

Design and Analysis of Algorithms V

Sequence Alignment

Guoqiang Li School of Software

The special distinguishing feature of a DAG is that its nodes can be linearized, arranged on a line so that all edges go from left to right.

The special distinguishing feature of a DAG is that its nodes can be linearized, arranged on a line so that all edges go from left to right.

If compute dist values in the left-to-right order, we can always be sure that by the time we get to a node v, all the information we need is prepared to compute dist(v).

 $\begin{array}{l} \mbox{Initialize all dist}(.) \mbox{ value to ∞;} \\ \mbox{dist}(s) = 0; \\ \mbox{for each } v \in V \backslash \{s\}, \mbox{ in linearized order do} \\ \mbox{ | } \mbox{dist}(v) = min_{(u,v) \in E} \{ \mbox{dist}(u) + l(u,v) \}; \\ \mbox{end} \end{array}$

This algorithm is solving a collection of subproblems, $\{\mathtt{dist}(u) \mid u \in V\}$

The algorithm is solving a collection of subproblems, $\{dist(u) : u \in V\}$. Start with the smallest of them, dist(s).

The algorithm is solving a collection of subproblems, $\{dist(u) : u \in V\}$. Start with the smallest of them, dist(s).

Proceed with progressively "larger" subproblems, where a larger subproblem is get to if a lot of other subproblems is solved.

The algorithm is solving a collection of subproblems, $\{dist(u) : u \in V\}$. Start with the smallest of them, dist(s).

Proceed with progressively "larger" subproblems, where a larger subproblem is get to if a lot of other subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a collection of subproblems and tackling them one by one, until the whole lot of them is solved.

The algorithm is solving a collection of subproblems, $\{\texttt{dist}(u) : u \in V\}$. Start with the smallest of them, dist(s).

Proceed with progressively "larger" subproblems, where a larger subproblem is get to if a lot of other subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a collection of subproblems and tackling them one by one, until the whole lot of them is solved.

In dynamic programming we are given a DAG implicitly.

Longest Increasing Subsequences

The input of longest increasing subsequence problem, is a sequence of numbers a_1, \ldots, a_n .

A subsequence is any subset of these numbers taken in order, of the form

 $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$

where $1 \le i_1 < i_2 < \ldots < i_k \le n$, and an increasing subsequence is one in which the numbers are getting strictly larger.

The task is to find the increasing subsequence of greatest length.

Graph Reformulation

A graph of all permissible transitions:

- A node *i* for each element *a_i*,
- Directed edges (i, j) whenever it is possible for a_i and a_j to be consecutive elements: i < j and $a_i < a_j$

Graph Reformulation

A graph of all permissible transitions:

- A node *i* for each element *a_i*,
- Directed edges (i, j) whenever it is possible for a_i and a_j to be consecutive elements: i < j and $a_i < a_j$

- This graph G = (V, E) is a DAG, since all edges (i, j) have i < j
- There is a one-to-one correspondence between increasing subsequences and paths in this DAG.

The Algorithm

for j = 1 to n do $| L(j) = 1 + \max\{L(i) \mid (i, j) \in E\};$ end return(max_j L(j));

Sequence Alignment

String Similarity

Q. How similar are two strings?

String Similarity

Q. How similar are two strings?

Example. ocurrance and occurrence.

String Similarity

Q. How similar are two strings?

Example. ocurrance and occurrence.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty α_{pq} .
- Cost = sum of gap and mismatch penalties.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty α_{pq} .
- Cost = sum of gap and mismatch penalties.

C T - G A C C T A C G C T G G A C G A A C G

 $cost = \delta + \alpha_{CG} + \alpha_{TA}$

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty α_{pq} .
- Cost = sum of gap and mismatch penalties.

C T - G A C C T A C G C T G G A C G A A C G

 $cost = \delta + \alpha_{CG} + \alpha_{TA}$

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information extraction, ...

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty α_{pq} .
- Cost = sum of gap and mismatch penalties.

C T - G A C C T A C G C T G G A C G A A C G

$cost = \delta + \alpha_{CG} + \alpha_{TA}$

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information extraction, ...

