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Capacity-Scaling Algorithm

Overview. Choosing augmented paths with large bottleneck capacity.

• Maintain scaling parameter ∆.
• Let Gf (∆) be the part of the residual network containing only those edges with capacity ≥ ∆.
• Any augmenting path in Gf (∆) has bottleneck capacity ≥ ∆.
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Capacity-Scaling Algorithm

CAPACITY-SCALING(G)

for each edge e ∈ E do
f(e)← 0

end
∆← largest power of 2 ≤ C;
while ∆ ≥ 1 do

Gf (∆)← ∆-residual network of G with respect to flow f ;
while there exists an s t path P in Gf (∆) do

f ← AUGMENT(f , P);
UPDATE(G∆(f));

end
∆ = ∆/2;

end
RETURN f ;
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Proof of Correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter ∆ is a power of 2.

Proof. Initially a power of 2; each phase divides ∆ by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity cf (e) is
an integer.

Proof. Same as for generic Ford–Fulkerson.
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Proof of Correctness

Theorem

If capacity-scaling algorithm terminates, then f is a max flow.

Proof.

• By integrality invariant, when ∆ = 1⇒ Gf (∆) = Gf

• Upon termination of ∆ = 1 phase, there are no augmenting paths.
• Result follows augmenting path theorem.
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Analysis of Running Time

Lemma 1

There are 1 + blog2 Cc scaling phases.

Lemma 2

There are ≤ 2|E| augmentations per scaling phase.

Lemma 3

Let f be the flow at the end of a ∆-scaling phase. Then

val(f∗) ≤ val(f) + |E| ·∆
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Analysis of Running Time

Theorem

The capacity-scaling algorithm takes O(|E|2 · logC) time.

Proof.

• Lemma 1+ Lemma 2⇒ O(|E| · logC) augmentations.
• Finding an augmenting path takes O(|E|) time.
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Analysis of Running Time

Lemma 1

There are 1 + blog2 Cc scaling phases.

Proof.

Initially C/2 < ∆ ≤ C; ∆ decreases by a factor of 2 in each iteration.
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Analysis of Running Time

Lemma 2

There are ≤ 2|E| augmentations per scaling phase.

Proof.

• Let f be the flow at the beginning of a ∆-scaling phase.
• Lemma 3⇒ val(f∗) ≤ val(f) + |E| · (2∆).
• Each augmentation in a ∆-phase increases val(f) by at least ∆.
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Analysis of Running Time

Lemma 3

Let f be the flow at the end of a ∆-scaling phase. Then

val(f∗) ≤ val(f) + |E| ·∆

Proof.

• We show there exists a cut (A,B) such that cap(A,B) ≤ val(f) + |E| ·∆.
• Choose A to be the set of nodes reachable from s in Gf (∆).
• By definition of A : s ∈ A.
• By definition of flow f : t /∈ A.
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Analysis of Running Time

Lemma 3

Let f be the flow at the end of a ∆-scaling phase. Then

val(f∗) ≤ val(f) + |E| ·∆

Proof.

val(f) =
∑

e out of A
f(e)−

∑
e in to A

f(e) ≥
∑

e out of A
(c(e)−∆)−

∑
e in to A

∆

≥
∑

e out of A
c(e)−

∑
e out of A

∆−
∑

e in to A

∆ ≥ cap(A,B)− |E| ·∆
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Shortest Augmenting Paths
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Edmonds–Karp’s Algorithm

Q. How to choose next augmenting path in Ford–Fulkerson?

A. Pick one that uses the fewest edges.

EDMONDS–KARP’S ALGORITHM(G)

for each edge e ∈ E do
f(e)← 0

end
Gf ← residual network of G with respect to flow f ;
while there exists an s t path in Gf do

P ← BFS(Gf);
f ← AUGMENT(f , P);
UPDATE(Gf);

end
RETURN f ;
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Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly
increases.

Theorem

The Edmonds–Karp’s algorithm takes O(|E|2|V |) time.

Proof.

• O(|E|) time to find a shortest augmenting path via BFS.
• There are ≤ |V ||E| augmentations.

- at most |E| augmenting paths of length k←− Lemma 1 + Lemma 2
- at most |V | − 1 different lengths.
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Edmonds–Karp’s Algorithm: Analysis

Definition

Given a digraph G = (V,E) with source s, its level graph is defined by:
• `(v) = number of edges in shortest s v path.
• LG = (V,EG) is the subgraph of G that contains only those edges (v, w) ∈ E with

`(w) = `(v) + 1.

16/44



Edmonds–Karp’s Algorithm: Analysis
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Quiz 5

Which edges are in the level graph of the following digraph?

A. D → F

B. E → F

C. Both A and B.

D. Neither A nor B.
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Edmonds–Karp’s Algorithm: Analysis

Definition

Given a digraph G = (V,E) with source s, its level graph is defined by:
• `(v) = number of edges in shortest s v path.
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Key property. P is a shortest s v path in G iff P is an s v path in LG.
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Edmonds–Karp’s Algorithm: Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Proof.

