

Algorithm Design and Analysis (IX)

More Extensions on Ford-Fulkerson Algorithm

Guoqiang Li School of Computer Science

Review of Ford-Fulkerson Algorithm

Ford–Fulkerson Algorithm

Ford–Fulkerson augmenting path algorithm.

- Start with f(e) = 0 for each edge $e \in E$.
- Find an $s \rightsquigarrow t$ path P in the residual network G_f .
- Augment flow along path P.
- Repeat until you get stuck.

A Flow Example

A Flow Example

Ford–Fulkerson Algorithm


```
FORD-FULKERSON(G)

for each edge e \in E do

| f(e) \leftarrow 0

end

G_f \leftarrow residual network of G with respect to flow f;

while there exists an s \rightsquigarrow t path P in G_f do

| f \leftarrow AUGMENT(f,P);

UPDATE(G_f);

end

RETURN f;
```

Analysis of the Algorithm

Theorem

The running time of Ford–Fulkerson algorithm is $O(|V| \cdot |E| \cdot C)$.

◆□▶ <□▶ < 글▶ < 글▶ < 글▶ ○ ♀ ○ ♀ ○ 8/51</p>

Overview. Choosing augmented paths with large bottleneck capacity.

Overview. Choosing augmented paths with large bottleneck capacity.

• Maintain scaling parameter Δ .

Overview. Choosing augmented paths with large bottleneck capacity.

- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the part of the residual network containing only those edges with capacity $\geq \Delta$.

Overview. Choosing augmented paths with large bottleneck capacity.

- Maintain scaling parameter Δ .
- Let $G_f(\Delta)$ be the part of the residual network containing only those edges with capacity $\geq \Delta$.
- Any augmenting path in $G_f(\Delta)$ has bottleneck capacity $\geq \Delta$.


```
CAPACITY-SCALING(G)
for each edge e \in E do
    f(e) \leftarrow 0
end
\Delta \leftarrow largest power of 2 \leq C;
while \Delta > 1 do
    G_f(\Delta) \leftarrow \Delta-residual network of G with respect to flow f;
    while there exists an s \rightsquigarrow t path P in G_f(\Delta) do
         f \leftarrow \mathsf{AUGMENT}(f, P);
         UPDATE(G_{\Delta}(f));
    end
    \Delta = \Delta/2;
end
RETURN f;
```


Assumption. All edge capacities are integers between 1 and C.

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Proof. Initially a power of 2; each phase divides Δ by exactly 2.

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Proof. Initially a power of 2; each phase divides Δ by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Assumption. All edge capacities are integers between 1 and C.

Invariant. The scaling parameter Δ is a power of 2.

Proof. Initially a power of 2; each phase divides Δ by exactly 2.

Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity $c_f(e)$ is an integer.

Proof. Same as for generic Ford–Fulkerson.

Theorem

If capacity-scaling algorithm terminates, then f is a max flow.

▲□▶▲@▶▲콜▶▲콜▶ 콜 - 외۹(~ 12/51

Theorem

If capacity-scaling algorithm terminates, then f is a max flow.

Proof.

Theorem

If capacity-scaling algorithm terminates, then f is a max flow.

- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths.
- Result follows augmenting path theorem.

Lemma 1

There are $1 + \lfloor \log_2 C \rfloor$ scaling phases.

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

Lemma 3

Let *f* be the flow at the end of a Δ -scaling phase. Then

 $\operatorname{val}(f^*) \le \operatorname{val}(f) + |E| \cdot \Delta$

Theorem

The capacity-scaling algorithm takes $O(|E|^2 \cdot \log C)$ time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 ・ の Q (*) 14/51

Theorem

The capacity-scaling algorithm takes $O(|E|^2 \cdot \log C)$ time.

Proof.

Theorem

The capacity-scaling algorithm takes $O(|E|^2 \cdot \log C)$ time.

- Lemma 1 + Lemma 2 $\Rightarrow O(|E| \cdot \log C)$ augmentations.
- Finding an augmenting path takes O(|E|) time.

Lemma 1

There are $1 + \lfloor \log_2 C \rfloor$ scaling phases.

▲□▶▲□▶▲豆▶▲豆▶ 豆 のへで 15/51

Lemma 1

There are $1 + \lfloor \log_2 C \rfloor$ scaling phases.

Proof.

Initially $C/2 < \Delta \leq C$; Δ decreases by a factor of 2 in each iteration.

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

Proof.

Lemma 2

There are $\leq 2|E|$ augmentations per scaling phase.

- Let *f* be the flow at the beginning of a Δ -scaling phase.
- Lemma $3 \Rightarrow \operatorname{val}(f^*) \le \operatorname{val}(f) + |E| \cdot (2\Delta).$
- Each augmentation in a Δ -phase increases val(f) by at least Δ .

