

Design and Analysis of Algorithms (IX)
More Extensions on Ford-Fulkerson Algorithm

Capacity－Scaling Algorithm

Capacity-Scaling Algorithm

Overview. Choosing augmented paths with large bottleneck capacity.

Capacity-Scaling Algorithm

Overview. Choosing augmented paths with large bottleneck capacity.

- Maintain scaling parameter Δ.

Capacity-Scaling Algorithm

Overview. Choosing augmented paths with large bottleneck capacity.

- Maintain scaling parameter Δ.
- Let $G_{f}(\Delta)$ be the part of the residual network containing only those edges with capacity $\geq \Delta$.

Capacity-Scaling Algorithm

Overview. Choosing augmented paths with large bottleneck capacity.

- Maintain scaling parameter Δ.
- Let $G_{f}(\Delta)$ be the part of the residual network containing only those edges with capacity $\geq \Delta$.
- Any augmenting path in $G_{f}(\Delta)$ has bottleneck capacity $\geq \Delta$.

G_{f}

$\mathrm{G}_{\mathrm{f}}(\Delta), \Delta=100$

Capacity-Scaling Algorithm

```
CAPACITY-SCALING(G)
for each edge \(e \in E\) do
    \(f(e) \leftarrow 0\)
end
\(\Delta \leftarrow\) largest power of \(2 \leq C\);
while \(\Delta \geq 1\) do
    \(G_{f}(\Delta) \leftarrow \Delta\)-residual network of \(G\) with respect to flow \(f\);
    while there exists an \(s \rightsquigarrow t\) path \(P\) in \(G_{f}(\Delta)\) do
            \(f \leftarrow \operatorname{Augment}(f, P)\);
            \(\operatorname{UPDATE}\left(G_{\Delta}(f)\right)\);
        end
        \(\Delta=\Delta / 2 ;\)
end
RETURN \(f\);
```


Proof of Correctness

Assumption. All edge capacities are integers between 1 and C.

Proof of Correctness

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2 .

Proof of Correctness

Assumption．All edge capacities are integers between 1 and C ．

Invariant．The scaling parameter Δ is a power of 2.
Proof．Initially a power of 2 ；each phase divides Δ by exactly 2 ．

Proof of Correctness

Assumption. All edge capacities are integers between 1 and C.
Invariant. The scaling parameter Δ is a power of 2 .
Proof. Initially a power of 2 ; each phase divides Δ by exactly 2 .

Integrality invariant. Throughout the algorithm, every edge flow $f(e)$ and residual capacity $c_{f}(e)$ is an integer.

Proof of Correctness

Assumption. All edge capacities are integers between 1 and C.
Invariant. The scaling parameter Δ is a power of 2 .
Proof. Initially a power of 2 ; each phase divides Δ by exactly 2 .

Integrality invariant. Throughout the algorithm, every edge flow $f(e)$ and residual capacity $c_{f}(e)$ is an integer.

Proof. Same as for generic Ford-Fulkerson.

Proof of Correctness

Theorem

If capacity－scaling algorithm terminates，then f is a max flow．

Proof of Correctness

Theorem

If capacity－scaling algorithm terminates，then f is a max flow．

Proof．

Proof of Correctness

Theorem

If capacity-scaling algorithm terminates, then f is a max flow.

Proof.

- By integrality invariant, when $\Delta=1 \Rightarrow G_{f}(\Delta)=G_{f}$
- Upon termination of $\Delta=1$ phase, there are no augmenting paths.
- Result follows augmenting path theorem.

Analysis of Running Time

Lemma 1

There are $1+\left\lfloor\log _{2} C\right\rfloor$ scaling phases.

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

Lemma 3

Let f be the flow at the end of a Δ-scaling phase. Then

$$
\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+|E| \cdot \Delta
$$

Analysis of Running Time

Theorem

The capacity-scaling algorithm takes $O\left(|E|^{2} \cdot \log C\right)$ time.

Analysis of Running Time

Theorem

The capacity-scaling algorithm takes $O\left(|E|^{2} \cdot \log C\right)$ time.

Proof.

