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MAX-SAT

Given n boolean variables x1, . . . , xn, a CNF

ϕ(x1, . . . , xn) =
m∧

j=1

Cj

and a nonnegative weight wj for each Cj .

Find an assignment to the xis that maximizes the weight of the satisfied clauses.
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Simple Randomization Algorithm
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Flipping a Coin

A very straightforward randomized approximation algorithm is to set each xi to true independently
with probability 1/2.

Setting each xi to true with probability 1/2 independently gives a randomized 1
2
-approximation

algorithm for weighted MAX-SAT.
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Proof

Proof.

Let W be a random variable that is equal to the total weight of the satisfied clauses. Define an
indicator random variable Yj for each clause Cj such that Yj = 1 if and only if Cj is satisfied. Then

W =

m∑
j=1

wjYj

We use OPT to denote value of optimum solution, then

E[W ] =

m∑
j=1

wjE[Yj ] =

m∑
j=1

wj · Pr[clause Cj satisfied]
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Proof (cont’d)

Since each variable is set to true independently, we have

Pr[clause Cj satisfied] =

(
1−

(
1

2

)lj
)
≥ 1

2

where lj is the number of literals in clause Cj . Hence,

E[W ] ≥ 1

2

m∑
j=1

wj ≥
1

2
OPT.
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A Finer Analysis

Observe that if lj ≥ k for each clause j, then the analysis above shows that the algorithm is a
(1− ( 1

2
)k)-approximation algorithm for such instances. For instance, the performance guarantee of

MAX E3SAT is 7/8.

From the analysis, we can see that the performance of the algorithm is better on instances
consisting of long clauses.

Theorem

If there is an ( 7
8

+ ε)-approximation algorithm for MAX E3SAT for any constant ε > 0, then P = NP.
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Derandomization
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Derandomization

The previous randomized algorithm can be derandomized. Note that

E[W ] = E[W | x1 ← true] · Pr[x1 ← true]

+ E[W | x1 ← false] · Pr[x1 ← false]

=
1

2
(E[W | x1 ← true] + E[W | x1 ← false])

We set b1 true if E[W | x1 ← true] ≥ E[W | x1 ← false] and set b1 false otherwise. Let the
value of x1 be b1.

Continue this process until all bi are found, i.e., all n variables have been set.
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An Example

x3 ∨ x5 ∨ x7

• Pr[clause satisfied | x1 ← true, x2 ← false, x3 ← true] = 1

• Pr[clause satisfied | x1 ← true, x2 ← false, x3 ← false] = 1− ( 1
2
)2 = 3

4
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Derandomization

This is a deterministic 1
2
-approximation algorithm because of the following two facts:

1 E[W | x1 ← b1, . . . , xi ← bi] can be computed in polynomial time for fixed b1, . . . , bi.

2 E[W | x1 ← b1, . . . , xi ← bi, xi+1 ← bi+1] ≥ E[W | x1 ← b1, . . . , xi ← bi] for all i, and by
induction, E[W | x1 ← b1, . . . , xi ← bi, xi+1 ← bi+1] ≥ E[W ].
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Flipping Biased Coins
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Flipping Biased Coins

Previously, we set each xi true or false with probability 1
2

independently. 1
2

is nothing special
here.

In the following, we set each xi true with probability p ≥ 1
2
.

We first consider the case that no clause is of the form Cj = x̄i.

Lemma

If each xi is set to true with probability p ≥ 1/2 independently, then the probability that any given
clause is satisfied is at least min(p, 1− p2) for instances with no negated unit clauses.
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Proof

Proof.

If the clause is a unit clause, then the probability the clause is satisfied is p.

If the clause has length at least two, then the probability that the clause is satisfied is 1− pa(1− p)b,
where a is the number of negated variables and b is the number of unnegated variables. Since
p > 1

2
> 1− p, this probability is at least 1− p2.
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Flipping Biased Coins

Armed with previous lemma, we then maximize min(p, 1− p2), which is achieved when p = 1− p2,
namely p = 1

2
(
√

5− 1) ≈ 0.618.

We need more effort to deal with negated unit clauses, i.e., Cj = x̄i for some j.

