

Design and Analysis of Algorithms V
Sequence Alignment

Guoqiang Li
School of Software

Shortest Paths in DAGs, Revisited

The special distinguishing feature of a DAG is that its nodes can be linearized, arranged on a line so that all edges go from left to right.

Shortest Paths in DAGs, Revisited

The special distinguishing feature of a DAG is that its nodes can be linearized, arranged on a line so that all edges go from left to right.

If compute dist values in the left-to-right order, we can always be sure that by the time we get to a node v, all the information we need is prepared to compute dist (v).

```
Initialize all dist(.) value to }\infty\mathrm{ ;
dist(s)=0;
for each v}\inV\{s}\mathrm{ , in linearized order do
    dist}(v)=\mp@subsup{\operatorname{min}}{(u,v)\inE}{}{\operatorname{dist}(u)+l(u,v)}
end
```

```
Initialize all dist(.) value to }\infty\mathrm{ ;
dist(s)=0;
for each v}\inV\{s}\mathrm{ , in linearized order do
    dist}(v)=\mp@subsup{\operatorname{min}}{(u,v)\inE}{}{\operatorname{dist}(u)+l(u,v)}
end
```

This algorithm is solving a collection of subproblems, $\{$ dist $(u) \mid u \in V\}$

Dynamic Programming

The algorithm is solving a collection of subproblems, $\{\operatorname{dist}(u): u \in V\}$. Start with the smallest of them, dist(s).

Dynamic Programming

The algorithm is solving a collection of subproblems, $\{\operatorname{dist}(u): u \in V\}$. Start with the smallest of them, dist(s).

Proceed with progressively "larger" subproblems, where a larger subproblem is get to if a lot of other subproblems is solved.

Dynamic Programming

The algorithm is solving a collection of subproblems, $\{\operatorname{dist}(u): u \in V\}$. Start with the smallest of them, dist(s).

Proceed with progressively "larger" subproblems, where a larger subproblem is get to if a lot of other subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a collection of subproblems and tackling them one by one, until the whole lot of them is solved.

Dynamic Programming

The algorithm is solving a collection of subproblems, $\{\operatorname{dist}(u): u \in V\}$. Start with the smallest of them, dist(s).

Proceed with progressively "larger" subproblems, where a larger subproblem is get to if a lot of other subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a collection of subproblems and tackling them one by one, until the whole lot of them is solved.

In dynamic programming we are given a DAG implicitly.

Longest Increasing Subsequences

The input of longest increasing subsequence problem, is a sequence of numbers a_{1}, \ldots, a_{n}.
A subsequence is any subset of these numbers taken in order, of the form

$$
a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}
$$

where $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$, and an increasing subsequence is one in which the numbers are getting strictly larger.

The task is to find the increasing subsequence of greatest length.

Graph Reformulation

A graph of all permissible transitions：
－A node i for each element a_{i} ，
－Directed edges (i, j) whenever it is possible for a_{i} and a_{j} to be consecutive elements：$i<j$ and $a_{i}<a_{j}$

Graph Reformulation

A graph of all permissible transitions:

- A node i for each element a_{i},
- Directed edges (i, j) whenever it is possible for a_{i} and a_{j} to be consecutive elements: $i<j$ and $a_{i}<a_{j}$

- This graph $G=(V, E)$ is a DAG, since all edges (i, j) have $i<j$
- There is a one-to-one correspondence between increasing subsequences and paths in this DAG.

The Algorithm

```
for }j=1\mathrm{ to }n\mathrm{ do
    L(j)=1+\operatorname{max}{L(i)|(i,j)\inE};
end
return(max j L(j));
```


Sequence Alignment

String Similarity

Q. How similar are two strings?

String Similarity

Q. How similar are two strings?

Example. ocurrance and occurrence.

String Similarity

Q. How similar are two strings?

Example. ocurrance and occurrence.

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost $=$ sum of gap and mismatch penalties.

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost $=$ sum of gap and mismatch penalties.

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}
\mathrm{C} T-\mathrm{G} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} \boldsymbol{\mathrm { C }}=\delta+\alpha_{C G}+\alpha_{T A}
\end{array}
$$

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost $=$ sum of gap and mismatch penalties.

```
C T - G A C C T T A C G C C T G G A C C G A A C C G
cost=}=\delta+\mp@subsup{\alpha}{CG}{}+\mp@subsup{\alpha}{TA}{
```

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information extraction,...

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ; mismatch penalty $\alpha_{p q}$.
- Cost $=$ sum of gap and mismatch penalties.

```
C T - G A C C T A C G C T G G A C C G A A C G
cost=}=\delta+\mp@subsup{\alpha}{CG}{}+\mp@subsup{\alpha}{TA}{
```

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information extraction,...

