

Design and Analysis of Algorithms (XXII)
MAX-SAT

Given n boolean variables x_{1}, \ldots, x_{n}, a CNF

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{j=1}^{m} C_{j}
$$

and a nonnegative weight w_{j} for each C_{j}.
Find an assignment to the $x_{i} \boldsymbol{s}$ that maximizes the weight of the satisfied clauses.

Simple Randomization Algorithm

Flipping a Coin

Flipping a Coin

A very straightforward randomized approximation algorithm is to set each x_{i} to true independently with probability $1 / 2$.

Flipping a Coin

A very straightforward randomized approximation algorithm is to set each x_{i} to true independently with probability $1 / 2$.

Setting each x_{i} to true with probability $1 / 2$ independently gives a randomized $\frac{1}{2}$-approximation algorithm for weighted MAX-SAT.

Proof.

Proof

Proof.

Let W be a random variable that is equal to the total weight of the satisfied clauses. Define an indicator random variable Y_{j} for each clause C_{j} such that $Y_{j}=1$ if and only if C_{j} is satisfied. Then

$$
W=\sum_{j=1}^{m} w_{j} Y_{j}
$$

We use $O P T$ to denote value of optimum solution, then

$$
E[W]=\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right]=\sum_{j=1}^{m} w_{j} \cdot \operatorname{Pr}\left[\text { clause } C_{j} \text { satisfied }\right]
$$

Proof (cont'd)

Since each variable is set to true independently, we have

$$
\operatorname{Pr}\left[\text { clause } C_{j} \text { satisfied }\right]=\left(1-\left(\frac{1}{2}\right)^{l_{j}}\right) \geq \frac{1}{2}
$$

where l_{j} is the number of literals in clause C_{j}. Hence,

$$
E[W] \geq \frac{1}{2} \sum_{j=1}^{m} w_{j} \geq \frac{1}{2} O P T
$$

A Finer Analysis

A Finer Analysis

Observe that if $l_{j} \geq k$ for each clause j, then the analysis above shows that the algorithm is a $\left(1-\left(\frac{1}{2}\right)^{k}\right)$-approximation algorithm for such instances. For instance, the performance guarantee of MAX E3SAT is $7 / 8$.

A Finer Analysis

Observe that if $l_{j} \geq k$ for each clause j, then the analysis above shows that the algorithm is a $\left(1-\left(\frac{1}{2}\right)^{k}\right)$-approximation algorithm for such instances. For instance, the performance guarantee of MAX E3SAT is $7 / 8$.

From the analysis, we can see that the performance of the algorithm is better on instances consisting of long clauses.

A Finer Analysis

Observe that if $l_{j} \geq k$ for each clause j, then the analysis above shows that the algorithm is a $\left(1-\left(\frac{1}{2}\right)^{k}\right)$-approximation algorithm for such instances. For instance, the performance guarantee of MAX E3SAT is $7 / 8$.

From the analysis, we can see that the performance of the algorithm is better on instances consisting of long clauses.

Theorem

If there is an $\left(\frac{7}{8}+\epsilon\right)$-approximation algorithm for MAX E3SAT for any constant $\epsilon>0$, then $\mathrm{P}=\mathrm{NP}$.

Derandomization

Derandomization

The previous randomized algorithm can be derandomized. Note that

$$
\begin{aligned}
E[W]= & E\left[W \mid x_{1} \leftarrow \text { true }\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow \text { true }\right] \\
& +E\left[W \mid x_{1} \leftarrow \text { false }\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow \mathrm{false}\right] \\
= & \frac{1}{2}\left(E\left[W \mid x_{1} \leftarrow \text { true }\right]+E\left[W \mid x_{1} \leftarrow \text { false }\right]\right)
\end{aligned}
$$

Derandomization

The previous randomized algorithm can be derandomized. Note that

$$
\begin{aligned}
E[W]= & E\left[W \mid x_{1} \leftarrow \text { true }\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow \text { true }\right] \\
& +E\left[W \mid x_{1} \leftarrow \text { false }\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow \text { false }\right] \\
= & \frac{1}{2}\left(E\left[W \mid x_{1} \leftarrow \text { true }\right]+E\left[W \mid x_{1} \leftarrow \text { false }\right]\right)
\end{aligned}
$$

We set b_{1} true if $E\left[W \mid x_{1} \leftarrow\right.$ true $] \geq E\left[W \mid x_{1} \leftarrow\right.$ false $]$ and set b_{1} false otherwise. Let the value of x_{1} be b_{1}.