We distinguish between two cases:

1. Assume Cj = x̄i and there is no clause such that C = xi. In this case, we can introduce a new
variable y and replace the appearance of x̄i in ϕ by y and the appearance of xi by ȳ.
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Flipping Biased Coins

2. Cj = x̄i and some clause Ck = xi. W.L.O.G we assume w(Cj) ≤ w(Ck). Note that for any
assignment, Cj and Ck cannot be satisfied simultaneously. Let vi be the weight of the unit
clause x̄i if it exists in the instance, and let vi be zero otherwise, we have

OPT ≤
m∑

j=1

wj −
n∑

i=1

vi

We set each xi true with probability p = 1
2
(
√

5− 1), then

E[W ] =

m∑
j=1

wjE[Yj ]

≥ p ·

(
m∑

j=1

wj −
n∑

i=1

vi

)
≥ p ·OPT
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Rounding by Linear Programming
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The Use of Linear Program

Integer Program Characterization:

max
∑m

j=1 wjzj∑
i∈Pj

yi +
∑

i∈Nj
(1− yi) ≥ zj , ∀Cj =

∨
i∈Pj

xi ∨
∨

i∈Nj
x̄i,

yi ∈ {0, 1}, i = 1, . . . , n,

zj ∈ {0, 1}, j = 1, . . . ,m.

where yi indicate the assignment of variable xi and zj indicates whether clause Cj is satisfied.
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The Use of Linear Program

Linear Program Relaxation:

max
∑m

j=1 wjzj∑
i∈Pj

yi +
∑

i∈Nj
(1− yi) ≥ zj , ∀Cj =

∨
i∈Pj

xi ∨
∨

i∈Nj
x̄i,

0 ≤ yi ≤ 1, i = 1, . . . , n,

0 ≤ zj ≤ 1, j = 1, . . . ,m.

where yi indicate the assignment of variable xi and zj indicates whether clause Cj is satisfied.
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Flipping Different Coins

Let (y∗, z∗) be an optimal solution of the linear program.

We set xi to true with probability y∗i .

This can be viewed as flipping different coins for every variable.

Theorem

Randomized rounding gives a randomized (1− 1
e
)-approximation algorithm for MAX-SAT.
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Analysis

Pr[clause Cj not satisfied]

=
∏
i∈Pj

(1− y∗i )
∏
i∈Nj

y∗i

≤
[

1
lj

(∑
i∈Pj

(1− y∗i ) +
∑

i∈Nj
y∗i

)]lj

Arithmetic-Geometric

Mean Inequality

=

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i )

lj

≤

(
1−

z∗j
lj

lj
)
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Analysis

Pr[clause Cj satisfied]

≥ 1−
(

1−
z∗j
lj

)lj

≥
[
1−

(
1− 1

lj

)lj]
z∗j

Jensen’s Inequality

Therefore, we have
E[W ] =

m∑
j=1

wj Pr[clause Cj satisfied]

≥
m∑

j=1

wjz
∗
j

[
1−

(
1− 1

lj

)lj
]

≥
(

1− 1

e

)
·OPT
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The Combined Algorithm
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Choosing the Better of Two

The randomized rounding algorithm performs better when lj-s are small. (
(
1− 1

k

)k is
nondecreasing)

The unbiased randomized algorithm performs better when lj-s are large.

We will combine them together.

Theorem

Choosing the better of the two solutions given by the two algorithms yields a randomized
3
4
-approximation algorithm for MAX-SAT.
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Analysis

Let W1 and W2 be the r.v. of value of solution of randomized rounding algorithm and unbiased
randomized algorithm respectively. Then

E[max(W1,W2)] ≥ E[
1

2
W1 +

1

2
W2]

≥ 1

2

m∑
j=1

wjz
∗
j

[
1−

(
1− 1

lj

)lj
]

+
1

2

m∑
j=1

wj

(
1− 2−lj

)

≥
m∑

j=1

wjz
∗
j

[
1

2

(
1−

(
1− 1

lj

)lj
)

+
1

2

(
1− 2−lj

)]

≥ 3

4
·OPT
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Referred Materials

Content of this lecture comes from Chapter 16 in [Vaz04].
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