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Steiner Tree

The Steiner tree problem was defined by Gauss in a letter he wrote to Schumacher.

The problem occupies a central place in the field of approximation algorithms.

The problem has a wide range of applications, all the way from finding minimum length
interconnection of terminals in VLSI design to constructing phylogeny trees in computational biology.

We will present constant factor algorithms for metric Steiner tree, and the rest of the problem can be
reduced to this case.
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Metric Steiner Problem

STEINER TREE

Given an undirected graph G = (V,E) with nonnegative edge costs and whose vertices are
partitioned into two sets, required and Steiner, find a minimum cost tree in G that contains all the
required vertices and any subset of the Steiner vertices.

With a restriction to instances in which the edge costs satisfy the triangle inequality, i.e., G is a
complete undirected graph, and for any three vertices u, v, and w,

cost(u, v) ≤ cost(u,w) + cost(v, w)

named the metric Steiner tree problem.

4/42



Metric Steiner Problem

STEINER TREE

Given an undirected graph G = (V,E) with nonnegative edge costs and whose vertices are
partitioned into two sets, required and Steiner, find a minimum cost tree in G that contains all the
required vertices and any subset of the Steiner vertices.

With a restriction to instances in which the edge costs satisfy the triangle inequality, i.e., G is a
complete undirected graph, and for any three vertices u, v, and w,

cost(u, v) ≤ cost(u,w) + cost(v, w)

named the metric Steiner tree problem.

4/42



An Example

If we have a Steiner graph, with the cost 1 to the points connected by an edge, and cost 2 otherwise.
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An Example

The optimal one:
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Approximation Factor Preservation

Theorem

There is an approximation factor preserving reduction from the Steiner tree problem to the metric
Steiner tree problem.
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Approximation Factor Preservation

Proof.

Firstly, we will transform, in polynomial time, an instance I of the Steiner tree problem, consisting of
graph G = (V,E), to an instance I ′ of the metric Steiner tree problem.

• Let G′ be the complete undirected graph on vertex set V . Define the cost of edge (u, v) in G′ to
be the cost of a shortest u− v path in G. G′ is called the metric closure of G.

• The partition of V into required and Steiner vertices in I is the same as in I.
• For any edge (u, v) ∈ E, its cost in G′ is no more than its cost in G.
• Therefore, the cost of an optimal solution in I ′ does not exceed the cost of an optimal solution in

I.
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Approximation Factor Preservation

Proof.

Next, given a Steiner tree T ′ in I ′, we will show how to obtain, in polynomial time a Steiner tree T in
I of at most the same cost.

• The cost of an edge (u, v) in G′ corresponds to the cost of a path in G.
• Replace each edge of T ′ by the corresponding path to obtain a subgraph of G.
• Clearly, in this subgraph, all the required vertices are connected. However, this subgraph may,

in general, contain cycles.
• If so, remove edges to obtain tree T . This completes the approximation factor preserving

reduction.
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MST-based Algorithm

Algorithm

Let R denote the set of required vertices. It is easy to verify that a minimum spanning tree on R is a
feasible solution for this problem.
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An Example

If we have a Steiner graph, with the cost 1 to the points connected by an edge, and cost 2 otherwise.
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A Counterexample

The cost of MST may not be optimal:
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2-approximation Algorithm

However, MST-based algorithm is a good approximation algorithm.

The cost of an MST on R is within 2· OPT.
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The Analysis

Consider a Steiner tree of cost OPT. By doubling its edges we obtain an Eulerian graph connecting
all vertices of R and, possibly, some Steiner vertices.

Find an Euler tour of this graph, for example by traversing the edges in DFS (depth first search)
order:
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The Analysis

The cost of this Euler tour is 2·OPT. Next obtain a Hamilton cycle on the vertices of R by traversing
the Euler tour and short-cutting Steiner vertices and previously visited vertices of R:
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The Analysis

Because of triangle inequality, the shortcuts do not increase the cost of the tour.

If we delete one edge of this Hamilton cycle, we obtain a path that spans R and has cost at most
2·OPT.

This path is also a spanning tree on R. Hence, the MST on R has cost at most 2· OPT.
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Tightness of the Analysis

Consider a graph with n required vertices and one Steiner vertex. An edge between the Steiner
vertex and a required vertex has cost 1, and an edge between two required vertices has cost 2:
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Metric TSP
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Traveling Salesman Problem

Given a complete graph with nonnegative edge costs, find a minimum cost cycle visiting every
vertex exactly once.