Example.

Spokespersonconfirmsseniorgovernmentadviser was foundSpokespersonsaidthesenioradviser was found

BLOSUM Matrix for Proteins

	Α	R	Ν	D	с	Q	Е	G	н		L	К	М	F	Ρ	S	Т	W	Y	۷
Α	7	-3	-3	-3	-1	-2	-2	0	-3	-3	-3	-1	-2	-4	-1	2	0	-5	-4	-1
R	-3	9	-1	-3	-6	1	-1	-4	0	-5	-4	3	-3	-5	-3	-2	-2	-5	-4	-4
N	-3	-1	9	2	-5	0	-1	-1	1	-6	-6	0	-4	-6	-4	1	0	-7	-4	-5
D	-3	-3	2	10	-7	-1	2	-3	-2	-7	-7	-2	-6	-6	-3	-1	-2	-8	-6	-6
с	-1	-6	-5	-7	13	-5	-7	-6	-7	-2	-3	-6	-3	-4	-6	-2	-2	-5	-5	-2
Q	-2	1	0	-1	-5	9	3	-4	1	-5	-4	2	-1	-5	-3	-1	-1	-4	-3	-4
Е	-2	-1	-1	2	-7	3	8	-4	0	-6	-6	1	-4	-6	-2	-1	-2	-6	-5	-4
G	0	-4	-1	-3	-6	-4	-4	9	-4	-7	-7	-3	-5	-6	-5	-1	-3	-6	-6	-6
Н	-3	0	1	-2	-7	1	0	-4	12	-6	-5	-1	-4	-2	-4	-2	-3	-4	3	-5
Т	-3	-5	-6	-7	-2	-5	-6	-7	-6	7	2	-5	2	-1	-5	-4	-2	-5	-3	4
L	-3	-4	-б	-7	-3	-4	-6	-7	-5	2	6	-4	3	0	-5	-4	-3	-4	-2	1
К	-1	3	0	-2	-6	2	1	-3	-1	-5	-4	8	-3	-5	-2	-1	-1	-6	-4	-4
М	-2	-3	-4	-6	-3	-1	-4	-5	-4	2	3	-3	9	0	-4	-3	-1	-3	-3	1
F	-4	-5	-6	-6	-4	-5	-6	-6	-2	-1	0	-5	0	10	-6	-4	-4	0	4	-2
Ρ	-1	-3	-4	-3	-6	-3	-2	-5	-4	-5	-5	-2	-4	-6	12	-2	-3	-7	-6	-4
s	2	-2	1	-1	-2	-1	-1	-1	-2	-4	-4	-1	-3	-4	-2	7	2	-б	-3	-3
Т	0	-2	0	-2	-2	-1	-2	-3	-3	-2	-3	-1	-1	-4	-3	2	8	-5	-3	0
W	-5	-5	-7	-8	-5	-4	-6	-6	-4	-5	-4	-6	-3	0	-7	-6	-5	16	3	-5
Y	-4	-4	-4	-6	-5	-3	-5	-6	3	-3	-2	-4	-3	4	-6	-3	-3	3	11	-3
v	-1	-4	-5	-6	-2	-4	-4	-6	-5	4	1	-4	1	-2	-4	-3	0	-5	-3	7

Exercise

What is edit distance between these two strings?

PALETTE PALATE

Assume gap penalty = 2 and mismatch penalty = 1.

A 1

B 2

G 3

0 4

() 5

Goal. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a min-cost alignment.

Goal. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a min-cost alignment.

Definition. An alignment M is a set of ordered pairs $x_i - y_j$ such that each character appears in at most one pair and no crossings.

Goal. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a min-cost alignment.

Definition. An alignment M is a set of ordered pairs $x_i - y_j$ such that each character appears in at most one pair and no crossings.

Definition The cost of an alignment M is:

$$\operatorname{cost}(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i:x_i \text{ unmached}} \delta + \sum_{j:y_j \text{ unmatched}} \delta}_{\operatorname{gap}}$$

Goal. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a min-cost alignment.