Analysis of Running Time

Theorem

The capacity-scaling algorithm takes $O\left(|E|^{2} \cdot \log C\right)$ time.

Proof.

- Lemma $1+$ Lemma $2 \Rightarrow O(|E| \cdot \log C)$ augmentations.
- Finding an augmenting path takes $O(|E|)$ time.

Analysis of Running Time

Lemma 1

There are $1+\left\lfloor\log _{2} C\right\rfloor$ scaling phases．

Analysis of Running Time

Lemma 1

There are $1+\left\lfloor\log _{2} C\right\rfloor$ scaling phases.

Proof.

Initially $C / 2<\Delta \leq C ; \Delta$ decreases by a factor of 2 in each iteration.

Analysis of Running Time

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

Analysis of Running Time

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

Proof.

Analysis of Running Time

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

Proof.

- Let f be the flow at the beginning of a Δ-scaling phase.
- Lemma $3 \Rightarrow \operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+|E| \cdot(2 \Delta)$.
- Each augmentation in a Δ-phase increases $\operatorname{val}(f)$ by at least Δ.

Analysis of Running Time

Lemma 3

Let f be the flow at the end of a Δ-scaling phase. Then

$$
\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+|E| \cdot \Delta
$$

Analysis of Running Time

Lemma 3

Let f be the flow at the end of a Δ-scaling phase. Then

$$
\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+|E| \cdot \Delta
$$

Proof.

Analysis of Running Time

Lemma 3

Let f be the flow at the end of a Δ-scaling phase. Then

$$
\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+|E| \cdot \Delta
$$

Proof.

- We show there exists a cut (A, B) such that $\operatorname{cap}(A, B) \leq \operatorname{val}(f)+|E| \cdot \Delta$.
- Choose A to be the set of nodes reachable from s in $G_{f}(\Delta)$.
- By definition of $A: s \in A$.
- By definition of flow $f: t \notin A$.

Analysis of Running Time

Lemma 3

Let f be the flow at the end of a Δ-scaling phase. Then

$$
\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+|E| \cdot \Delta
$$

Proof.

Analysis of Running Time

Lemma 3

Let f be the flow at the end of a Δ-scaling phase. Then

$$
\operatorname{val}\left(f^{*}\right) \leq \operatorname{val}(f)+|E| \cdot \Delta
$$

Proof.

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \text { out of } A} f(e)-\sum_{e \text { in to } A} f(e) \\
& \geq \sum_{e \text { out of } A}(c(e)-\Delta)-\sum_{e \text { in to } A} \Delta \\
& \Delta(e)-\sum_{e \text { out of } A} \Delta-\sum_{e \text { in to } A} \Delta
\end{aligned}
$$

Shortest Augmenting Paths

Edmonds-Karp's Algorithm

Q. How to choose next augmenting path in Ford-Fulkerson?

Edmonds-Karp's Algorithm

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

Edmonds-Karp's Algorithm

Q. How to choose next augmenting path in Ford-Fulkerson?
A. Pick one that uses the fewest edges.

```
EdmONDS-KARP'S AlGORITHM(G)
for each edge e\inE do
    f(e)\leftarrow0
end
Gf}\leftarrow\mathrm{ residual network of G}\mathrm{ with respect to flow f;
while there exists an s}\rightsquigarrowt\mathrm{ path in G}\mp@subsup{G}{f}{}\mathrm{ do
    P}\leftarrow\textrm{BFS}(\mp@subsup{G}{f}{\prime})
    f\leftarrow\operatorname{Augment(f,P);}
    UPDATE(Gf);
end
REtURN f;
```


Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases．

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases．

Lemma 2

After at most $|E|$ shortest－path augmentations，the length of a shortest augmenting path strictly increases．

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds-Karp's algorithm takes $O\left(|E|^{2}|V|\right)$ time.

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases．

Lemma 2

After at most $|E|$ shortest－path augmentations，the length of a shortest augmenting path strictly increases．

Theorem

The Edmonds－Karp＇s algorithm takes $O\left(|E|^{2}|V|\right)$ time．

Proof．

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds-Karp's algorithm takes $O\left(|E|^{2}|V|\right)$ time.

Proof.

