
Design and Analysis of Algorithms V
Sequence Alignment

Guoqiang Li
School of Software

1/39



Shortest Paths in DAGs, Revisited

2/39



Shortest Paths in DAGs, Revisited

B

DC

A

S E

1

2

4 1

6

3 1

2

S C A B D E
4 6

3

1

2

1

1

2

The special distinguishing feature of a DAG is that its nodes can be linearized, arranged on a line so

that all edges go from left to right.

If compute dist values in the left-to-right order, we can always be sure that by the time we get to a

node v, all the information we need is prepared to compute dist(v).

3/39



Shortest Paths in DAGs, Revisited

B

DC

A

S E

1

2

4 1

6

3 1

2

S C A B D E
4 6

3

1

2

1

1

2

The special distinguishing feature of a DAG is that its nodes can be linearized, arranged on a line so

that all edges go from left to right.

If compute dist values in the left-to-right order, we can always be sure that by the time we get to a

node v, all the information we need is prepared to compute dist(v).

3/39



Shortest Paths in DAGs, Revisited

B

DC

A

S E

1

2

4 1

6

3 1

2

S C A B D E
4 6

3

1

2

1

1

2

The special distinguishing feature of a DAG is that its nodes can be linearized, arranged on a line so

that all edges go from left to right.

If compute dist values in the left-to-right order, we can always be sure that by the time we get to a

node v, all the information we need is prepared to compute dist(v).

3/39



Shortest Paths in DAGs, Revisited

Initialize all dist(.) value to ∞;

dist(s)=0;

for each v ∈ V \{s}, in linearized order do

dist(v) = min(u,v)∈E{dist(u) + l(u, v)};
end

This algorithm is solving a collection of subproblems, {dist(u) | u ∈ V }

4/39



Shortest Paths in DAGs, Revisited

Initialize all dist(.) value to ∞;

dist(s)=0;

for each v ∈ V \{s}, in linearized order do

dist(v) = min(u,v)∈E{dist(u) + l(u, v)};
end

This algorithm is solving a collection of subproblems, {dist(u) | u ∈ V }

4/39



Dynamic Programming

The algorithm is solving a collection of subproblems, {dist(u) : u ∈ V }. Start with the smallest of

them, dist(s).

Proceed with progressively “larger” subproblems, where a larger subproblem is get to if a lot of other

subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a

collection of subproblems and tackling them one by one, until the whole lot of them is solved.

In dynamic programming we are given a DAG implicitly.

5/39



Dynamic Programming

The algorithm is solving a collection of subproblems, {dist(u) : u ∈ V }. Start with the smallest of

them, dist(s).

Proceed with progressively “larger” subproblems, where a larger subproblem is get to if a lot of other

subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a

collection of subproblems and tackling them one by one, until the whole lot of them is solved.

In dynamic programming we are given a DAG implicitly.

5/39



Dynamic Programming

The algorithm is solving a collection of subproblems, {dist(u) : u ∈ V }. Start with the smallest of

them, dist(s).

Proceed with progressively “larger” subproblems, where a larger subproblem is get to if a lot of other

subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a

collection of subproblems and tackling them one by one, until the whole lot of them is solved.

In dynamic programming we are given a DAG implicitly.

5/39



Dynamic Programming

The algorithm is solving a collection of subproblems, {dist(u) : u ∈ V }. Start with the smallest of

them, dist(s).

Proceed with progressively “larger” subproblems, where a larger subproblem is get to if a lot of other

subproblems is solved.

Dynamic programming is a powerful algorithmic paradigm where a problem is solved by identifying a

collection of subproblems and tackling them one by one, until the whole lot of them is solved.

In dynamic programming we are given a DAG implicitly.

5/39



Longest Increasing Subsequences

The input of longest increasing subsequence problem, is a sequence of numbers a1, . . . , an.

A subsequence is any subset of these numbers taken in order, of the form

ai1 , ai2 , . . . , aik

where 1 ≤ i1 < i2 < . . . < ik ≤ n, and an increasing subsequence is one in which the numbers are

getting strictly larger.