• Interestingly, TSP cannot be approximated within any polynomial bounded ratio.
• For any polynomial time computable function α(n), TSP cannot be approximated within a factor

of α(n), unless P = NP.
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HAMILTON CYCLE → TSP

Given a graph G = (V,E), construct the instance of the TSP:

• The set of nodes is the same as V .
• The distance between cities u and v is 1 if {u, v} is an edge of G and 1 + α otherwise, for some

α > 1 to be determined.
• The budget of the TSP instance is |V |.

If G has a HAMILTON CYCLE, then the same cycle is also a tour within the budget of the TSP
instance.

If G has no HAMILTON CYCLE, then there is no solution: the cheapest possible TSP tour has cost at
least n+ α.
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Proof of the Inapproximability

We will describe a reduction from HAMILTON CYCLE PROBLEM (which is NP-completeness) to TSP
problem.

That is, transform a graph G on n vertices to an edge-weighted complete graph G′ on n vertices
such that

• if G has a Hamilton cycle, then the cost of an optimal TSP tour in G is n, and
• if G does not have a Hamilton cycle, then an optimal TSP tour in G is of cost > α(n) · n.

Assign a weight of 1 to edges of G, and a weight of α(n) · n to nonedges, to obtain G′.
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Metric TSP

Notice that in order to obtain such a strong nonapproximability result, we had to assign edge costs
that violate triangle inequality.

If we restrict ourselves to graphs in which edge costs satisfy triangle inequality, i.e., consider metric
TSP, the problem remains NP-complete, but it is no longer hard to approximate.
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TSP on Metric Space

Removing any edge from a traveling salesman tour
leaves a path through all the vertices, which is a
spanning tree.

Therefore, TSP cost ≥ cost of this path ≥ MST cost
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TSP on Metric Space

If we can use each edge twice, then by following the
shape of the MST we end up with a tour that visits all the
cities, some of them more than once.
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TSP on Metric Space

To fix the problem, the tour should simply skip any city it
is about to revisit, and instead move directly to the next
new city in its list.

By the triangle inequality, these bypasses can only make
the overall tour shorter.
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A Simple Factor 2 Algorithm

Consider the following algorithm:

1 Find an MST, T of G

2 Double every edge of the MST to obtain an Eulerian graph.

3 Find an Eulerian tour, T , on this graph.

4 Output the tour that visits vertices of G in the order of their first appearance in T . Let C be this
tour.

The above algorithm is a factor 2 approximation algorithm for metric TSP.
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Analysis

cost(T ) ≤OPT.

Since T contains each edge of T twice, cost(T ) = 2 · cost(T ).

Because of triangle inequality, after the short-cutting (step 4) step, cost(C) ≤ cost(T ).

Combining these inequalities we get that

cost(C) ≤ 2 ·OPT.
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A Tight Example

A tight example for this algorithm is given by a complete graph on n vertices with edges of cost 1
and 2.

We present the graph for n = 6 below, where thick edges have cost 1 and remaining edges have
cost 2.

For arbitrary n the graph has 2n− 2 edges of cost 1, with these edges forming the union of a star
and an n− 1 cycle; all remaining edges have cost 2.

The optimal TSP tour has cost n, as shown below for n = 6.
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A Tight Example

Suppose that the MST found by the algorithm is the spanning star created by edges of cost 1.
Moreover, suppose that the Euler tour constructed in Step 3 visits vertices in order shown below for
n = 6:

Then the tour obtained after short-cutting contains n− 2 edges of cost 2 and has a total cost of
2n− 2. Asymptotically, this is twice the cost of the optimal TSP tour.
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An Example

C MV PA SC SV
C 0 7 12 7 4
MV 0 8 9 4
PA 0 14 10
SC 0 5
SV 0
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An Example
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Improving the factor to 3/2

Is there a cheaper Euler tour than that found by doubling an MST?

Recall that a graph has an Euler tour iff all its vertices have even degrees.

Thus, we only need to be concerned about the vertices of odd degree in the MST.

Let V ′ denote the set of vertices of odd degree in the MST. Now, if we add to the MST a minimum
cost perfect matching on V ′, every vertex will have an even degree, and we get an Eulerian graph.
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Let V ′ denote the set of vertices of odd degree in the MST. Now, if we add to the MST a minimum
cost perfect matching on V ′, every vertex will have an even degree, and we get an Eulerian graph.
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The Algorithm

Algorithm

1 Find an MST of G, say T .

2 Compute a minimum cost perfect matching, M , on the set of odd-degree vertices of T . Add M

to T and obtain an Eulerian graph.