Definition. An alignment M is a set of ordered pairs $x_i - y_j$ such that each character appears in at most one pair and no crossings.

Definition The cost of an alignment M is:

$$\cot(M) = \sum_{\substack{(x_i, y_j) \in M \\ \text{mismatch}}} \alpha_{x_i y_j} + \sum_{\substack{i:x_i \text{ unmached} \\ gap}} \delta + \sum_{j:y_j \text{ unmatched}} \delta$$

$$\frac{x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6}{C \quad T \quad A \quad C \quad C \quad - \quad G}$$

$$\frac{C \quad T \quad A \quad C \quad A \quad T \quad G}{y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_6}$$
an alignment of CTACCG and TACATG

$$M = \{x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6\}$$

Definition OPT(i, j): min cost of aligning prefix strings $x_1x_2...x_i$ and $y_1y_2...y_j$.

Goal. OPT(m, n).

Definition OPT(i, j): min cost of aligning prefix strings $x_1x_2...x_i$ and $y_1y_2...y_j$.

Goal. OPT(m, n).

Case 1. OPT(i, j) matches $x_i - y_j$. Pay mismatch for $x_i - y_j + \min$ cost of aligning $x_1x_2 \dots x_{i-1}$ and $y_1y_2 \dots y_{j-1}$.

Definition OPT(i, j): min cost of aligning prefix strings $x_1x_2...x_i$ and $y_1y_2...y_j$.

Goal. OPT(m, n).

Case 1. OPT(i, j) matches $x_i - y_j$. Pay mismatch for $x_i - y_j + \min$ cost of aligning $x_1x_2 \dots x_{i-1}$ and $y_1y_2 \dots y_{j-1}$.

Case 2a. OPT(i, j) leaves x_i unmatched. Pay gap for x_i + min cost of aligning $x_1x_2...x_{i-1}$ and $y_1y_2...y_j$.

Definition OPT(i, j): min cost of aligning prefix strings $x_1x_2...x_i$ and $y_1y_2...y_j$.

Goal. OPT(m, n).

Case 1. OPT(i, j) matches $x_i - y_j$. Pay mismatch for $x_i - y_j + \min$ cost of aligning $x_1x_2 \dots x_{i-1}$ and $y_1y_2 \dots y_{j-1}$.

Case 2a. OPT(i, j) leaves x_i unmatched. Pay gap for x_i + min cost of aligning $x_1x_2...x_{i-1}$ and $y_1y_2...y_j$.

Case 2b. OPT(i, j) leaves y_j unmatched. Pay gap for y_j + min cost of aligning $x_1x_2...x_i$ and $y_1y_2...y_{j-1}$.

Bellman equation.

$$OPT(i,j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0\\ \\ \min \begin{cases} \alpha_{x_iy_j} + OPT(i-1,j-1)\\ \delta + OPT(i-1,j) & \text{otherwise}\\ \delta + OPT(i,j-1) \end{cases}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣 ▶ 臣 ∽ 9 € € 16/39

Sequence Alignment: Algorithm


```
SEQUENCEALIGNMENT(m, n, x_1, \ldots, x_m, y_1, \ldots, y_n, \delta, \alpha)
for i = 0 to m do
   M[i,0] \leftarrow i\delta;
end
for j = 0 to n do
   M[0,j] \leftarrow j\delta;
end
for i = 1 to m do
    for j = 1 to n do
        M[i,j] \leftarrow \min\{\alpha_{x_iy_j} + M[i-1,j-1], \delta + M[i-1,j], \delta + M[i,j-1]\};
    end
end
RETURN M[m, n];
```

Sequence Alignment: Traceback

		S	I.	м	Т	L	Α	R	Т	т	Y
	0 🔶	2	4	6	8	10	12	14	16	18	20
I	2	4	14	— 3 《	2	4	6	8	7	9	11
D	4	6	3	3	4	4	6	8	9	9	11
E	6	8	5	5	6	6	6	8	10	11	11
N	8	10	7	7	8	8	8	8	10	12	13
т	10	12	9	9	9	10	10	10	10	9	11
I	12	14	8	10	8	10	12	12	9	11	11
т	14	16	10	10	10	10	12	14	11	8	11
Y	16	18	12	12	12	12	12	14	13	10	7
Sequence Alignment: Analysis

Theorem

The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m and n in $\Theta(mn)$ time and space.