- $O(|E|)$ time to find a shortest augmenting path via BFS.

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds-Karp's algorithm takes $O\left(|E|^{2}|V|\right)$ time.

Proof.

- $O(|E|)$ time to find a shortest augmenting path via BFS.
- There are $\leq|V||E|$ augmentations.

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds-Karp's algorithm takes $O\left(|E|^{2}|V|\right)$ time.

Proof.

- $O(|E|)$ time to find a shortest augmenting path via BFS.
- There are $\leq|V||E|$ augmentations.
- at most $|E|$ augmenting paths of length k

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2
After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds-Karp's algorithm takes $O\left(|E|^{2}|V|\right)$ time.

Proof.

- $O(|E|)$ time to find a shortest augmenting path via BFS.
- There are $\leq|V||E|$ augmentations.
- at most $|E|$ augmenting paths of length $k \longleftarrow$ Lemma $1+$ Lemma 2

Overview of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2
After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds-Karp's algorithm takes $O\left(|E|^{2}|V|\right)$ time.

Proof.

- $O(|E|)$ time to find a shortest augmenting path via BFS.
- There are $\leq|V||E|$ augmentations.
- at most $|E|$ augmenting paths of length $k \longleftarrow$ Lemma $1+$ Lemma 2
- at most $|V|-1$ different lengths.

Edmonds-Karp's Algorithm: Analysis

Definition

Given a digraph $G=(V, E)$ with source s, its level graph is defined by:

- $\ell(v)=$ number of edges in shortest $s \rightsquigarrow v$ path.
- $L_{G}=\left(V, E_{G}\right)$ is the subgraph of G that contains only those edges $(v, w) \in E$ with $\ell(w)=\ell(v)+1$.

Edmonds－Karp＇s Algorithm：Analysis

Quiz 5

Which edges are in the level graph of the following digraph?
A. $D \rightarrow F$
B. $E \rightarrow F$
C. Both A and B.
D. Neither A nor B.

Edmonds-Karp's Algorithm: Analysis

Definition

Given a digraph $G=(V, E)$ with source s, its level graph is defined by:

- $\ell(v)=$ number of edges in shortest $s \rightsquigarrow v$ path.
- $L_{G}=\left(V, E_{G}\right)$ is the subgraph of G that contains only those edges $(v, w) \in E$ with $\ell(w)=\ell(v)+1$.

Edmonds-Karp's Algorithm: Analysis

Definition

Given a digraph $G=(V, E)$ with source s, its level graph is defined by:

- $\ell(v)=$ number of edges in shortest $s \rightsquigarrow v$ path.
- $L_{G}=\left(V, E_{G}\right)$ is the subgraph of G that contains only those edges $(v, w) \in E$ with $\ell(w)=\ell(v)+1$.

Key property. P is a shortest $s \rightsquigarrow v$ path in G iff P is an $s \rightsquigarrow v$ path in L_{G}.

Edmonds-Karp's Algorithm: Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Edmonds-Karp's Algorithm: Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Proof.

Edmonds-Karp's Algorithm: Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Proof.

- Let f and f^{\prime} be flow before and after a shortest-path augmentation.
- Let L_{G} and $L_{G^{\prime}}$ be level graphs of G_{f} and $G_{f^{\prime}}$.
- Only back edges added to $G_{f^{\prime}}$ (any $s \rightsquigarrow t$ path that uses a back edge is longer than previous length)

Edmonds－Karp＇s Algorithm：Analysis

Lemma 2

After at most $|E|$ shortest－path augmentations，the length of a shortest augmenting path strictly increases．

Edmonds-Karp's Algorithm: Analysis

Lemma 2

After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Proof.

Edmonds-Karp's Algorithm: Analysis

Lemma 2

After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Proof.

- At least one (bottleneck) edge is deleted from L_{G} per augmentation.
- No new edge added to L_{G} until shortest path length strictly increases.

Review of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most $|E|$ shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds-Karp's algorithm takes $O\left(|E|^{2}|V|\right)$ time.

Improving the Running Time

Note. $\Theta(|E||V|)$ augmentations necessary for some flow networks.

