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The Problem

Let G = (V,E) be a directed graph. Assume that each edge (i, j) ∈ E has an associated weight cij .

Dijkstra’s Algorithm is given for finding shortest paths in graphs with positive edge costs.

Here we consider the more complex problem in which we seek shortest paths when costs may be

negative.
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Bellman-Ford-Moore Algorithm
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Shortest paths with negative weights

Shortest-path problem. Given a digraph G = (V,E), with arbitrary edge lengths `vw, find shortest

path from source node s to destination node t.
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Failed Attempts

Dijkstra. May not produce shortest paths when edge lengths are negative.

Dijkstra selects the vertices in the orders, t, w, v

But shortest path from s to t is s→ v → w → t.

Reweighting. Adding a constant to every edge length does not necessarily make Dijkstra’s algorithm

produce shortest paths.

Adding 8 to each edge weight changes the
shortest path from s→ v → w → t to s→ t.
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Negative Cycles

Definition

A negative cycle is a directed cycle for which the sum of its edge lengths is negative.
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Shortest Paths and Negative Cycles

Lemma 1

If some v  t path contains a negative cycle, then there does not exist a shortest v  t path.

Proof.

If there exists such a cycle W , then can build a v  t path of arbitrarily negative length by detouring

around W as many times as desired.

7/38



Shortest Paths and Negative Cycles

Lemma 1

If some v  t path contains a negative cycle, then there does not exist a shortest v  t path.

Proof.

If there exists such a cycle W , then can build a v  t path of arbitrarily negative length by detouring

around W as many times as desired.

7/38



Shortest Paths and Negative Cycles

Lemma 1

If some v  t path contains a negative cycle, then there does not exist a shortest v  t path.

Proof.

If there exists such a cycle W , then can build a v  t path of arbitrarily negative length by detouring

around W as many times as desired.

7/38



Shortest Paths and Negative Cycles

Lemma 2

If G has no negative cycles, then there exists a shortest v  t path

that is simple (and has ≤ n− 1 edges).

Proof.

• Among all shortest v  t paths, consider one that uses the fewest edges.

• If that path P contains a directed cycle W , can remove the portion of P corresponding to W

without increasing its length.
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Shortest-Paths and Negative-Cycle Problems

Single-destination shortest-paths problem. Given a digraph G = (V,E) with edge lengths `vw (but no

negative cycles) and a distinguished node t, find a shortest v  t path for every node v.

Negative-cycle problem. Given a digraph G = (V,E) with edge lengths `vw, find a negative cycle (if

one exists).
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Dynamic Programming

Definition. OPT (i, v): length of shortest v  t path that uses ≤ i edges.

Goal OPT (n− 1, v) for each v.

Case 1. Shortest v  t path uses ≤ i− 1 edges.

• OPT (i, v) = OPT (i− 1, v)

Case 2. Shortest v  t path uses exactly i edges.

• if (v, w) is first edge in shortest such v  t path, incur a cost of `vw.

• Then, select best w  t path using ≤ i− 1 edges.

Bellman equation.

OPT (i, v) =


0 if i = 0 and v = t

∞ if i = 0 and v 6= t

min

{
OPT (i− 1, v), min

(v,w)∈E
{OPT (i− 1, w) + `vw}

}
if i > 0
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An Example
294 Chapter 6 Dynamic Programming
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Figure 6.23 For the directed
graph in (a), the Shortest-
Path Algorithm constructs
the dynamic programming
table in (b).

Shortest-Path(G, s, t)

n = number of nodes in G

Array M[0 . . . n − 1, V]

Define M[0, t]= 0 and M[0, v]=∞ for all other v ∈ V
For i = 1, . . . , n − 1

For v ∈ V in any order

Compute M[i, v] using the recurrence (6.23)

Endfor

Endfor

Return M[n − 1, s]

The correctness of the method follows directly by induction from (6.23).
We can bound the running time as follows. The table M has n2 entries; and
each entry can take O(n) time to compute, as there are at most n nodes w ∈ V
we have to consider.

(6.24) The Shortest-Pathmethod correctly computes the minimum cost of
an s-t path in any graph that has no negative cycles, and runs in O(n3) time.

Given the table M containing the optimal values of the subproblems, the
shortest path using at most i edges can be obtained in O(in) time, by tracing
back through smaller subproblems.

As an example, consider the graph in Figure 6.23(a), where the goal is to
find a shortest path from each node to t. The table in Figure 6.23(b) shows the
array M, with entries corresponding to the values M[i, v] from the algorithm.
Thus a single row in the table corresponds to the shortest path from a particular
node to t, as we allow the path to use an increasing number of edges. For
example, the shortest path from node d to t is updated four times, as it changes
from d-t, to d-a-t, to d-a-b-e-t, and finally to d-a-b-e-c-t.

