
Design and Analysis of Algorithms (IV)
Algorithmic Verification Basics

Guoqiang Li
School of Software

1/41

Category of Formal Methods

Formal modelling

Formal specification

Formal verification

2/41

Bugs in Software

3/41

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

4/41

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

4/41

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

4/41

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology?

The answer is YES!

This is so called formal verification.

4/41

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

4/41

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

4/41

Formal Verifications

Here are many formal verification techniques:

• model checking

• theorem proving

• type systems

• SAT, SMT, and string solving . . .

This lecture will give a very brief introduction of model checking.

5/41

Formal Verifications

Here are many formal verification techniques:

• model checking

• theorem proving

• type systems

• SAT, SMT, and string solving . . .

This lecture will give a very brief introduction of model checking.

5/41

Formal Verifications

Here are many formal verification techniques:

• model checking

• theorem proving

• type systems

• SAT, SMT, and string solving . . .

This lecture will give a very brief introduction of model checking.

5/41

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a (non-trivial) data structure.

Sometimes it is called algorithmic formal verification.

6/41

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a (non-trivial) data structure.

Sometimes it is called algorithmic formal verification.

6/41

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a (non-trivial) data structure.

Sometimes it is called algorithmic formal verification.

6/41

The First Question

7/41

The First Question

7/41

Safety as Reachability

Bad things will never happen!

8/41

Safety as Reachability

Bad things will never happen!

8/41

The Second Question

9/41

The Second Question

9/41

Liveness

Good things will eventually happen!

10/41

Liveness

Good things will eventually happen!

10/41

Data Structures

Kripke structure: M = (S, S0, R, L)

• S, finite set of state

• S0 ⊆ S, initial state
• R ⊆ S × S, transition relations

• L : S → 2AP , status label function
(AP : atomic propositions)

Finite automata: A = (Σ, Q,Q0, F, δ)

• A, finite set of input alphabet

• Q, finite set of control location

• Q0 ⊆ Q, initial control locations

• F ⊆ Q, final control locations

• δ ⊆ Q× Σ×Q, transitions

a b

b c c

1

a b

b c

b c

c

c

c

1

11/41

Finite Systems Vs. Infinite Computation Tree

12/41

An Microwave Oven Example

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

13/41

Logic-Based MC: Temporal Operators

Next

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

Finally

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

Globally

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

Until

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

14/41

Logic-Based MC: Path Operators, A, EPath Quantifier: A (for all), E (some)

Note: Aψ=¬E¬ψ
• AG: safety, bad things will never happen.

• AF : liveness, good things will eventually happen.

15/41

Example Specification

EF (Start ∧ ¬ Ready)

• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

EF (Start ∧ ¬ Ready)
• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

EF (Start ∧ ¬ Ready)
• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

EF (Start ∧ ¬ Ready)
• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

EF (Start ∧ ¬ Ready)
• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

EF (Start ∧ ¬ Ready)
• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

EF (Start ∧ ¬ Ready)
• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

EF (Start ∧ ¬ Ready)
• It is possible to get to a state where Start holds but Ready does not hold.

AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on every computation path.

AG(EF Restart)

• From any state it is possible to get to the Restart.

16/41

Example Specification

AG (request→ F grant)

• Each request will be finally grant(ed).

AG(¬(¬request U grant))

• Each grant follows some request.

AGF request

• request occurs infinitely often.

17/41

Example Specification

AG (request→ F grant)

• Each request will be finally grant(ed).

AG(¬(¬request U grant))

• Each grant follows some request.

AGF request

• request occurs infinitely often.

17/41

Example Specification

AG (request→ F grant)

• Each request will be finally grant(ed).

AG(¬(¬request U grant))

• Each grant follows some request.

AGF request

• request occurs infinitely often.

17/41

Example Specification

AG (request→ F grant)

• Each request will be finally grant(ed).

AG(¬(¬request U grant))

• Each grant follows some request.

AGF request

• request occurs infinitely often.

17/41

Example Specification

AG (request→ F grant)

• Each request will be finally grant(ed).

AG(¬(¬request U grant))

• Each grant follows some request.

AGF request

• request occurs infinitely often.

17/41

Example Specification

AG (request→ F grant)

• Each request will be finally grant(ed).

AG(¬(¬request U grant))

• Each grant follows some request.

AGF request

• request occurs infinitely often.

17/41

CTL and LTL

CTL: temporal operators must be immediately followed by path quantifiers.

• e.g., AFφ,EGφ,AXEGφ,EXA(φUψ)

LTL: path quantifiers are allowed only at the outermost position.

• e.g., AGFφ,EX(φUψ), A(Fφ ∨Gψ)

Except for fairness, most properties are expressed in CTL ∩ LTL.

18/41

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!

19/41

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!

19/41

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!

19/41

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!

19/41

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!

19/41

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

AG(start→ AF heat)

• NG!

Constraint:
AGFstart ∧ close ∧ ¬beep
(operate correctly infinitely often)

AG(start→ AF heat)

• OK!

