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Category of Formal Methods

Formal modelling

Formal specification

Formal verification

2/41



Bugs in Software
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Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.
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Formal Verifications

Here are many formal verification techniques:

• model checking

• theorem proving

• type systems

• SAT, SMT, and string solving . . .

This lecture will give a very brief introduction of model checking.
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Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a (non-trivial) data structure.

Sometimes it is called algorithmic formal verification.
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The First Question
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Safety as Reachability

Bad things will never happen!
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Liveness

Good things will eventually happen!
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Data Structures

Kripke structure: M = (S, S0, R, L)

• S, finite set of state

• S0 ⊆ S, initial state
• R ⊆ S × S, transition relations

• L : S → 2AP , status label function
(AP : atomic propositions)

Finite automata: A = (Σ, Q,Q0, F, δ)

• A, finite set of input alphabet

• Q, finite set of control location

• Q0 ⊆ Q, initial control locations

• F ⊆ Q, final control locations

• δ ⊆ Q× Σ×Q, transitions

a b

b c c

1

a b

b c

b c

c

c

c

1

11/41



Finite Systems Vs. Infinite Computation Tree
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An Microwave Oven Example

Completeness of
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The oven has four attributes: start(ed), (door) closed, heat(ing), and 
beep(ing). The diagram above shows how the oven can move from 
state to state.

The specification is:
       “Whenever  is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs 
of fixed depth in hardware and software systems. It has 
successfully been applied to chip designs, embedded controllers, 
communication protocols, and several other areas. Based on fast 
SAT-solving algorithms, BMC is often found to be orders of 
magnitude faster than conventional model checking techniques 
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven. 
The requirement is that the door should always be closed when the 
heat is on. Starting in the topmost state, one easily sees that this 
specification holds for all paths on length 1,2,3,... When do we know 
to stop? Since the DIAMETER (longest shortest path) has length 4, 
and since the specification is a reachability temporal property, if no 
bug of depth at most 4 is found, then no bug will ever be found, and 
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent 
need for formal methods that PROVE systems 

correct, rather than merely find bugs.”

HOW DEEP IS DEEP 
ENOUGH?

For high-confidence embedded software, however, finding bugs 
is not enough: equally important is the ability to prove systems 
correct. In order for BMC to guarantee correctness, the search 
depth must exceed some pre-computed value, known as the 
COMPLETENESS THRESHOLD (CT). The Complete 
Bounded Model Checking algorithm then works as follows:

0  0

1  1

0  1

1  0

Computing the 
Completeness Threshold

We have developed algorithms to compute the completeness 
threshold of a temporal property , expressed as an LTL formula. 
These algorithms are based on standard translation of   into an 
equivalent Buchi automaton, and on analysis of this automaton. 
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is 
based on the diameter and recurrence diameter (longest loop-free 
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to 
further case studies, in particular to embedded controllers such as 
the Casting Plant.

BOUNDED MODEL 
CHECKING

The diameter, d, is 1, since any 
value can at any time be 
loaded. In other words, from 
any node you can reach any 
other node in one step.

The recurrence diameter, rd, is 
3, since the longest loop-free 
p a t h  h a s  t h r e e  e d g e s .
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Logic-Based MC: Temporal Operators
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Logic-Based MC: Path Operators, A, EPath Quantifier: A (for all), E (some)

Note: Aψ=¬E¬ψ
• AG: safety, bad things will never happen.

• AF : liveness, good things will eventually happen.
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Example Specification

EF ( Start ∧ ¬ Ready)

• It is possible to get to a state where Start holds but Ready does not hold.

AG( Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.
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Example Specification

AG (request→ F grant)

• Each request will be finally grant(ed).

AG(¬(¬request U grant))

• Each grant follows some request.

AGF request

• request occurs infinitely often.
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CTL and LTL

CTL: temporal operators must be immediately followed by path quantifiers.

• e.g., AFφ,EGφ,AXEGφ,EXA(φUψ)

LTL: path quantifiers are allowed only at the outermost position.

• e.g., AGFφ,EX(φUψ), A(Fφ ∨Gψ)

Except for fairness, most properties are expressed in CTL ∩ LTL.
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Bounded Model Checking (BMC) is a technique for finding bugs 
of fixed depth in hardware and software systems. It has 
successfully been applied to chip designs, embedded controllers, 
communication protocols, and several other areas. Based on fast 
SAT-solving algorithms, BMC is often found to be orders of 
magnitude faster than conventional model checking techniques 
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven. 
The requirement is that the door should always be closed when the 
heat is on. Starting in the topmost state, one easily sees that this 
specification holds for all paths on length 1,2,3,... When do we know 
to stop? Since the DIAMETER (longest shortest path) has length 4, 
and since the specification is a reachability temporal property, if no 
bug of depth at most 4 is found, then no bug will ever be found, and 
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent 
need for formal methods that PROVE systems 

correct, rather than merely find bugs.”

HOW DEEP IS DEEP 
ENOUGH?

For high-confidence embedded software, however, finding bugs 
is not enough: equally important is the ability to prove systems 
correct. In order for BMC to guarantee correctness, the search 
depth must exceed some pre-computed value, known as the 
COMPLETENESS THRESHOLD (CT). The Complete 
Bounded Model Checking algorithm then works as follows:

0  0

1  1

0  1
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Computing the 
Completeness Threshold

We have developed algorithms to compute the completeness 
threshold of a temporal property , expressed as an LTL formula. 
These algorithms are based on standard translation of   into an 
equivalent Buchi automaton, and on analysis of this automaton. 
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is 
based on the diameter and recurrence diameter (longest loop-free 
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to 
further case studies, in particular to embedded controllers such as 
the Casting Plant.