Example.

| Spokesperson confirms | | senior government | adviser was found |
| :--- | :--- | :--- | :--- | :--- |
| Spokesperson | said | thesenior | adviser was found |

Exercise

What is edit distance between these two strings?

Assume gap penalty $=2$ and mismatch penalty $=1$.
(A) 1
(B) 2
C. 3
(1) 4
(3) 5

Merging

Goal. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a min-cost alignment.

Merging

Goal. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a min-cost alignment.
Definition. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each character appears in at most one pair and no crossings.

Merging

Goal. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a min-cost alignment.
Definition. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each character appears in at most one pair and no crossings.

Definition The cost of an alignment M is:

$$
\operatorname{cost}(M)=\underbrace{\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i} y_{j}}+\underbrace{\sum_{i: x_{i} \text { unmached }} \delta+\sum_{j: y_{j} \text { unmatched }} \delta}_{\text {gap }}) . \underbrace{}_{\text {ind }} \delta}_{\text {mismatch }}
$$

Merging

Goal. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a min-cost alignment.
Definition. An alignment M is a set of ordered pairs $x_{i}-y_{j}$ such that each character appears in at most one pair and no crossings.

Definition The cost of an alignment M is:

$$
\operatorname{cost}(M)=\underbrace{\sum_{\left(x_{i}, y_{j}\right) \in M} \alpha_{x_{i} y_{j}}}_{\text {mismatch }}+\underbrace{\sum_{i: x_{i} \text { unmached }} \delta+\sum_{j: y_{j} \text { unmatched }} \delta}_{\text {gap }}
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}		x_{6}
C	T	A	C	C	-	G
-	T	A	C	A	T	G
	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}

an alignment of CTACCG and TACATG

$$
M=\left\{x_{2}-y_{1}, x_{3}-y_{2}, x_{4}-y_{3}, x_{5}-y_{4}, x_{6}-y_{6}\right\}
$$

Sequence Alignment：Problem Structure

Definition $O P T(i, j): \min$ cost of aligning prefix strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$ ．

Goal． $\operatorname{OPT}(m, n)$ ．

Sequence Alignment: Problem Structure

Definition $O P T(i, j): \min$ cost of aligning prefix strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

Goal. $\operatorname{OPT}(m, n)$.
Case 1. $O P T(i, j)$ matches $x_{i}-y_{j}$.
Pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$.

Sequence Alignment: Problem Structure

Definition $O P T(i, j): \min$ cost of aligning prefix strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

Goal. $\operatorname{OPT}(m, n)$.
Case 1. $O P T(i, j)$ matches $x_{i}-y_{j}$.
Pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$.

Case 2a. $\operatorname{OPT}(i, j)$ leaves x_{i} unmatched.
Pay gap for $x_{i}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$.

Sequence Alignment: Problem Structure

Definition $O P T(i, j): \min$ cost of aligning prefix strings $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.

Goal. $\operatorname{OPT}(m, n)$.
Case 1. $O P T(i, j)$ matches $x_{i}-y_{j}$.
Pay mismatch for $x_{i}-y_{j}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$.

Case 2a. $\operatorname{OPT}(i, j)$ leaves x_{i} unmatched.
Pay gap for $x_{i}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$.

Case 2b. $O P T(i, j)$ leaves y_{j} unmatched.
Pay gap for $y_{j}+\min$ cost of aligning $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$.

Sequence Alignment: Problem Structure

Bellman equation.

$$
O P T(i, j)= \begin{cases}j \delta & \text { if } \mathrm{i}=0 \\ i \delta & \text { if } \mathrm{j}=0 \\ \min \begin{cases}\alpha_{x_{i} y_{j}}+O P T(i-1, j-1) \\ \delta+O P T(i-1, j) \\ \delta+O P T(i, j-1)\end{cases} & \text { otherwise }\end{cases}
$$

Sequence Alignment: Algorithm

```
SEquenceAlignment \(\left(m, n, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, \delta, \alpha\right)\)
for \(i=0\) to \(m\) do
    \(\mid M[i, 0] \leftarrow i \delta ;\)
end
for \(j=0\) to \(n\) do
    \(M[0, j] \leftarrow j \delta ;\)
end
for \(i=1\) to \(m\) do
    for \(j=1\) to \(n\) do
        \(M[i, j] \leftarrow \min \left\{\alpha_{x_{i} y_{j}}+M[i-1, j-1], \delta+M[i-1, j], \delta+M[i, j-1]\right\} ;\)
    end
end
Return \(M[m, n]\);
```