The task is to find the increasing subsequence of greatest length.

5 2 8 6 3 6 9 7

6/39



Graph Reformulation

A graph of all permissible transitions:

• A node i for each element ai,

• Directed edges (i, j) whenever it is possible for ai and aj to be consecutive elements:i < j and

ai < aj

5 2 8 3 9 766

• This graph G = (V,E) is a DAG, since all edges (i, j) have i < j

• There is a one-to-one correspondence between increasing subsequences and paths in this DAG.

7/39



Graph Reformulation

A graph of all permissible transitions:

• A node i for each element ai,

• Directed edges (i, j) whenever it is possible for ai and aj to be consecutive elements:i < j and

ai < aj

5 2 8 3 9 766

• This graph G = (V,E) is a DAG, since all edges (i, j) have i < j

• There is a one-to-one correspondence between increasing subsequences and paths in this DAG.

7/39



The Algorithm

for j = 1 to n do

L(j) = 1 + max{L(i) | (i, j) ∈ E};
end

return(maxj L(j));

8/39



Sequence Alignment

9/39



String Similarity

Q. How similar are two strings?

Example. ocurrance and occurrence.

10/39



String Similarity

Q. How similar are two strings?

Example. ocurrance and occurrence.

10/39



String Similarity

Q. How similar are two strings?

Example. ocurrance and occurrence.

10/39



Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty δ; mismatch penalty αpq.

• Cost = sum of gap and mismatch penalties.

C T - G A C C T A C G C T G G A C G A A C G

cost=δ + αCG + αTA

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information

extraction, . . .

Example.

Spokesperson confirms senior government adviser was found

Spokesperson said the senior adviser was found

11/39



Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty δ; mismatch penalty αpq.

• Cost = sum of gap and mismatch penalties.

C T - G A C C T A C G C T G G A C G A A C G

cost=δ + αCG + αTA

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information

extraction, . . .

Example.

Spokesperson confirms senior government adviser was found

Spokesperson said the senior adviser was found

11/39



Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty δ; mismatch penalty αpq.

• Cost = sum of gap and mismatch penalties.

C T - G A C C T A C G C T G G A C G A A C G

cost=δ + αCG + αTA

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information

extraction, . . .

Example.

Spokesperson confirms senior government adviser was found

Spokesperson said the senior adviser was found

11/39



Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty δ; mismatch penalty αpq.

• Cost = sum of gap and mismatch penalties.

C T - G A C C T A C G C T G G A C G A A C G

cost=δ + αCG + αTA

Applications. Bioinformatics, spell correction, machine translation, speech recognition, information

extraction, . . .

Example.

Spokesperson confirms senior government adviser was found

Spokesperson said the senior adviser was found

11/39



BLOSUM Matrix for Proteins

12/39



Exercise

What is edit distance between these two strings?

P A L E T T E P A L A T E

Assume gap penalty = 2 and mismatch penalty = 1.

A. 1

B. 2

C. 3

D. 4

E. 5

13/39



Merging

Goal. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a min-cost alignment.

Definition. An alignment M is a set of ordered pairs xi − yj such that each character appears in at

most one pair and no crossings.

Definition The cost of an alignment M is:

cost(M) =
∑

(xi,yj)∈M

αxiyj

︸ ︷︷ ︸
mismatch

+
∑

i:xi unmached

δ +
∑

j:yj unmatched

δ

︸ ︷︷ ︸
gap

x1 x2 x3 x4 x5 x6

C T A C C - G

- T A C A T G

y1 y2 y3 y4 y5 y6

an alignment of CTACCG and TACATG

M = {x2 − y1, x3 − y2, x4 − y3, x5 − y4, x6 − y6}

14/39



Merging

Goal. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a min-cost alignment.

Definition. An alignment M is a set of ordered pairs xi − yj such that each character appears in at

most one pair and no crossings.