Derandomization

The previous randomized algorithm can be derandomized. Note that

$$
\begin{aligned}
E[W]= & E\left[W \mid x_{1} \leftarrow \text { true }\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow \text { true }\right] \\
& +E\left[W \mid x_{1} \leftarrow \text { false }\right] \cdot \operatorname{Pr}\left[x_{1} \leftarrow \text { false }\right] \\
= & \frac{1}{2}\left(E\left[W \mid x_{1} \leftarrow \text { true }\right]+E\left[W \mid x_{1} \leftarrow \text { false }\right]\right)
\end{aligned}
$$

We set b_{1} true if $E\left[W \mid x_{1} \leftarrow\right.$ true $] \geq E\left[W \mid x_{1} \leftarrow\right.$ false $]$ and set b_{1} false otherwise. Let the value of x_{1} be b_{1}.

Continue this process until all b_{i} are found, i.e., all n variables have been set.

An Example

An Example

$$
x_{3} \vee \overline{x_{5}} \vee \overline{x_{7}}
$$

－ Pr［clause satisfied $\mid x_{1} \leftarrow$ true，$x_{2} \leftarrow$ false，$x_{3} \leftarrow$ true］$=1$

An Example

$$
x_{3} \vee \overline{x_{5}} \vee \overline{x_{7}}
$$

- Pr[clause satisfied $\mid x_{1} \leftarrow$ true, $x_{2} \leftarrow$ false, $x_{3} \leftarrow$ true] $=1$
- $\operatorname{Pr}\left[\right.$ clause satisfied $\mid x_{1} \leftarrow$ true, $x_{2} \leftarrow$ false, $x_{3} \leftarrow$ false $]=1-\left(\frac{1}{2}\right)^{2}=\frac{3}{4}$

Derandomization

This is a deterministic $\frac{1}{2}$-approximation algorithm because of the following two facts:
(1) $E\left[W \mid x_{1} \leftarrow b_{1}, \ldots, x_{i} \leftarrow b_{i}\right]$ can be computed in polynomial time for fixed b_{1}, \ldots, b_{i}.
(2) $E\left[W \mid x_{1} \leftarrow b_{1}, \ldots, x_{i} \leftarrow b_{i}, x_{i+1} \leftarrow b_{i+1}\right] \geq E\left[W \mid x_{1} \leftarrow b_{1}, \ldots, x_{i} \leftarrow b_{i}\right]$ for all i, and by induction, $E\left[W \mid x_{1} \leftarrow b_{1}, \ldots, x_{i} \leftarrow b_{i}, x_{i+1} \leftarrow b_{i+1}\right] \geq E[W]$.

Flipping Biased Coins

Flipping Biased Coins

Previously, we set each x_{i} true or false with probability $\frac{1}{2}$ independently. $\frac{1}{2}$ is nothing special here.

Flipping Biased Coins

Previously, we set each x_{i} true or false with probability $\frac{1}{2}$ independently. $\frac{1}{2}$ is nothing special here.

In the following, we set each x_{i} true with probability $p \geq \frac{1}{2}$.

Flipping Biased Coins

Previously, we set each x_{i} true or false with probability $\frac{1}{2}$ independently. $\frac{1}{2}$ is nothing special here.

In the following, we set each x_{i} true with probability $p \geq \frac{1}{2}$.
We first consider the case that no clause is of the form $C_{j}=\bar{x}_{i}$.

Flipping Biased Coins

Previously, we set each x_{i} true or false with probability $\frac{1}{2}$ independently. $\frac{1}{2}$ is nothing special here.

In the following, we set each x_{i} true with probability $p \geq \frac{1}{2}$.
We first consider the case that no clause is of the form $C_{j}=\bar{x}_{i}$.

Lemma

If each x_{i} is set to true with probability $p \geq 1 / 2$ independently, then the probability that any given clause is satisfied is at least $\min \left(p, 1-p^{2}\right)$ for instances with no negated unit clauses.

Proof.

Proof

Proof.

If the clause is a unit clause, then the probability the clause is satisfied is p.

Proof

Proof.