Extensions: Some Basic Improvements to the Algorithm
An Improved Running-Time Analysis We can actually provide a better
running-time analysis for the case in which the graph G does not have too
many edges. A directed graph with n nodes can have close to n2 edges, since
there could potentially be an edge between each pair of nodes, but many
graphs are much sparser than this. When we work with a graph for which
the number of edges m is significantly less than n2, we’ve already seen in a
number of cases earlier in the book that it can be useful to write the running-
time in terms of both m and n; this way, we can quantify our speed-up on
graphs with relatively fewer edges.
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Implementation

ShortestPaths(V,E, `, t)

for each node (v ∈ V ) do

M [0, v]←∞;

end

M [0, t]← 0;

for i = 1 to n− 1 do

for each node v ∈ V do

M [i, v]←M [i− 1, v];

for each edge (v, w) ∈ E do

M [i, v]← min {M [i, v],M [i− 1, w] + `vw};
end

end

end
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Implementation

Theorem

Given a digraph G = (V,E) with no negative cycles, the DP algorithm computes the length of a

shortest v  t path for every node v in Θ(|V ||E|) time and Θ(|V |2) space.

Proof.

• Table requires Θ(|V |2) space.

• Each iteration i takes Θ(|E|) time since we examine each edge once.

Finding the shortest paths.

• Approach 1: Maintain successor[i, v] that points to next node on a shortest v  t path using ≤ i

edges.

• Approach 2: Compute optimal lengths M [i, v] and consider only edges with

M [i, v] = M [i− 1, w] + `vw. Any directed path in this subgraph is a shortest path.
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Practical Improvements

Space optimization. Maintain two 1D arrays (instead of 2D array).

• d[v]: length of a shortest v  t path that we have found so far.

• successor[v]: next node on a v  t path.

Performance optimization. If d[w] was not updated in iteration i− 1, then no reason to consider edges

entering w in iteration i.
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Efficient Implementation

Bellman-Ford-Moore(V,E, c, t)

for each node v ∈ V do

d[v]←∞;

successor[v]← null;

end

d[t]← 0;

for i = 1 to n− 1 do

for each node w ∈ V do

if d[w] was updated in previous pass then

for each edge (v, w) ∈ E do

if (d[v] > d[w] + `vw) then

d[v]← d[w] + `ww;

successor[v]← w;

end

end

end

end

if no d[·] value changed in pass i then Break;

end
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Bellman-Ford-Moore: Analysis

Theorem

Assuming no negative cycles, Bellman-Ford-Moore computes the lengths of the shortest v  t paths in

O(|V ||E|) time and Θ(|V |) extra space.

Remark

Bellman-Ford-Moore is typically faster in practice.

• Edge (v, w) considered in pass i + 1 only if d[w] updated in pass i.

• If shortest path has k edges, then algorithm finds it after ≤ k passes.
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Bellman-Ford-Moore: Analysis

Claim

Throughout Bellman-Ford-Moore, following the successor[v] pointers gives a directed path from v to t

of length d[v].

Counterexample. Claim is false!

• Length of successor v  t path may be strictly shorter than d[v].

consider nodes in order: t, 1, 2, 3
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Finding the Shortest Paths

Lemma

Any directed cycle W in the successor graph is a negative cycle.

Proof.

• If successor[v] = w, we must have d[v] ≥ d[w] + `vw.

(LHS and RHS are equal when successor[v] is set; d[w] can only decrease; d[v] decreases only

when successor[v] is reset)
• Let v1 → v2 → . . .→ vk → v1 be the sequence of nodes in a directed cycle W .
• Assume that (vk, v1) is the last edge in W added to the successor graph.
• Just prior to that:

d [v1] ≥ d [v2] +` (v1, v2)
d [v2] ≥ d [v3] +` (v2, v3)
...

...
...

d [vk−1] ≥ d [vk] +` (vk−1, vk)
d [vk] > d [v1] +` (vk−1, v1)

• Adding inequalities yields ` (v1, v2) + ` (v2, v3) + . . .+ ` (vk−1, vk) + ` (vk, v1) < 0
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d [vk] > d [v1] +` (vk−1, v1)

• Adding inequalities yields ` (v1, v2) + ` (v2, v3) + . . .+ ` (vk−1, vk) + ` (vk, v1) < 0
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Finding the Shortest Paths

Theorem

Assuming no negative cycles, Bellman-Ford-Moore finds shortest v  t paths for every node v in

O(mn) time and Θ(n) extra space.

Proof.