Definition The cost of an alignment M is:

cost(M) =
∑

(xi,yj)∈M

αxiyj

︸ ︷︷ ︸
mismatch

+
∑

i:xi unmached

δ +
∑

j:yj unmatched

δ

︸ ︷︷ ︸
gap

x1 x2 x3 x4 x5 x6

C T A C C - G

- T A C A T G

y1 y2 y3 y4 y5 y6

an alignment of CTACCG and TACATG

M = {x2 − y1, x3 − y2, x4 − y3, x5 − y4, x6 − y6}

14/39



Merging

Goal. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a min-cost alignment.

Definition. An alignment M is a set of ordered pairs xi − yj such that each character appears in at

most one pair and no crossings.

Definition The cost of an alignment M is:

cost(M) =
∑

(xi,yj)∈M

αxiyj

︸ ︷︷ ︸
mismatch

+
∑

i:xi unmached

δ +
∑

j:yj unmatched

δ

︸ ︷︷ ︸
gap

x1 x2 x3 x4 x5 x6

C T A C C - G

- T A C A T G

y1 y2 y3 y4 y5 y6

an alignment of CTACCG and TACATG

M = {x2 − y1, x3 − y2, x4 − y3, x5 − y4, x6 − y6}

14/39



Merging

Goal. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a min-cost alignment.

Definition. An alignment M is a set of ordered pairs xi − yj such that each character appears in at

most one pair and no crossings.

Definition The cost of an alignment M is:

cost(M) =
∑

(xi,yj)∈M

αxiyj

︸ ︷︷ ︸
mismatch

+
∑

i:xi unmached

δ +
∑

j:yj unmatched

δ

︸ ︷︷ ︸
gap

x1 x2 x3 x4 x5 x6

C T A C C - G

- T A C A T G

y1 y2 y3 y4 y5 y6

an alignment of CTACCG and TACATG

M = {x2 − y1, x3 − y2, x4 − y3, x5 − y4, x6 − y6}
14/39



Sequence Alignment: Problem Structure

Definition OPT (i, j): min cost of aligning prefix strings x1x2 . . . xi and y1y2 . . . yj .

Goal. OPT (m,n).

Case 1. OPT (i, j) matches xi − yj .

Pay mismatch for xi − yj + min cost of aligning x1x2 . . . xi−1 and y1y2...yj−1.

Case 2a. OPT (i, j) leaves xi unmatched.

Pay gap for xi + min cost of aligning x1x2...xi−1 and y1y2 . . . yj .

Case 2b. OPT (i, j) leaves yj unmatched.

Pay gap for yj+ min cost of aligning x1x2...xi and y1y2 . . . yj−1.

15/39



Sequence Alignment: Problem Structure

Definition OPT (i, j): min cost of aligning prefix strings x1x2 . . . xi and y1y2 . . . yj .

Goal. OPT (m,n).

Case 1. OPT (i, j) matches xi − yj .

Pay mismatch for xi − yj + min cost of aligning x1x2 . . . xi−1 and y1y2...yj−1.

Case 2a. OPT (i, j) leaves xi unmatched.

Pay gap for xi + min cost of aligning x1x2...xi−1 and y1y2 . . . yj .

Case 2b. OPT (i, j) leaves yj unmatched.

Pay gap for yj+ min cost of aligning x1x2...xi and y1y2 . . . yj−1.

15/39



Sequence Alignment: Problem Structure

Definition OPT (i, j): min cost of aligning prefix strings x1x2 . . . xi and y1y2 . . . yj .

Goal. OPT (m,n).

Case 1. OPT (i, j) matches xi − yj .

Pay mismatch for xi − yj + min cost of aligning x1x2 . . . xi−1 and y1y2...yj−1.

Case 2a. OPT (i, j) leaves xi unmatched.

Pay gap for xi + min cost of aligning x1x2...xi−1 and y1y2 . . . yj .

Case 2b. OPT (i, j) leaves yj unmatched.