3 Find an Euler tour, T , of this graph.

4 Output the tour that visits vertices of G in order of their first appearance in T . Let C be this tour.
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An Example

C MV PA SC SV
C 0 7 12 7 4
MV 0 8 9 4
PA 0 14 10
SC 0 5
SV 0

PA

MV

 8

SV

 4

C

 4

SC

 5

34/42



An Example

PA
MV

8

SV

10 4

C

4

SC

5

7

35/42



An Example

PA

MV

8

C

12

SV
4

SC

5

7

36/42



Analysis

Lemma

Let V ′ ⊆ V , such that |V ′| is even, and let M be a minimum cost perfect matching on V ′. Then,
cost(M) ≤ OPT/2.

Proof.

Consider an optimal TSP tour of G, say τ .

Let τ ′ be the tour on V ′ obtained by short-cutting τ . By the triangle inequality, cost(τ ′) ≤ cost(τ).

Now, τ ′ is the union of two perfect matchings on V ′, each consisting of alternate edges of τ .

Thus, the cheaper of these matchings has cost ≤ cost(τ ′)/2 ≤ OPT/2. Hence the optimal matching
also has cost at most OPT/2.
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Analysis (cont’d)

Theorem

The above algorithm achieves an approximation guarantee of 3/2 for metric TSP.

Proof.

The cost of the Euler tour,

cost(T ) ≤ cost(T ) + cost(M) ≤ OPT+
1

2
OPT =

3

2
OPT

Using the triangle inequality, cost(C) ≤ cost(T ), and the theorem follows.
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A Tight Example

A tight example for this algorithm is given by the following graph on n vertices, with n odd.

�!

Suppose that the MST found by the algorithm is the spanning star created by edges of cost ��
Moreover� suppose that the Euler tour constructed in Step � visits vertices in order shown below	
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Then the tour obtained after short�cutting contains n � � edges of cost �� and has a total cost of
�n� �� This is almost twice the cost of the optimal TSP tour� �

Essentially� this algorithm �rst �nds a low cost Euler tour spanning the vertices of G� and then
short�cuts this tour to �nd a travelling salesman tour� Is there a cheaper Euler tour than that
found by doubling an MST� Notice that we only need to be concerned about the vertices of odd
degree in the MST� let V � denote this set of vertices� jV �j must be even since the sum of degrees
of all vertices in the MST is even �it is �n � ��� Now� if we add to the MST a minimum cost
perfect matching on V �� every vertex will have even degree� and we get an Eulerian graph� With
this modi�cation� the algorithm achieves an approximation guarantee of �

� �

Algorithm �
�� �Metric TSP � factor �
��

�� Find an MST of G� say T �

�� Compute a minimum cost perfect matching� M � on the set of odd vertices of T � Add M to
T and obtain an Eulerian graph�

�� Find an Euler tour� T � of this graph�
�� Output the tour that visits vertices of G in order of their 	rst appearence in T � Let C be this

tour�

Interestingly� the proof of this algorithm is based on a second lower bound on OPT�

Lemma �
�� Let V � � V � such that jV �j is even� and let M be a minimum cost perfect matching
on V �� Then� cost�M� � OPT���

Proof � Consider an optimal TSP tour of G� say � � Let � � be the tour on V � obtained by
short�cutting � � By triangle inequality� cost�� �� � cost���� Now� � � is the union of two perfect
matchings on V �� each consisting of alternate edges of � � So� the cheaper of these matchings has

cost � cost�� ��
� � OPT

� � Hence the optimal matching also has cost � OPT
� � �

Theorem �
�� Algorithm 
��� achieves an approximation guarantee of �
� for metric TSP�

Proof � The proof follows by putting together the two lower bounds on OPT� �

Example �
�� A tight example for this algorithm is given by the following graph on n vertices	
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Thick edges represent the MST found in step 1. This MST has only two odd vertices, and by adding
the edge joining them we obtain a traveling salesman tour of cost (n− 1) + ⌊n/2⌋. In contrast, the
optimal tour has cost n.
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A Better Algorithm?

Finding a better approximation algorithm for metric TSP is currently one of the outstanding open
problems in this area. Many researchers have conjectured that an approximation factor of 4/3 may
be achievable.
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• Content of this lecture comes from Chapter 3 in [Vaz04].
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