19/41

Fairness

More Examples...

• Protocols operated over reliable channels, to check no message is ever transmitted but never
received.

• Scheduler that schedules released tasks, to check all released tasks will be finally scheduled.

How to check fairness

• LTL: A(GFφ)
e.g. AG(start→ AF heat) ∧ A(GF start ∧ close ∧ ¬beep)

• CTL: NG!

20/41

Fairness

More Examples...

• Protocols operated over reliable channels, to check no message is ever transmitted but never
received.

• Scheduler that schedules released tasks, to check all released tasks will be finally scheduled.

How to check fairness

• LTL: A(GFφ)
e.g. AG(start→ AF heat) ∧ A(GF start ∧ close ∧ ¬beep)

• CTL: NG!

20/41

Quiz I: Crossing River

Group {Man, Sheep, Wolf, Cabbage} trying across river.

Constraints:

• Man can carry one item at a time by boat.

• If Sheep and Wolf only, Wolf will eat Sheep.

• If Sheep and Cabbage only, Sheep will eat Cabbage.

Find way by model checking!

21/41

Quiz II. Hamilton Path

Find out whether a graph occurs a Hamilton path.

22/41

CTL Model Checking Algorithms

23/41

CTL Formula

• AX and EX

• AF and EF

• AG and EG

• AG and EG

24/41

Properties

AXϕ = ¬EX(¬ϕ)
EFϕ = E(TrueU ϕ)
AGϕ = ¬EF (¬ϕ)
AFϕ = ¬EG(¬ϕ)
A(ϕU ψ) = ¬E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ ¬EG¬ϕ

• EX, EG, EU are enough!

25/41

Properties

AXϕ = ¬EX(¬ϕ)
EFϕ = E(TrueU ϕ)
AGϕ = ¬EF (¬ϕ)
AFϕ = ¬EG(¬ϕ)
A(ϕU ψ) = ¬E[¬ψ U (¬ϕ ∧ ¬ψ)] ∧ ¬EG¬ϕ

• EX, EG, EU are enough!

25/41

EX

• Trivial!

26/41

EX

• Trivial!

26/41

EU

27/41

EU

28/41

EG

29/41

EG

30/41

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

31/41

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

31/41

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

31/41

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

31/41

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

31/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Milestones

• symbolic model checking SMV

• partial reduction Spin

• on-the-fly model checking SMV v.2

• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?

• antichain

32/41

Further Topics

33/41

Infinite Structures: Unbounded Stack

34/41

Pushdown Automata

A pushdown system P = (Q, q0,Γ, w0,∆) is a transition
system with carrying an unbounded stack.

• Q is a set of control locations, and q0 ∈ Q is the
initial location.

• Γ is a finite set of stack alphabet, and w0 ∈ Γ∗ is the
initial stack contents.

• ∆ : (Q× Γ)× (Q× Γ∗) is a finite subset of
transitions with the form ⟨q, γ⟩ ↪→ ⟨q′, w⟩, where
q, q′ ∈ Q, γ ∈ Γ and w ∈ Γ∗.

35/41

Infinite Structures: Real-Time

36/41

Timed Automata

A TA (Q, q0, F,X,∆), where

• Q is a finite set of locations,

• initial location q0 ∈ Q,

• F ⊆ Q is the set of final locations,

• X is a finite set of clocks,

• ∆ ⊆ Q×O ×Q. A transition

q1
ϕ−→ q2, where ϕ is either of

Local ϵ,
Test x ∈ I?,

Assignment x← I.

x← [0, 4.5] x ∈ (0, nav]?

x← [0, 6.5]

x ∈ (nav,+∞)?

y ← [0, 0]

y ∈ (0, data]?

x ∈ (data,+∞)?

x
←

[0
,0
]

x ∈ (0, data]?

37/41

Infinite Structures: Multi-Threads

38/41

Petri Net

A Petri net is a triple N = (P, T, F) where:

• P and T are disjoint finite sets of
places and transitions, respectively.

• F ⊆ (P ×T)∪ (T ×P) is a set of arcs.

39/41

Infinite Structures

Recursion Time Concurrent

x← [0, 4.5] x ∈ (0, nav]?

x← [0, 6.5]

x ∈ (nav,+∞)?

y ← [0, 0]

y ∈ (0, data]?

x ∈ (data,+∞)?

x
←

[0
,0
]

x ∈ (0, data]?

pushdown automata timed automata petri net

What if combines several features of them?

40/41

Infinite Structures

Recursion Time Concurrent

x← [0, 4.5] x ∈ (0, nav]?

x← [0, 6.5]

x ∈ (nav,+∞)?

y ← [0, 0]

y ∈ (0, data]?

x ∈ (data,+∞)?

x
←

[0
,0
]

x ∈ (0, data]?

pushdown automata timed automata petri net

What if combines several features of them?

40/41

Another Direction

What if structure is simple but the graph is much, much huge?

41/41