Pay gap for yj+ min cost of aligning x1x2...xi and y1y2 . . . yj−1.

15/39



Sequence Alignment: Problem Structure

Definition OPT (i, j): min cost of aligning prefix strings x1x2 . . . xi and y1y2 . . . yj .

Goal. OPT (m,n).

Case 1. OPT (i, j) matches xi − yj .

Pay mismatch for xi − yj + min cost of aligning x1x2 . . . xi−1 and y1y2...yj−1.

Case 2a. OPT (i, j) leaves xi unmatched.

Pay gap for xi + min cost of aligning x1x2...xi−1 and y1y2 . . . yj .

Case 2b. OPT (i, j) leaves yj unmatched.

Pay gap for yj+ min cost of aligning x1x2...xi and y1y2 . . . yj−1.

15/39



Sequence Alignment: Problem Structure

Bellman equation.

OPT (i, j) =



jδ if i = 0

iδ if j = 0

min


αxiyj +OPT (i− 1, j − 1)

δ +OPT (i− 1, j)

δ +OPT (i, j − 1)

otherwise

16/39



Sequence Alignment: Algorithm

SequenceAlignment(m,n, x1, . . . , xm, y1, . . . , yn, δ, α)

for i = 0 to m do

M [i, 0]← iδ;

end

for j = 0 to n do

M [0, j]← jδ;

end

for i = 1 to m do

for j = 1 to n do

M [i, j]← min{αxiyj +M [i− 1, j − 1], δ +M [i− 1, j], δ +M [i, j − 1]};
end

end

Return M [m,n];

17/39



Sequence Alignment: Traceback

18/39



Sequence Alignment: Analysis

Theorem

The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m

and n in Θ(mn) time and space.

Proof.

• Algorithm computes edit distance.

• Can trace back to extract optimal alignment itself.

19/39



Sequence Alignment: Analysis

Theorem

The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m

and n in Θ(mn) time and space.

Proof.

• Algorithm computes edit distance.

• Can trace back to extract optimal alignment itself.

19/39



Sequence Alignment: Analysis

Theorem

The DP algorithm computes the edit distance (and an optimal alignment) of two strings of lengths m

and n in Θ(mn) time and space.

Proof.

• Algorithm computes edit distance.

• Can trace back to extract optimal alignment itself.

19/39



Hirschberg’s Algorithm

20/39



Sequence Alignment in Linear Space

[Hirschberg] There exists an algorithm to find an optimal alignment in O(mn) time and O(m+ n)

space.

• Clever combination of divide-and-conquer and dynamic programming.

• Inspired by idea of Savitch from complexity theory.

21/39



Sequence Alignment in Linear Space

[Hirschberg] There exists an algorithm to find an optimal alignment in O(mn) time and O(m+ n)

space.

• Clever combination of divide-and-conquer and dynamic programming.

• Inspired by idea of Savitch from complexity theory.

21/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).

• Lemma: f(i, j) = OPT (i, j) for all i and j.

22/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).

• Lemma: f(i, j) = OPT (i, j) for all i and j.

Proof.

[by strong induction on i+ j]

• Base case: f(0, 0) = OPT (0, 0) = 0.

• Inductive hypothesis: assume true for all (i′, j′) with i′ + j′ < i+ j.

• Last edge on shortest path to (i, j) is from (i− 1, j − 1), (i− 1, j), or (i, j − 1).
• Thus,

f(i, j) = min
{
αxiyj

+ f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)
}

= min
{
αxiyj

+OPT (i− 1, j − 1), δ +OPT (i− 1, j), δ +OPT (i, j − 1)
}

= OPT (i, j)

23/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).

• Lemma: f(i, j) = OPT (i, j) for all i and j.

Proof. [by strong induction on i+ j]

• Base case: f(0, 0) = OPT (0, 0) = 0.

• Inductive hypothesis: assume true for all (i′, j′) with i′ + j′ < i+ j.