Sequence Alignment: Traceback

		\mathbf{S}	\mathbf{I}	\mathbf{M}	\mathbf{I}	\mathbf{L}	\mathbf{A}	\mathbf{R}	\mathbf{I}	T	Y
	$0 \longleftarrow 2$	4	6	8	10	12	14	16	18	20	
I	2	4	1	3	2	4	6	8	7	9	11
D	4	6	3	3	4	4	6	8	9	9	11
E	6	8	5	5	6	6	6	8	10	11	11
N	8	10	7	7	8	8	8	8	10	12	13
T	10	12	9	9	9	10	10	10	10	9	11
I	12	14	8	10	8	10	12	12	9	11	11
T	14	16	10	10	10	10	12	14	11	8	11
Y	16	18	12	12	12	12	12	14	13	10	7

Sequence Alignment: Analysis

Theorem
The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m and n in $\Theta(m n)$ time and space.

Sequence Alignment: Analysis

Theorem
The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m and n in $\Theta(m n)$ time and space.

Proof.

Sequence Alignment: Analysis

Theorem

The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m and n in $\Theta(m n)$ time and space.

Proof.

- Algorithm computes edit distance.
- Can trace back to extract optimal alignment itself.

Hirschberg's Algorithm

Sequence Alignment in Linear Space

[Hirschberg] There exists an algorithm to find an optimal alignment in $O(m n)$ time and $O(m+n)$ space.

Sequence Alignment in Linear Space

[Hirschberg] There exists an algorithm to find an optimal alignment in $O(m n)$ time and $O(m+n)$ space.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.

Proof.

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.

Proof. [by strong induction on $i+j$]

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.

Proof. [by strong induction on $i+j]$

- Base case: $f(0,0)=O P T(0,0)=0$.

Hirschberg＇s Algorithm

Edit distance graph．
－Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j) ．
－Lemma：$f(i, j)=O P T(i, j)$ for all i and j ．

Proof．［by strong induction on $i+j]$
－Base case：$f(0,0)=O P T(0,0)=0$ ．
－Inductive hypothesis：assume true for all $\left(i^{\prime}, j^{\prime}\right)$ with $i^{\prime}+j^{\prime}<i+j$ ．

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.

Proof. [by strong induction on $i+j]$

- Base case: $f(0,0)=O P T(0,0)=0$.
- Inductive hypothesis: assume true for all $\left(i^{\prime}, j^{\prime}\right)$ with $i^{\prime}+j^{\prime}<i+j$.
- Last edge on shortest path to (i, j) is from $(i-1, j-1),(i-1, j)$, or $(i, j-1)$.

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.

Proof. [by strong induction on $i+j]$

- Base case: $f(0,0)=O P T(0,0)=0$.
- Inductive hypothesis: assume true for all $\left(i^{\prime}, j^{\prime}\right)$ with $i^{\prime}+j^{\prime}<i+j$.
- Last edge on shortest path to (i, j) is from $(i-1, j-1),(i-1, j)$, or $(i, j-1)$.
- Thus,

$$
\begin{aligned}
f(i, j) & =\min \left\{\alpha_{x_{i} y_{j}}+f(i-1, j-1), \delta+f(i-1, j), \delta+f(i, j-1)\right\} \\
& =\min \left\{\alpha_{x_{i} y_{j}}+\operatorname{OPT}(i-1, j-1), \delta+\operatorname{OPT}(i-1, j), \delta+\operatorname{OPT}(i, j-1)\right\} \\
& =\operatorname{OPT}(i, j)
\end{aligned}
$$

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.

Hirschberg's Algorithm

Edit distance graph.

- Let $f(i, j)$ denote length of shortest path from $(0,0)$ to (i, j).
- Lemma: $f(i, j)=O P T(i, j)$ for all i and j.
- Can compute $f(\cdot, j)$ for any j in $O(m n)$ time and $O(m)$ space.

Hirschberg＇s Algorithm

Edit distance graph．
－Let $g(i, j)$ denote length of shortest path from (i, j) to (m, n) ．

Hirschberg's Algorithm

Edit distance graph.

- Let $g(i, j)$ denote length of shortest path from (i, j) to (m, n).
- Can compute $g(i, j)$ by reversing the edge orientations and inverting the roles of $(0,0)$ and (m, n).

Hirschberg's Algorithm

Edit distance graph.

- Let $g(i, j)$ denote length of shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in $O(m n)$ time and $O(m)$ space.

Hirschberg's Algorithm

Observation 1. The length of a shortest path that uses (i, j) is $f(i, j)+g(i, j)$.

Hirschberg's Algorithm

Observation 2. let q be an index that minimizes $f(q, n / 2)+g(q, n / 2)$. Then, there exists a shortest path from $(0,0)$ to (m, n) that uses $(q, n / 2)$.

