of each item to that of the
smallest item in its group.

Clearly OPT(J ′) ≤ OPT(I).

The crucial observation is that a packing for instance J yields a packing for all but the largest Q
items of instance J . Therefore,

OPT(J) ≤ OPT(J ′) +Q ≤ OPT(I) +Q

Since each item in I has size at least ϵ, OPT(I) ≥ nϵ. Therefore Q = ⌊nϵ2⌋ ≤ ϵOPT(I). Hence,
OPT(J) ≤ (1 + ϵ)OPT(I).

34/40

The Algorithm

Now we present the APTAS algorithm for Bin-Packing.

• Let I denote the given instance, and I ′ denote the instance obtained by discarding items of size
< ϵ from I.

• By previous lemma, we can find a packing for I ′ using at most (1 + ϵ)OPT(I ′) bins.
• Next, we start packing the small items (of size < ϵ) in a First-Fit manner in the bins opened for

packing I. Additional bins are opened if an item does not fit into any of the already open bins.

35/40

The Algorithm

Now we present the APTAS algorithm for Bin-Packing.

• Let I denote the given instance, and I ′ denote the instance obtained by discarding items of size
< ϵ from I.

• By previous lemma, we can find a packing for I ′ using at most (1 + ϵ)OPT(I ′) bins.
• Next, we start packing the small items (of size < ϵ) in a First-Fit manner in the bins opened for

packing I. Additional bins are opened if an item does not fit into any of the already open bins.

35/40

The Algorithm

Now we present the APTAS algorithm for Bin-Packing.

• Let I denote the given instance, and I ′ denote the instance obtained by discarding items of size
< ϵ from I.

• By previous lemma, we can find a packing for I ′ using at most (1 + ϵ)OPT(I ′) bins.

• Next, we start packing the small items (of size < ϵ) in a First-Fit manner in the bins opened for
packing I. Additional bins are opened if an item does not fit into any of the already open bins.

35/40

The Algorithm

Now we present the APTAS algorithm for Bin-Packing.

• Let I denote the given instance, and I ′ denote the instance obtained by discarding items of size
< ϵ from I.

• By previous lemma, we can find a packing for I ′ using at most (1 + ϵ)OPT(I ′) bins.
• Next, we start packing the small items (of size < ϵ) in a First-Fit manner in the bins opened for

packing I. Additional bins are opened if an item does not fit into any of the already open bins.

35/40

Analysis

If no additional bins are needed, then we have a packing in (1 + ϵ)OPT(I ′) ≤ (1 + ϵ)OPT(I) bins.

In the second case, let M be the total number of bins used. Clearly, all but the last bin must be full to
the extent of at least 1− ϵ.

Therefore, the sum of the item sizes in I is at least (M − 1)(1− ϵ). Since this is a lower bound on
OPT, we get

36/40

Analysis

If no additional bins are needed, then we have a packing in (1 + ϵ)OPT(I ′) ≤ (1 + ϵ)OPT(I) bins.

In the second case, let M be the total number of bins used. Clearly, all but the last bin must be full to
the extent of at least 1− ϵ.

Therefore, the sum of the item sizes in I is at least (M − 1)(1− ϵ). Since this is a lower bound on
OPT, we get

36/40

Analysis

If no additional bins are needed, then we have a packing in (1 + ϵ)OPT(I ′) ≤ (1 + ϵ)OPT(I) bins.

In the second case, let M be the total number of bins used. Clearly, all but the last bin must be full to
the extent of at least 1− ϵ.

Therefore, the sum of the item sizes in I is at least (M − 1)(1− ϵ). Since this is a lower bound on
OPT, we get

36/40

Analysis

If no additional bins are needed, then we have a packing in (1 + ϵ)OPT(I ′) ≤ (1 + ϵ)OPT(I) bins.

In the second case, let M be the total number of bins used. Clearly, all but the last bin must be full to
the extent of at least 1− ϵ.

Therefore, the sum of the item sizes in I is at least (M − 1)(1− ϵ). Since this is a lower bound on
OPT, we get

36/40

Analysis

M ≤ OPT

(1− ϵ)
+ 1 ≤ (1 + 2ϵ)OPT + 1

where we have used the assumption that ϵ ≤ 1/2.

Hence, for each value of ϵ, 0 < ϵ ≤ 1/2, we have a polynomial time algorithm achieving a guarantee
of (1 + 2ϵ)OPT + 1.

37/40

Analysis

M ≤ OPT

(1− ϵ)
+ 1 ≤ (1 + 2ϵ)OPT + 1

where we have used the assumption that ϵ ≤ 1/2.

Hence, for each value of ϵ, 0 < ϵ ≤ 1/2, we have a polynomial time algorithm achieving a guarantee
of (1 + 2ϵ)OPT + 1.

37/40

Analysis

M ≤ OPT

(1− ϵ)
+ 1 ≤ (1 + 2ϵ)OPT + 1

where we have used the assumption that ϵ ≤ 1/2.

Hence, for each value of ϵ, 0 < ϵ ≤ 1/2, we have a polynomial time algorithm achieving a guarantee
of (1 + 2ϵ)OPT + 1.

37/40

Analysis

M ≤ OPT

(1− ϵ)
+ 1 ≤ (1 + 2ϵ)OPT + 1

where we have used the assumption that ϵ ≤ 1/2.

Hence, for each value of ϵ, 0 < ϵ ≤ 1/2, we have a polynomial time algorithm achieving a guarantee
of (1 + 2ϵ)OPT + 1.

37/40

Summary of Algorithm

Algorithm Aϵ is summarized below.

Algorithm

1. Remove items of size < ϵ.

2. Round to obtain constant number of item sizes.

3. Find optimal packing.

4. Use this packing for original item sizes.

5. Pack items of size < ϵ using First-Fit.

38/40

Summary of Algorithm

Algorithm Aϵ is summarized below.

Algorithm

1. Remove items of size < ϵ.

2. Round to obtain constant number of item sizes.

3. Find optimal packing.

4. Use this packing for original item sizes.

5. Pack items of size < ϵ using First-Fit.

38/40

Summary of Algorithm

Algorithm Aϵ is summarized below.

Algorithm

1. Remove items of size < ϵ.

2. Round to obtain constant number of item sizes.

3. Find optimal packing.

4. Use this packing for original item sizes.

5. Pack items of size < ϵ using First-Fit.

38/40

Referred Materials

39/40

Referred Materials

Content of this lecture comes from Chapter 8 and 9 in [Vaz04], and Section 3.3 in [WS11].

Suggest to read Chapter 10 in [Vaz04] and Chapter 3 in [WS11].

40/40

	Polynomial Time Approximation Scheme
	Knapsack
	Bin Packing
	Referred Materials