• Last edge on shortest path to (i, j) is from (i− 1, j − 1), (i− 1, j), or (i, j − 1).
• Thus,

f(i, j) = min
{
αxiyj

+ f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)
}

= min
{
αxiyj

+OPT (i− 1, j − 1), δ +OPT (i− 1, j), δ +OPT (i, j − 1)
}

= OPT (i, j)

23/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).

• Lemma: f(i, j) = OPT (i, j) for all i and j.

Proof. [by strong induction on i+ j]

• Base case: f(0, 0) = OPT (0, 0) = 0.

• Inductive hypothesis: assume true for all (i′, j′) with i′ + j′ < i+ j.

• Last edge on shortest path to (i, j) is from (i− 1, j − 1), (i− 1, j), or (i, j − 1).
• Thus,

f(i, j) = min
{
αxiyj

+ f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)
}

= min
{
αxiyj

+OPT (i− 1, j − 1), δ +OPT (i− 1, j), δ +OPT (i, j − 1)
}

= OPT (i, j)

23/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).

• Lemma: f(i, j) = OPT (i, j) for all i and j.

Proof. [by strong induction on i+ j]

• Base case: f(0, 0) = OPT (0, 0) = 0.

• Inductive hypothesis: assume true for all (i′, j′) with i′ + j′ < i+ j.

• Last edge on shortest path to (i, j) is from (i− 1, j − 1), (i− 1, j), or (i, j − 1).
• Thus,

f(i, j) = min
{
αxiyj

+ f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)
}

= min
{
αxiyj

+OPT (i− 1, j − 1), δ +OPT (i− 1, j), δ +OPT (i, j − 1)
}

= OPT (i, j)

23/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).

• Lemma: f(i, j) = OPT (i, j) for all i and j.

Proof. [by strong induction on i+ j]

• Base case: f(0, 0) = OPT (0, 0) = 0.

• Inductive hypothesis: assume true for all (i′, j′) with i′ + j′ < i+ j.

• Last edge on shortest path to (i, j) is from (i− 1, j − 1), (i− 1, j), or (i, j − 1).

• Thus,
f(i, j) = min

{
αxiyj

+ f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)
}

= min
{
αxiyj

+OPT (i− 1, j − 1), δ +OPT (i− 1, j), δ +OPT (i, j − 1)
}

= OPT (i, j)

23/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).

• Lemma: f(i, j) = OPT (i, j) for all i and j.

Proof. [by strong induction on i+ j]

• Base case: f(0, 0) = OPT (0, 0) = 0.

• Inductive hypothesis: assume true for all (i′, j′) with i′ + j′ < i+ j.

• Last edge on shortest path to (i, j) is from (i− 1, j − 1), (i− 1, j), or (i, j − 1).
• Thus,

f(i, j) = min
{
αxiyj

+ f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)
}

= min
{
αxiyj

+OPT (i− 1, j − 1), δ +OPT (i− 1, j), δ +OPT (i, j − 1)
}

= OPT (i, j)

23/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
• Lemma: f(i, j) = OPT (i, j) for all i and j.

• Can compute f(·, j) for any j in O(mn) time and O(m) space.

24/39



Hirschberg’s Algorithm

Edit distance graph.

• Let f(i, j) denote length of shortest path from (0, 0) to (i, j).
• Lemma: f(i, j) = OPT (i, j) for all i and j.
• Can compute f(·, j) for any j in O(mn) time and O(m) space.

24/39



Hirschberg’s Algorithm

Edit distance graph.

• Let g(i, j) denote length of shortest path from (i, j) to (m,n).

25/39



Hirschberg’s Algorithm

Edit distance graph.

• Let g(i, j) denote length of shortest path from (i, j) to (m,n).

• Can compute g(i, j) by reversing the edge orientations and inverting the roles of (0, 0) and (m,n).

26/39



Hirschberg’s Algorithm

Edit distance graph.

• Let g(i, j) denote length of shortest path from (i, j) to (m,n).
• Can compute g(·, j) for any j in O(mn) time and O(m) space.