BOUNDED MODEL 
CHECKING

The diameter, d, is 1, since any 
value can at any time be 
loaded. In other words, from 
any node you can reach any 
other node in one step.

The recurrence diameter, rd, is 
3, since the longest loop-free 
p a t h  h a s  t h r e e  e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!
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to stop? Since the DIAMETER (longest shortest path) has length 4, 
and since the specification is a reachability temporal property, if no 
bug of depth at most 4 is found, then no bug will ever be found, and 
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent 
need for formal methods that PROVE systems 

correct, rather than merely find bugs.”

HOW DEEP IS DEEP 
ENOUGH?

For high-confidence embedded software, however, finding bugs 
is not enough: equally important is the ability to prove systems 
correct. In order for BMC to guarantee correctness, the search 
depth must exceed some pre-computed value, known as the 
COMPLETENESS THRESHOLD (CT). The Complete 
Bounded Model Checking algorithm then works as follows:

0  0

1  1

0  1

1  0

Computing the 
Completeness Threshold

We have developed algorithms to compute the completeness 
threshold of a temporal property , expressed as an LTL formula. 
These algorithms are based on standard translation of   into an 
equivalent Buchi automaton, and on analysis of this automaton. 
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is 
based on the diameter and recurrence diameter (longest loop-free 
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to 
further case studies, in particular to embedded controllers such as 
the Casting Plant.

BOUNDED MODEL 
CHECKING

The diameter, d, is 1, since any 
value can at any time be 
loaded. In other words, from 
any node you can reach any 
other node in one step.

The recurrence diameter, rd, is 
3, since the longest loop-free 
p a t h  h a s  t h r e e  e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!
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Fairness

More Examples...

• Protocols operated over reliable channels, to check no message is ever transmitted but never
received.

• Scheduler that schedules released tasks, to check all released tasks will be finally scheduled.

How to check fairness

• LTL: A(GFφ)
e.g. AG(start→ AF heat) ∧ A(GF start ∧ close ∧ ¬beep)

• CTL: NG!
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Quiz I: Crossing River

Group {Man, Sheep, Wolf, Cabbage} trying across river.

Constraints:

• Man can carry one item at a time by boat.

• If Sheep and Wolf only, Wolf will eat Sheep.

• If Sheep and Cabbage only, Sheep will eat Cabbage.

Find way by model checking!
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Quiz II. Hamilton Path

Find out whether a graph occurs a Hamilton path.
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CTL Model Checking Algorithms
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CTL Formula

• AX and EX

• AF and EF

• AG and EG

• AG and EG
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Properties

AXϕ = ¬EX(¬ϕ)
EFϕ = E(TrueU ϕ)
AGϕ = ¬EF (¬ϕ)
AFϕ = ¬EG(¬ϕ)
A(ϕU ψ) = ¬E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ ¬EG¬ϕ

• EX, EG, EU are enough!

25/41



Properties

AXϕ = ¬EX(¬ϕ)
EFϕ = E(TrueU ϕ)
AGϕ = ¬EF (¬ϕ)
AFϕ = ¬EG(¬ϕ)
A(ϕU ψ) = ¬E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ ¬EG¬ϕ

• EX, EG, EU are enough!

25/41



EX

• Trivial!
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EX

• Trivial!
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EU
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EU
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EG
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EG
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The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!
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Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain
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Further Topics
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Infinite Structures: Unbounded Stack
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Pushdown Automata

A pushdown system P = (Q, q0,Γ, w0,∆) is a transition
system with carrying an unbounded stack.

• Q is a set of control locations, and q0 ∈ Q is the
initial location.

• Γ is a finite set of stack alphabet, and w0 ∈ Γ∗ is the
initial stack contents.

• ∆ : (Q× Γ)× (Q× Γ∗) is a finite subset of
transitions with the form ⟨q, γ⟩ ↪→ ⟨q′, w⟩, where
q, q′ ∈ Q, γ ∈ Γ and w ∈ Γ∗.
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Infinite Structures: Real-Time
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Timed Automata

A TA (Q, q0, F,X,∆), where

• Q is a finite set of locations,

• initial location q0 ∈ Q,

• F ⊆ Q is the set of final locations,

• X is a finite set of clocks,

• ∆ ⊆ Q×O ×Q. A transition

q1
ϕ−→ q2, where ϕ is either of

Local ϵ,
Test x ∈ I?,

Assignment x← I.

x← [0, 4.5] x ∈ (0, nav]?

x← [0, 6.5]

x ∈ (nav,+∞)?

y ← [0, 0]

y ∈ (0, data]?

x ∈ (data,+∞)?

x
←

[0
,0
]

x ∈ (0, data]?
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Infinite Structures: Multi-Threads
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Petri Net

A Petri net is a triple N = (P, T, F ) where:

• P and T are disjoint finite sets of
places and transitions, respectively.

• F ⊆ (P ×T )∪ (T ×P ) is a set of arcs.
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Infinite Structures

Recursion Time Concurrent

x← [0, 4.5] x ∈ (0, nav]?

x← [0, 6.5]

x ∈ (nav,+∞)?

y ← [0, 0]

y ∈ (0, data]?

x ∈ (data,+∞)?

x
←

[0
,0
]

x ∈ (0, data]?

pushdown automata timed automata petri net

What if combines several features of them?
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Another Direction

What if structure is simple but the graph is much, much huge?
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