If the clause is a unit clause, then the probability the clause is satisfied is p.
If the clause has length at least two, then the probability that the clause is satisfied is $1-p^{a}(1-p)^{b}$, where a is the number of negated variables and b is the number of unnegated variables. Since $p>\frac{1}{2}>1-p$, this probability is at least $1-p^{2}$.

Flipping Biased Coins

Armed with previous lemma，we then maximize $\min \left(p, 1-p^{2}\right)$ ，which is achieved when $p=1-p^{2}$ ， namely $p=\frac{1}{2}(\sqrt{5}-1) \approx 0.618$ ．

Flipping Biased Coins

Armed with previous lemma, we then maximize $\min \left(p, 1-p^{2}\right)$, which is achieved when $p=1-p^{2}$, namely $p=\frac{1}{2}(\sqrt{5}-1) \approx 0.618$.

We need more effort to deal with negated unit clauses, i.e., $C_{j}=\bar{x}_{i}$ for some j.

Flipping Biased Coins

Armed with previous lemma, we then maximize $\min \left(p, 1-p^{2}\right)$, which is achieved when $p=1-p^{2}$, namely $p=\frac{1}{2}(\sqrt{5}-1) \approx 0.618$.

We need more effort to deal with negated unit clauses, i.e., $C_{j}=\bar{x}_{i}$ for some j.
We distinguish between two cases:

1. Assume $C_{j}=\bar{x}_{i}$ and there is no clause such that $C=x_{i}$. In this case, we can introduce a new variable y and replace the appearance of \bar{x}_{i} in φ by y and the appearance of x_{i} by \bar{y}.

Flipping Biased Coins

2. $C_{j}=\bar{x}_{i}$ and some clause $C_{k}=x_{i}$. W.L.O.G we assume $w\left(C_{j}\right) \leq w\left(C_{k}\right)$. Note that for any assignment, C_{j} and C_{k} cannot be satisfied simultaneously. Let v_{i} be the weight of the unit clause \bar{x}_{i} if it exists in the instance, and let v_{i} be zero otherwise, we have

$$
\mathrm{OPT} \leq \sum_{j=1}^{m} w_{j}-\sum_{i=1}^{n} v_{i}
$$

Flipping Biased Coins

2. $C_{j}=\bar{x}_{i}$ and some clause $C_{k}=x_{i}$. W.L.O.G we assume $w\left(C_{j}\right) \leq w\left(C_{k}\right)$. Note that for any assignment, C_{j} and C_{k} cannot be satisfied simultaneously. Let v_{i} be the weight of the unit clause \bar{x}_{i} if it exists in the instance, and let v_{i} be zero otherwise, we have

$$
\mathrm{OPT} \leq \sum_{j=1}^{m} w_{j}-\sum_{i=1}^{n} v_{i}
$$

We set each x_{i} true with probability $p=\frac{1}{2}(\sqrt{5}-1)$, then

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} w_{j} E\left[Y_{j}\right] \\
& \geq p \cdot\left(\sum_{j=1}^{m} w_{j}-\sum_{i=1}^{n} v_{i}\right) \\
& \geq p \cdot \mathrm{OPT}
\end{aligned}
$$

Rounding by Linear Programming

The Use of Linear Program

Integer Program Characterization:

$$
\begin{aligned}
& \max \quad \sum_{j=1}^{m} w_{j} z_{j} \\
& \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}, \quad \forall C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}, \\
& y_{i} \in\{0,1\}, \quad i=1, \ldots, n, \\
& z_{j} \in\{0,1\}, \quad j=1, \ldots, m \text {. }
\end{aligned}
$$

where y_{i} indicate the assignment of variable x_{i} and z_{j} indicates whether clause C_{j} is satisfied.

The Use of Linear Program

Linear Program Relaxation:

$$
\begin{array}{ll}
\max & \sum_{j=1}^{m} w_{j} z_{j} \\
& \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j},
\end{array} \quad \forall C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i},
$$

where y_{i} indicate the assignment of variable x_{i} and z_{j} indicates whether clause C_{j} is satisfied.

Flipping Different Coins

Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of the linear program.

Flipping Different Coins

Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of the linear program．
We set x_{i} to true with probability y_{i}^{*} ．

Flipping Different Coins

Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of the linear program.
We set x_{i} to true with probability y_{i}^{*}.
This can be viewed as flipping different coins for every variable.