27/39



Hirschberg’s Algorithm

Observation 1. The length of a shortest path that uses (i, j) is f(i, j) + g(i, j).

28/39



Hirschberg’s Algorithm

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, there exists a shortest

path from (0, 0) to (m,n) that uses (q, n/2).

29/39



Hirschberg’s Algorithm

Divide. Find index q that minimizes f(q, n/2) + g(q, n/2); save node i-j as part of solution.

Conquer. Recursively compute optimal alignment in each piece.

30/39



Hirschberg’s Algorithm: Space Analysis

Theorem

Hirschberg’s algorithm uses Θ(m+ n) space.

Proof.

• Each recursive call uses Θ(m) space to compute f(·, n/2) and g(·, n/2).

• Only Θ(1) space needs to be maintained per recursive call.

• Number of recursive calls ≤ n.

31/39



Hirschberg’s Algorithm: Space Analysis

Theorem

Hirschberg’s algorithm uses Θ(m+ n) space.

Proof.

• Each recursive call uses Θ(m) space to compute f(·, n/2) and g(·, n/2).

• Only Θ(1) space needs to be maintained per recursive call.

• Number of recursive calls ≤ n.

31/39



Hirschberg’s Algorithm: Space Analysis

Theorem

Hirschberg’s algorithm uses Θ(m+ n) space.

Proof.

• Each recursive call uses Θ(m) space to compute f(·, n/2) and g(·, n/2).

• Only Θ(1) space needs to be maintained per recursive call.

• Number of recursive calls ≤ n.

31/39



Exercise

What is the worst-case running time of Hirschberg’s algorithm?

A. O(mn)

B. O(mn logm)

C. O(mn logn)

D. O(mn logm logn)

32/39



Running Time Analysis Warmup

Theorem

Let T (m,n) be max running time of Hirschberg’s algorithm on strings of lengths at most m and n.

Then, T (m,n) = O(mn logn).

Proof.

• T (m,n) is monotone nondecreasing in both m and n.

•
T (m,n) ≤ 2T (m,n/2) +O(mn)

⇒T (m,n) = O(mn logn)

Remark. Analysis is not tight because two subproblems are of size (q, n/2) and (m− q, n/2). Next, we

prove T (m,n) = O(mn).

33/39



Running Time Analysis Warmup

Theorem

Let T (m,n) be max running time of Hirschberg’s algorithm on strings of lengths at most m and n.

Then, T (m,n) = O(mn logn).

Proof.

• T (m,n) is monotone nondecreasing in both m and n.

•
T (m,n) ≤ 2T (m,n/2) +O(mn)

⇒T (m,n) = O(mn logn)

Remark. Analysis is not tight because two subproblems are of size (q, n/2) and (m− q, n/2). Next, we

prove T (m,n) = O(mn).

33/39



Running Time Analysis Warmup

Theorem

Let T (m,n) be max running time of Hirschberg’s algorithm on strings of lengths at most m and n.

Then, T (m,n) = O(mn logn).

Proof.

• T (m,n) is monotone nondecreasing in both m and n.

•
T (m,n) ≤ 2T (m,n/2) +O(mn)

⇒T (m,n) = O(mn logn)

Remark. Analysis is not tight because two subproblems are of size (q, n/2) and (m− q, n/2). Next, we

prove T (m,n) = O(mn).

33/39



Running Time Analysis

Theorem

Let T (m,n) be max running time of Hirschberg’s algorithm on strings of lengths at most m and n.

Then, T (m,n) = O(mn).

Proof. [by strong induction on m+ n]

• O(mn) time to compute f(·, n/2) and g(·, n/2) and find index q.

• T (q, n/2) + T (m− q, n/2) time for two recursive calls.

• Choose constant c so that:

T (m, 2) ≤ cm
T (2, n) ≤ cn
T (m,n) ≤ cmn+ T (q, n/2) + T (m− q, n/2)

34/39



Running Time Analysis

Theorem

Let T (m,n) be max running time of Hirschberg’s algorithm on strings of lengths at most m and n.