Hirschberg's Algorithm

Divide. Find index q that minimizes $f(q, n / 2)+g(q, n / 2)$; save node $i-j$ as part of solution. Conquer. Recursively compute optimal alignment in each piece.

Hirschberg＇s Algorithm：Space Analysis

Theorem

Hirschberg＇s algorithm uses $\Theta(m+n)$ space．

Hirschberg's Algorithm: Space Analysis

Theorem

Hirschberg's algorithm uses $\Theta(m+n)$ space.

Proof.

Hirschberg's Algorithm: Space Analysis

Theorem

Hirschberg's algorithm uses $\Theta(m+n)$ space.

Proof.

- Each recursive call uses $\Theta(m)$ space to compute $f(\cdot, n / 2)$ and $g(\cdot, n / 2)$.
- Only $\Theta(1)$ space needs to be maintained per recursive call.
- Number of recursive calls $\leq n$.

Exercise

What is the worst-case running time of Hirschberg's algorithm?
(4) $O(m n)$
(3) $O(m n \log m)$
c. $O(m n \log n)$
(1) $O(m n \log m \log n)$

Running Time Analysis Warmup

Theorem

Let $T(m, n)$ be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m, n)=O(m n \log n)$.

Running Time Analysis Warmup

Theorem

Let $T(m, n)$ be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m, n)=O(m n \log n)$.

Proof.

- $T(m, n)$ is monotone nondecreasing in both m and n.

$$
\begin{aligned}
T(m, n) & \leq 2 T(m, n / 2)+O(m n) \\
& \Rightarrow T(m, n)=O(m n \log n)
\end{aligned}
$$

Running Time Analysis Warmup

Theorem

Let $T(m, n)$ be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m, n)=O(m n \log n)$.

Proof.

- $T(m, n)$ is monotone nondecreasing in both m and n.

$$
\begin{aligned}
T(m, n) & \leq 2 T(m, n / 2)+O(m n) \\
& \Rightarrow T(m, n)=O(m n \log n)
\end{aligned}
$$

Remark. Analysis is not tight because two subproblems are of size $(q, n / 2)$ and ($m-q, n / 2$). Next, we prove $T(m, n)=O(m n)$.

Running Time Analysis

Theorem

Let $T(m, n)$ be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m, n)=O(m n)$.

Running Time Analysis

Theorem

Let $T(m, n)$ be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m, n)=O(m n)$.

Proof.

Running Time Analysis

Theorem

Let $T(m, n)$ be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m, n)=O(m n)$.

Proof. [by strong induction on $m+n$]

Running Time Analysis

Theorem

Let $T(m, n)$ be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m, n)=O(m n)$.

Proof. [by strong induction on $m+n$]

- $O(m n)$ time to compute $f(\cdot, n / 2)$ and $g(\cdot, n / 2)$ and find index q.
- $T(q, n / 2)+T(m-q, n / 2)$ time for two recursive calls.
- Choose constant c so that:

$$
\begin{aligned}
& T(m, 2) \leq c m \\
& T(2, n) \leq c n \\
& T(m, n) \leq c m n+T(q, n / 2)+T(m-q, n / 2)
\end{aligned}
$$

Running Time Analysis

Claim

$T(m, n) \leq 2 c m n$

Running Time Analysis

Claim

$T(m, n) \leq 2 c m n$

- Base cases: $m=2$ and $n=2$.
- Inductive hypothesis: $T(m, n) \leq 2 c m n$ for all $\left(m^{\prime}, n^{\prime}\right)$ with $m^{\prime}+n^{\prime}<m+n$.

$$
\begin{aligned}
T(m, n) & \leq T(q, n / 2)+T(m-q, n / 2)+c m n \\
& \leq 2 c q n / 2+2 c(m-q) n / 2+c m n \\
& =c q n+c m n-c q n+c m n \\
& =2 c m n
\end{aligned}
$$

Longest common subsequence

Problem. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a common subsequence that is as long as possible.

Longest common subsequence

Problem. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a common subsequence that is as long as possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common subsequence if it results in the same string.

Longest common subsequence

Problem. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a common subsequence that is as long as possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG) = GGCAACG.

Longest common subsequence

Problem. Given two strings $x_{1} x_{2} \ldots x_{m}$ and $y_{1} y_{2} \ldots y_{n}$, find a common subsequence that is as long as possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG) = GGCAACG.
Applications. Unix diff, git, bioinformatics.

Quiz

How about the longest common string?

Referred Materials

Referred Materials

- Content of this lecture comes from Section 6.1 and 6.2 in [DPV07], Section 6.6 and 6.7 in [KT05].
- Suggest to read Section 6.2 in [KT05].