Flipping Different Coins

Let $\left(y^{*}, z^{*}\right)$ be an optimal solution of the linear program．
We set x_{i} to true with probability y_{i}^{*} ．
This can be viewed as flipping different coins for every variable．

Theorem

Randomized rounding gives a randomized（ $1-\frac{1}{e}$ ）－approximation algorithm for MAX－SAT．

Analysis

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { clause } C_{j} \text { not satisfied }\right] \\
= & \prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*} \\
\leq & {\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}} } \\
= & {\left[1-\frac{1}{l_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)\right]^{l_{j}} \leq\left(1-\frac{z_{j}^{*} l_{j}}{l_{j}}\right) }
\end{aligned}
$$

Analysis

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { clause } C_{j} \text { not satisfied }\right] \\
= & \prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*} \\
\leq & {\left[\frac{1}{l_{j}}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{l_{j}} \quad \begin{array}{l}
\text { Arithmetic-Geometric } \\
\text { Mean Inequality }
\end{array} } \\
= & {\left[1-\frac{1}{l_{j}}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)\right]^{l_{j}} \leq\left(1-\frac{z_{j}^{*}}{l_{j}}\right) }
\end{aligned}
$$

Analysis

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { clause } C_{j} \text { satisfied }\right] \\
\geq & 1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}} \\
\geq & {\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} }
\end{aligned}
$$

Analysis

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { clause } C_{j} \text { satisfied }\right] \\
\geq & 1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}} \\
\geq & {\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} }
\end{aligned}
$$

Analysis

$$
\begin{aligned}
& \operatorname{Pr}\left[\text { clause } C_{j} \text { satisfied }\right] \\
\geq & 1-\left(1-\frac{z_{j}^{*}}{l_{j}}\right)^{l_{j}} \\
\geq & {\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] z_{j}^{*} }
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
E[W] & =\sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[\text { clause } C_{j} \text { satisfied }\right] \\
& \geq \sum_{j=1}^{m} w_{j} z_{j}^{*}\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right] \\
& \geq\left(1-\frac{1}{e}\right) \cdot \text { OPT }
\end{aligned}
$$

The Combined Algorithm

Choosing the Better of Two

The randomized rounding algorithm performs better when l_{j}-s are small. ($\left(1-\frac{1}{k}\right)^{k}$ is nondecreasing)

Choosing the Better of Two

The randomized rounding algorithm performs better when l_{j}－s are small．（ $\left(1-\frac{1}{k}\right)^{k}$ is nondecreasing）

The unbiased randomized algorithm performs better when l_{j}－s are large．

Choosing the Better of Two

The randomized rounding algorithm performs better when l_{j}-s are small. $\left(\left(1-\frac{1}{k}\right)^{k}\right.$ is nondecreasing)

The unbiased randomized algorithm performs better when l_{j}-s are large.
We will combine them together.

Choosing the Better of Two

The randomized rounding algorithm performs better when l_{j}-s are small. $\left(\left(1-\frac{1}{k}\right)^{k}\right.$ is nondecreasing)

The unbiased randomized algorithm performs better when l_{j}-s are large.
We will combine them together.

Theorem

Choosing the better of the two solutions given by the two algorithms yields a randomized
$\frac{3}{4}$-approximation algorithm for MAX-SAT.

Analysis

Let W_{1} and W_{2} be the r.v. of value of solution of randomized rounding algorithm and unbiased randomized algorithm respectively. Then

$$
\begin{aligned}
E\left[\max \left(W_{1}, W_{2}\right)\right] & \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j=1}^{m} w_{j} z_{j}^{*}\left[1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right]+\frac{1}{2} \sum_{j=1}^{m} w_{j}\left(1-2^{-l_{j}}\right) \\
& \geq \sum_{j=1}^{m} w_{j} z_{j}^{*}\left[\frac{1}{2}\left(1-\left(1-\frac{1}{l_{j}}\right)^{l_{j}}\right)+\frac{1}{2}\left(1-2^{-l_{j}}\right)\right] \\
& \geq \frac{3}{4} \cdot \mathrm{OPT}
\end{aligned}
$$

Referred Materials

Referred Materials

Content of this lecture comes from Chapter 16 in［Vaz04］．