Then, T (m,n) = O(mn).

Proof.

[by strong induction on m+ n]

• O(mn) time to compute f(·, n/2) and g(·, n/2) and find index q.

• T (q, n/2) + T (m− q, n/2) time for two recursive calls.

• Choose constant c so that:

T (m, 2) ≤ cm
T (2, n) ≤ cn
T (m,n) ≤ cmn+ T (q, n/2) + T (m− q, n/2)

34/39



Running Time Analysis

Theorem

Let T (m,n) be max running time of Hirschberg’s algorithm on strings of lengths at most m and n.

Then, T (m,n) = O(mn).

Proof. [by strong induction on m+ n]

• O(mn) time to compute f(·, n/2) and g(·, n/2) and find index q.

• T (q, n/2) + T (m− q, n/2) time for two recursive calls.

• Choose constant c so that:

T (m, 2) ≤ cm
T (2, n) ≤ cn
T (m,n) ≤ cmn+ T (q, n/2) + T (m− q, n/2)

34/39



Running Time Analysis

Theorem

Let T (m,n) be max running time of Hirschberg’s algorithm on strings of lengths at most m and n.

Then, T (m,n) = O(mn).

Proof. [by strong induction on m+ n]

• O(mn) time to compute f(·, n/2) and g(·, n/2) and find index q.

• T (q, n/2) + T (m− q, n/2) time for two recursive calls.

• Choose constant c so that:

T (m, 2) ≤ cm
T (2, n) ≤ cn
T (m,n) ≤ cmn+ T (q, n/2) + T (m− q, n/2)

34/39



Running Time Analysis

Claim

T (m,n) ≤ 2cmn

• Base cases: m = 2 and n = 2.

• Inductive hypothesis: T (m,n) ≤ 2cmn for all (m′, n′) with m′ + n′ < m+ n.

T (m,n) ≤ T (q, n/2) + T (m− q, n/2) + cmn

≤ 2cqn/2 + 2c(m− q)n/2 + cmn

= cqn+ cmn− cqn+ cmn

= 2cmn

35/39



Running Time Analysis

Claim

T (m,n) ≤ 2cmn

• Base cases: m = 2 and n = 2.

• Inductive hypothesis: T (m,n) ≤ 2cmn for all (m′, n′) with m′ + n′ < m+ n.

T (m,n) ≤ T (q, n/2) + T (m− q, n/2) + cmn

≤ 2cqn/2 + 2c(m− q)n/2 + cmn

= cqn+ cmn− cqn+ cmn

= 2cmn

35/39



Longest common subsequence

Problem. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a common subsequence that is as long as

possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common

subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG ) = GGCAACG.

Applications. Unix diff, git, bioinformatics.

36/39



Longest common subsequence

Problem. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a common subsequence that is as long as

possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common

subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG ) = GGCAACG.

Applications. Unix diff, git, bioinformatics.

36/39



Longest common subsequence

Problem. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a common subsequence that is as long as

possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common

subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG ) = GGCAACG.

Applications. Unix diff, git, bioinformatics.

36/39



Longest common subsequence

Problem. Given two strings x1x2 . . . xm and y1y2 . . . yn, find a common subsequence that is as long as

possible.

Alternative viewpoint. Delete some characters from x; delete some character from y; a common

subsequence if it results in the same string.

Example. LCS(GGCACCACG, ACGGCGGATACG ) = GGCAACG.

Applications. Unix diff, git, bioinformatics.

36/39



Quiz

How about the longest common string?

37/39



Referred Materials

38/39



Referred Materials

• Content of this lecture comes from Section 6.1 and 6.2 in [DPV07], Section 6.6 and 6.7 in [KT05].

• Suggest to read Section 6.2 in [KT05].

39/39


	Shortest Paths in DAGs, Revisited
	Sequence Alignment
	Hirschberg's Algorithm
	Referred Materials