Sequence Alignment: Analysis

Theorem

The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m and n in $\Theta(mn)$ time and space.

Proof.

Sequence Alignment: Analysis

Theorem

The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m and n in $\Theta(mn)$ time and space.

Proof.

- Algorithm computes edit distance.
- Can trace back to extract optimal alignment itself.

▲□▶ ▲□▶ ▲ ■ ▶ ▲ ■ → ○ へ ○ 20/39

Sequence Alignment in Linear Space

[Hirschberg] There exists an algorithm to find an optimal alignment in O(mn) time and O(m + n) space.

Sequence Alignment in Linear Space

[Hirschberg] There exists an algorithm to find an optimal alignment in O(mn) time and O(m + n) space.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

Edit distance graph.

- Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
- Lemma: f(i, j) = OPT(i, j) for all i and j.

Edit distance graph.

- Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
- Lemma: f(i,j) = OPT(i,j) for all i and j.

Proof.

Edit distance graph.

- Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
- Lemma: f(i,j) = OPT(i,j) for all i and j.

Edit distance graph.

- Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
- Lemma: f(i,j) = OPT(i,j) for all i and j.

Proof. [by strong induction on i + j]

• Base case: f(0,0) = OPT(0,0) = 0.

Edit distance graph.

- Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
- Lemma: f(i,j) = OPT(i,j) for all i and j.

- Base case: f(0,0) = OPT(0,0) = 0.
- Inductive hypothesis: assume true for all (i', j') with i' + j' < i + j.

Edit distance graph.

- Let f(i,j) denote length of shortest path from (0,0) to (i,j).
- Lemma: f(i,j) = OPT(i,j) for all i and j.

- Base case: f(0,0) = OPT(0,0) = 0.
- Inductive hypothesis: assume true for all (i', j') with i' + j' < i + j.
- Last edge on shortest path to (i, j) is from (i 1, j 1), (i 1, j), or (i, j 1).

Edit distance graph.

- Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
- Lemma: f(i, j) = OPT(i, j) for all i and j.

- Base case: f(0,0) = OPT(0,0) = 0.
- Inductive hypothesis: assume true for all (i', j') with i' + j' < i + j.
- Last edge on shortest path to (i, j) is from (i 1, j 1), (i 1, j), or (i, j 1).
- Thus,

$$\begin{aligned} f(i,j) &= \min \left\{ \alpha_{x_i y_j} + f(i-1,j-1), \delta + f(i-1,j), \delta + f(i,j-1) \right\} \\ &= \min \left\{ \alpha_{x_i y_j} + OPT(i-1,j-1), \delta + OPT(i-1,j), \delta + OPT(i,j-1) \right\} \\ &= OPT(i,j) \end{aligned}$$

Edit distance graph.

- Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
- Lemma: f(i, j) = OPT(i, j) for all i and j.

Edit distance graph.

- Let f(i,j) denote length of shortest path from (0,0) to (i,j).
- Lemma: f(i, j) = OPT(i, j) for all i and j.
- Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m) space.

Edit distance graph.

• Let g(i, j) denote length of shortest path from (i, j) to (m, n).

Edit distance graph.

- Let g(i, j) denote length of shortest path from (i, j) to (m, n).
- Can compute g(i, j) by reversing the edge orientations and inverting the roles of (0, 0) and (m, n).

Edit distance graph.

- Let g(i, j) denote length of shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in O(mn) time and O(m) space.

Observation 1. The length of a shortest path that uses (i, j) is f(i, j) + g(i, j).

Observation 2. Let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, there exists a shortest path from (0,0) to (m,n) that uses (q, n/2).

Divide. Find index q that minimizes f(q, n/2) + g(q, n/2); save node *i*-*j* as part of solution.

Conquer. Recursively compute optimal alignment in each piece.