Improving the Running Time

Note. $\Theta(|E||V|)$ augmentations necessary for some flow networks.

- Try to decrease time per augmentation instead.
- Simple idea $\Rightarrow O\left(|E \| V|^{2}\right) \quad$ [Dinitz 1970]

Improving the Running Time

Note．$\Theta(|E||V|)$ augmentations necessary for some flow networks．
－Try to decrease time per augmentation instead．
－Simple idea $\Rightarrow O\left(|E \| V|^{2}\right) \quad$［Dinitz 1970］
－Dynamic trees $\Rightarrow O(|E||V| \log |V|) \quad$［Sleator－Tarjan 1983］

Dinitz’ Algorithm

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.
construct level graph

level graph L_{G}

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

level graph Lc

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.
advance

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

level graph Lc

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

level graph LG

Dinitz' Algorithm

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Phase of normal augmentations.

- Construct level graph L_{G}.
- Start at s, advance along an edge in L_{G} until reach t or get stuck.
- If reach t, augment flow; update L_{G}; and restart from s.
- If get stuck, delete node from L_{G} and retreat to previous node.

level graph Lc

Dinitz' Algorithm

```
INitiAlize(G,f)
LG}\leftarrow\mp@code{level-graph of }\mp@subsup{G}{f}{
P\leftarrow\varnothing
GOTO ADVANCE(s);
Retreat(v)
if v=s then Stop;
else
    Delete v from }\mp@subsup{L}{G}{}\mathrm{ ;
    Remove last edge (u,v)
    from P;
end
GOTO ADVANCE(u);
```

```
ADVANCE(v)
```

ADVANCE(v)
if }v=t\mathrm{ then
if }v=t\mathrm{ then
Augment(P);
Augment(P);
Remove saturated edges
Remove saturated edges
from }\mp@subsup{L}{G}{}\mathrm{ ;
from }\mp@subsup{L}{G}{}\mathrm{ ;
P}\leftarrow\varnothing
P}\leftarrow\varnothing
GOTO ADVANCE(s);
GOTO ADVANCE(s);
end
end
if there exists edge (v,w)\in LG
if there exists edge (v,w)\in LG
then
then
Add edge (v,w) to P;
Add edge (v,w) to P;
GOTO ADVANCE(w);
GOTO ADVANCE(w);
end
end
else
else
Goto Retreat(v);
Goto Retreat(v);
end

```
end
```


Quiz 6

How to compute the level graph L_{G} efficiently?
A. Depth-first search.
B. Breadth-first search.
C. Both A and B.
D. Neither A nor B.
source

Dinitz’ Algorithm: Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Dinitz＇Algorithm：Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time．

Proof．
－Initialization happens once per phase．

Dinitz＇Algorithm：Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time．

Proof．
－Initialization happens once per phase．using BFS

Dinitz’ Algorithm: Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase.

Dinitz’ Algorithm: Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase

Dinitz’ Algorithm: Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase (because an augmentation deletes at least one edge from L_{G})

Dinitz’ Algorithm: Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase (because an augmentation deletes at least one edge from L_{G})
- At most $|V|$ retreats per phase.

Dinitz’ Algorithm: Analysis

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase (because an augmentation deletes at least one edge from L_{G})
- At most $|V|$ retreats per phase. $\longleftarrow O(|E|+|V|)$ per phase

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase (because an augmentation deletes at least one edge from L_{G})
- At most $|V|$ retreats per phase. $\longleftarrow O(|E|+|V|)$ per phase (because a retreat deletes one node from L_{G})

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase (because an augmentation deletes at least one edge from L_{G})
- At most $|V|$ retreats per phase. $\longleftarrow O(|E|+|V|)$ per phase (because a retreat deletes one node from L_{G})
- At most $|E||V|$ advances per phase.

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase (because an augmentation deletes at least one edge from L_{G})
- At most $|V|$ retreats per phase. $\longleftarrow O(|E|+|V|)$ per phase (because a retreat deletes one node from L_{G})
- At most $|E||V|$ advances per phase. $\longleftarrow O(|E||V|)$ per phase

Lemma

A phase can be implemented to run in $O(|E||V|)$ time.

Proof.