• Let f and f ′ be flow before and after a shortest-path augmentation.
• Let LG and LG′ be level graphs of Gf and Gf ′ .
• Only back edges added to Gf ′

(any s t path that uses a back edge is longer than previous length)
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Edmonds–Karp’s Algorithm: Analysis

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly
increases.

Proof.

• At least one (bottleneck) edge is deleted from LG per augmentation.
• No new edge added to LG until shortest path length strictly increases.
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Review of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly
increases.

Theorem

The Edmonds–Karp’s algorithm takes O(|E|2|V |) time.
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Improving the Running Time

Note. Θ(|E||V |) augmentations necessary for some flow networks.

• Try to decrease time per augmentation instead.
• Simple idea⇒ O(|E||V |2) [Dinitz 1970]
• Dynamic trees⇒ O(|E||V | log |V |) [Sleator–Tarjan 1983]
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Dinitz’ Algorithm
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Dinitz’ Algorithm

Two types of augmentations.

• Normal: length of shortest path does not change.
• Special: length of shortest path strictly increases.

Phase of normal augmentations.

• Construct level graph LG.
• Start at s, advance along an edge in LG until reach t or get stuck.
• If reach t, augment flow; update LG; and restart from s.
• If get stuck, delete node from LG and retreat to previous node.
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Dinitz’ Algorithm

INITIALIZE(G, f)

LG ← level-graph of Gf

P ← ∅
GOTO ADVANCE(s);

RETREAT(v)

if v = s then Stop;
else

Delete v from LG;
Remove last edge (u, v)

from P ;
end
GOTO ADVANCE(u);

ADVANCE(v)

if v = t then
AUGMENT(P);
Remove saturated edges
from LG;

P ← ∅;
GOTO ADVANCE(s);

end
if there exists edge (v, w) ∈ LG

then
Add edge (v, w) to P ;
GOTO ADVANCE(w);

end
else

GOTO RETREAT(v);
end
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Quiz 6

How to compute the level graph LG efficiently?

A. Depth-first search.

B. Breadth-first search.

C. Both A and B.

D. Neither A nor B.
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Dinitz’ Algorithm: Analysis

Lemma

A phase can be implemented to run in O(|E||V |) time.

Proof.

• Initialization happens once per phase. using BFS
• At most |E| augmentations per phase. ←− O(|E|) per phase

(because an augmentation deletes at least one edge from LG)
• At most |V | retreats per phase. ←− O(|E|+ |V |) per phase

(because a retreat deletes one node from LG)
• At most |E||V | advances per phase. ←− O(|E||V |) per phase

(because at most |V | advances before retreat or augmentation)
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Dinitz’ Algorithm: Analysis

Theorem (Dinitz 1970)

Dinitz’ algorithm runs in O(|E||V |2) time.

Proof.

• By Lemma, O(|E||V |) time per phase.
• At most |V | − 1 phases (as in shortest-augmenting-path analysis).
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Summary

year method # augmentations running time

1955 augmenting path |V |C O(|E||V |C)

1972 fattest path |E| log(|E|C) O
(
|E|2 logn log(|E|C)

)
1972 capacity scaling |E| logC O

(
|E|2 logC

)
1985 improved capacity scaling |E| logC O(|E||V | logC)

1970 shortest augmenting path |E||V | O
(
|E|2|V |

)
1970 level graph |E||V | O

(
|E||V |2

)
1983 dynamic trees |E||V | O(|E||V | log |V |)

augmenting-path algorithms with integer capacities between 1 and C
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Theory Highlights

year method worst case discovered by

1951 simplex O
(
|E||V |2C

)
Dantzig

1955 augmenting paths O(|E||V |C) Ford–Fulkerson

1970 shortest augmenting paths O
(
|E||V |2

)
Edmonds–Karp, Dinitz

1974 blocking flows O
(
|V |3

)
Karzanov

1983 dynamic trees O(|E||V | logn) Sleator–Tarjan

1985 improved capacity scaling O(|E||V | logC) Gabow

1988 push–relabel O
(
|E||V | log

(
|V |2/|E|

))
Goldberg–Tarjan

1998 binary blocking flows O
(
|E|3/2 log

(
n2/|E|

)
logC

)
Goldberg–Rao

2013 compact networks O(|E||V |) Orlin

2014 interior-point methods Õ
(
|E||E|1/2 logC

)
Lee–Sidford

2016 electrical flows Õ
(
|E|10/7C1/7

)
Madry

20xx ???

augmenting-path algorithms with integer capacities between 1 and C
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Maximum-Flow: Practice

Push–relabel algorithm (Section 7.4) of [KT05]. [Goldberg–Tarjan 1988]

Increases flow one edge at a time instead of one augmenting path at a time.
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Maximum-Flow: Practice

Caveat. Worst-case running time is generally not useful for predicting or comparing max-flow
algorithm performance in practice.

Best in practice. Push–relabel method with gap relabeling: O(|E|3/2) in practice.
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Referred Materials

• Content of this lecture comes from Section 7.3 in [KT05].
• Suggest to read Chapter 26 in [CLRS09].
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