Hirschberg's Algorithm: Space Analysis

Theorem

Hirschberg's algorithm uses $\Theta(m+n)$ space.

Hirschberg's Algorithm: Space Analysis

Theorem

Hirschberg's algorithm uses $\Theta(m+n)$ space.

Proof.

▲□▶ ▲□▶ ▲ 토▶ ▲ 토▶ 토 - 키९ ℃ 31/39

Hirschberg's Algorithm: Space Analysis

Theorem

Hirschberg's algorithm uses $\Theta(m+n)$ space.

Proof.

- Each recursive call uses $\Theta(m)$ space to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$.
- Only $\Theta(1)$ space needs to be maintained per recursive call.
- Number of recursive calls $\leq n$.

Exercise

What is the worst-case running time of Hirschberg's algorithm?

- $\bigcirc O(mn)$
- $\bigcirc O(mn\log m)$
- $\bigcirc O(mn\log n)$
- $\bigcirc O(mn\log m\log n)$

Running Time Analysis Warmup

Theorem

Let T(m,n) be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m,n) = O(mn \log n)$.

Running Time Analysis Warmup

Theorem

Let T(m,n) be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m,n) = O(mn \log n)$.

Proof.

• T(m, n) is monotone nondecreasing in both m and n.

•

 $\begin{array}{ll} T(m,n) & \leq 2T(m,n/2) + O(mn) \\ & \Rightarrow T(m,n) = O(mn\log n) \end{array}$

Running Time Analysis Warmup

Theorem

Let T(m,n) be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, $T(m,n) = O(mn \log n)$.

Proof.

•

• T(m, n) is monotone nondecreasing in both m and n.

 $\begin{array}{ll} T(m,n) & \leq 2T(m,n/2) + O(mn) \\ & \Rightarrow T(m,n) = O(mn\log n) \end{array}$

Remark. Analysis is not tight because two subproblems are of size (q, n/2) and (m - q, n/2). Next, we prove T(m, n) = O(mn).

Theorem

Let T(m,n) be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, T(m,n) = O(mn).

Theorem

Let T(m,n) be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, T(m,n) = O(mn).

Proof.

Theorem

Let T(m,n) be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, T(m,n) = O(mn).

Theorem

Let T(m,n) be max running time of Hirschberg's algorithm on strings of lengths at most m and n. Then, T(m,n) = O(mn).

Proof. [by strong induction on m + n]

- O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Choose constant *c* so that:

$$\begin{split} T(m,2) &\leq cm \\ T(2,n) &\leq cn \\ T(m,n) &\leq cmn + T(q,n/2) + T(m-q,n/2) \end{split}$$

Claim

 $T(m,n) \leq 2cmn$

▲□▶ < @ ▶ < 注 ▶ < 注 ▶ 注 の Q (* 35/39)</p>

Claim

 $T(m,n) \leq 2cmn$

- Base cases: m = 2 and n = 2.
- Inductive hypothesis: $T(m, n) \leq 2cmn$ for all (m', n') with m' + n' < m + n.

 $T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$ $\leq 2cqn/2 + 2c(m-q)n/2 + cmn$ = cqn + cmn - cqn + cmn= 2cmn

Longest common subsequence

Problem. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a common subsequence that is as long as possible.

Longest common subsequence

Problem. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a common subsequence that is as long as possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common subsequence if it results in the same string.
Longest common subsequence

Problem. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a common subsequence that is as long as possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG) = GGCAACG.

Longest common subsequence

Problem. Given two strings $x_1x_2...x_m$ and $y_1y_2...y_n$, find a common subsequence that is as long as possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG) = GGCAACG.

Applications. Unix diff, git, bioinformatics.

Quiz

How about the longest common string?

Referred Materials

▲□▶ ▲□▶ ▲ Ξ ▶ ▲ Ξ ▶ Ξ • ⑦ ۹. (°) 38/39

Referred Materials

- Content of this lecture comes from Section 6.1 and 6.2 in [DPV07], Section 6.6 and 6.7 in [KT05].
- Suggest to read Section 6.2 in [KT05].