- Initialization happens once per phase. using BFS
- At most $|E|$ augmentations per phase. $\longleftarrow O(|E|)$ per phase (because an augmentation deletes at least one edge from L_{G})
- At most $|V|$ retreats per phase. $\longleftarrow O(|E|+|V|)$ per phase (because a retreat deletes one node from L_{G})
- At most $|E||V|$ advances per phase. $\longleftarrow O(|E||V|)$ per phase (because at most $|V|$ advances before retreat or augmentation)

Dinitz’ Algorithm: Analysis

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O\left(|E||V|^{2}\right)$ time.

Dinitz’ Algorithm：Analysis

Theorem（Dinitz 1970）

Dinitz＇algorithm runs in $O\left(|E||V|^{2}\right)$ time．

Proof．

Dinitz’ Algorithm: Analysis

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O\left(|E||V|^{2}\right)$ time.

Proof.

- By Lemma, $O(|E||V|)$ time per phase.

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O\left(|E||V|^{2}\right)$ time.

Proof.

- By Lemma, $O(|E||V|)$ time per phase.
- At most $|V|-1$ phases

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O\left(|E \| V|^{2}\right)$ time.

Proof.

- By Lemma, $O(|E||V|)$ time per phase.
- At most $|V|-1$ phases (as in shortest-augmenting-path analysis).

year	method	\# augmentations	running time
1955	augmenting path	$\|V\| C$	$O(\|E\|\|V\| C)$
1972	fattest path	$\|E\| \log (\|E\| C)$	$O\left(\|E\|^{2} \log n \log (\|E\| C)\right)$
1972	capacity scaling	$\|E\| \log C$	$O\left(\|E\|^{2} \log C\right)$
1985	improved capacity scaling	$\|E\| \log C$	$O(\|E\|\|V\| \log C)$
1970	shortest augmenting path	$\|E\|\|V\|$	$O\left(\|E\|^{2}\|V\|\right)$
1970	level graph	$\|E\|\|V\|$	$O\left(\|E\|\|V\|^{2}\right)$
1983	dynamic trees	$\|E\|\|V\|$	$O(\|E\|\|V\| \log \|V\|)$

augmenting-path algorithms with integer capacities between 1 and C

Theory Highlights

year	method	worst case	discovered by
1951	simplex	$O\left(\|E\|\|V\|^{2} C\right)$	Dantzig
1955	augmenting paths	$O(\|E\|\|V\| C)$	Ford-Fulkerson
1970	shortest augmenting paths	$O\left(\|E\|\|V\|^{2}\right)$	Edmonds-Karp, Dinitz
1974	blocking flows	$O\left(\|V\|^{3}\right)$	Karzanov
1983	dynamic trees	$O(\|E\|\|V\| \log n)$	Sleator-Tarjan
1985	improved capacity scaling	$O(\|E\|\|V\| \log C)$	Gabow
1988	push-relabel	$O\left(\|E\|\|V\| \log \left(\|V\|^{2} /\|E\|\right)\right)$	Goldberg-Tarjan
1998	binary blocking flows	$O\left(\|E\|^{3 / 2} \log \left(n^{2} /\|E\|\right) \log C\right)$	Goldberg-Rao
2013	compact networks	$O(\|E\|\|V\|)$	Orlin
2014	interior-point methods	$\tilde{O}\left(\|E\|\|E\|^{1 / 2} \log C\right)$	Lee-Sidford
2016	electrical flows	$\tilde{O}\left(\|E\|^{10 / 7} C^{1 / 7}\right)$	Madry
$20 x x$		$? ? ?$	

augmenting-path algorithms with integer capacities between 1 and C

Maximum-Flow: Practice

Push-relabel algorithm (Section 7.4) of [KT05]. [Goldberg-Tarjan 1988]

Increases flow one edge at a time instead of one augmenting path at a time.

Maximum-Flow: Practice

Caveat. Worst-case running time is generally not useful for predicting or comparing max-flow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: $O\left(|E|^{3 / 2}\right)$ in practice.

Referred Materials

- Content of this lecture comes from Section 7.3 in [KT05].
- Suggest to read Chapter 26 in [CLRS09].