• The successor graph cannot have a directed cycle.

• Thus, following the successor pointers from v yields a directed path to t.

• Let v = v1 → v2 → . . .→ vk = t be the nodes along this path P .

• Upon termination, if successor[v] = w, we must have d[v] = d[w] + `vw. (LHS and RHS are

equal when successor[v] is set; d[·] did not change)

• Thus,
d [v1] = d [v2] +` (v1, v2)
d [v2] = d [v3] +` (v2, v3)
...

...
...

d [vk−1] = d [vk] +` (vk−1, vk)
• Adding equations yields d[v] = d[t] + ` (v1, v2) + ` (v2, v3) + . . .+ ` (vk−1, vk)
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Detecting Negative Cycles

Negative cycle detection problem. Given a digraph G = (V,E), with edge lengths `vw, find a negative

cycle (if one exists).
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Detecting Negative Cycles

Lemma

If OPT (n, v) = OPT (n− 1, v) for every node v, then no negative cycles.

Proof.

The OPT (n, v) values have converged ⇒ shortest v  t path exists.
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Detecting Negative Cycles

Lemma

If OPT (n, v) < OPT (n− 1, v) for some node v, then (any) shortest v  t path of length ≤ n

contains a cycle W . Moreover W is a negative cycle.

Proof. [by contradiction]

• Since OPT (n, v) < OPT (n− 1, v), we know that shortest v  t path P has exactly n edges.

• By pigeonhole principle, the path P must contain a repeated node x.

• Let W be any cycle in P .

• Deleting W yields a v  t path with < n edges ⇒ W is a negative cycle.
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Finding a Negative Cycle

DIY!
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Single-Source Shortest Paths with Negative Weights

year worst case discovered by

1955 O
(
n4

)
Shimbel

1956 O
(
mn2W

)
Ford

1958 O(mn) Bellman, Moore

1983 O
(
n3/4m logW

)
Gabow

1989 O
(
mn1/2 log(nW )

)
Gabow-Tarjan

1993 O
(
mn1/2 logW

)
Goldberg

2005 O
(
n2.38W

)
Sankowsi, Yuster-Zwick

2016 Õ
(
n10\7 logW

)
Cohen-Madry-Sankowski-Vladu

20xx ???

series single-source shortest paths with weights between −W and W
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Shortest Reliable Paths
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Shortest Reliable Paths

In a network, even if edge lengths faithfully reflect transmission delays, there may be other

considerations involved in choosing a path.

For instance, each extra edge in the path might be an extra “hop” fraught with uncertainties and

dangers of packet loss.

We would like to avoid paths with too many edges.
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Shortest Reliable Paths

Suppose then that we are given a graph G with lengths on the edges, along with two nodes s and t

and an integer k,

and we want the shortest path from s to t that uses at most k edges.

Dynamic programming will work!
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Dynamic Programming

For each vertex v and each integer i ≤ k, let

dist(v, i) = the length of the shortest path from s to v that uses i edges

The starting values dist(v, 0) are ∞ for all vertices except s, for which it is 0.

dist(v, i) = min
(u,v)∈E

{dist(u, i− 1) + l(u, v)}
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Shortest Reliable Paths

Find out the shortest reliable path from S to T , when k = 3.
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All-Pairs Shortest Path
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All-Pairs Shortest Path

What if we want to find the shortest path not just between s and t but between all pairs of vertices?

One approach would be to execute Bellman-Ford-Moore algorithm |V | times, once for each starting

node.

The total running time would then be O(|V |2|E|).

We’ll now see a better alternative, the O(|V |3), named Floyd-Warshall algorithm.
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The Subproblems

Number the vertices in V as {1, 2, . . . , n},

and let

dist(i, j, k) = the length of the shortest path from i to j in which only nodes {1, 2, . . . , k} can be used

as intermediates.

Initially, dist(i, j, 0) is the length of the direct edge between i and j, if it exists, and is ∞ otherwise.

For k ≥ 1

dist(i, j, k) = min{dist(i, j, k − 1), dist(i, k, k − 1) + dist(k, j, k − 1)}
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The Program

for i = 1 to n do

for j = 1 to n do

dist(i, j, 0) =∞;

end

end

for all (i, j) ∈ E do

dist(i, j, 0) = l(i, j);

end

for k = 1 to n do

for i = 1 to n do

for j = 1 to n do

dist(i, j, k) = min{dist(i, j, k − 1), dist(i, k, k − 1) + dist(k, j, k − 1)};
end

end

end
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Referred Materials
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Referred Materials

• Content of this lecture comes from Section 6.8 and 6.10 in [KT05], and Section 6.6 in [DPV07].
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