Lemma 3

Let f be the flow at the end of a Δ -scaling phase. Then

 $\operatorname{val}(f^*) \le \operatorname{val}(f) + |E| \cdot \Delta$

Lemma 3

Let f be the flow at the end of a Δ -scaling phase. Then

 $\operatorname{val}(f^*) \le \operatorname{val}(f) + |E| \cdot \Delta$

Proof.

▲□▶ ▲□▶ ▲ Ξ▶ ▲ Ξ▶ Ξ · • ○ Q · • 17/51

Lemma 3

Let f be the flow at the end of a Δ -scaling phase. Then

 $\operatorname{val}(f^*) \le \operatorname{val}(f) + |E| \cdot \Delta$

- We show there exists a cut (A, B) such that $cap(A, B) \leq val(f) + |E| \cdot \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of $A : s \in A$.
- By definition of flow $f : t \notin A$.

Lemma 3

Let f be the flow at the end of a Δ -scaling phase. Then

 $\operatorname{val}(f^*) \le \operatorname{val}(f) + |E| \cdot \Delta$

Lemma 3

Let f be the flow at the end of a Δ -scaling phase. Then

 $\operatorname{val}(f^*) \le \operatorname{val}(f) + |E| \cdot \Delta$

$$\begin{aligned} \operatorname{val}(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\ &\geq \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta \\ &\geq \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta \\ &\geq \operatorname{cap}(A, B) - |E| \cdot \Delta \end{aligned}$$

Shortest Augmenting Paths

Edmonds–Karp's Algorithm

Q. How to choose next augmenting path in Ford–Fulkerson?

Edmonds–Karp's Algorithm

Q. How to choose next augmenting path in Ford–Fulkerson?

A. Pick one that uses the fewest edges.

Edmonds–Karp's Algorithm

Q. How to choose next augmenting path in Ford-Fulkerson?

A. Pick one that uses the fewest edges.

```
 \begin{array}{l} \mathsf{EDMONDS}-\mathsf{KARP'S} \ \mathsf{ALGORITHM}(G) \\ \texttt{for each edge} \ e \in E \ \texttt{do} \\ \mid \ f(e) \leftarrow 0 \\ \texttt{end} \\ G_f \leftarrow \texttt{residual network of } G \ \texttt{with respect to flow } f; \\ \texttt{while there exists an } s \rightsquigarrow t \ \texttt{path in } G_f \ \texttt{do} \\ \mid \ P \leftarrow \mathsf{BFS}(G_f); \\ f \leftarrow \mathsf{AUGMENT}(f, P); \\ \mathsf{UPDATE}(G_f); \\ \texttt{end} \\ \mathsf{RETURN} \ f; \end{array}
```

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

Proof.

• O(|E|) time to find a shortest augmenting path via BFS.

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

- O(|E|) time to find a shortest augmenting path via BFS.
- There are $\leq |V||E|$ augmentations.

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

- O(|E|) time to find a shortest augmenting path via BFS.
- There are $\leq |V||E|$ augmentations.
 - at most |E| augmenting paths of length k

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

- O(|E|) time to find a shortest augmenting path via BFS.
- There are $\leq |V||E|$ augmentations.
 - at most |E| augmenting paths of length $k \leftarrow$ Lemma 1 + Lemma 2

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

- O(|E|) time to find a shortest augmenting path via BFS.
- There are $\leq |V||E|$ augmentations.
 - at most |E| augmenting paths of length $k \leftarrow$ Lemma 1 + Lemma 2
 - at most |V| 1 different lengths.

Definition

Given a digraph G = (V, E) with source s, its level graph is defined by:

- $\ell(v)$ = number of edges in shortest $s \rightsquigarrow v$ path.
- $L_G = (V, E_G)$ is the subgraph of *G* that contains only those edges $(v, w) \in E$ with $\ell(w) = \ell(v) + 1$.

Which edges are in the level graph of the following digraph?

A. $D \rightarrow F$

- **B.** $E \rightarrow F$
- C. Both A and B.
- D. Neither A nor B.

Definition

Given a digraph G = (V, E) with source *s*, its level graph is defined by:

- $\ell(v)$ = number of edges in shortest $s \rightsquigarrow v$ path.
- $L_G = (V, E_G)$ is the subgraph of *G* that contains only those edges $(v, w) \in E$ with $\ell(w) = \ell(v) + 1$.

Definition

Given a digraph G = (V, E) with source s, its level graph is defined by:

- $\ell(v)$ = number of edges in shortest $s \rightsquigarrow v$ path.
- $L_G = (V, E_G)$ is the subgraph of *G* that contains only those edges $(v, w) \in E$ with $\ell(w) = \ell(v) + 1$.

Key property. *P* is a shortest $s \rightsquigarrow v$ path in *G* iff *P* is an $s \rightsquigarrow v$ path in L_G .

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 1

The length of a shortest augmenting path never decreases.

Proof.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 の Q (~ 26/51

Lemma 1

The length of a shortest augmenting path never decreases.

- Let f and f' be flow before and after a shortest-path augmentation.
- Let L_G and $L_{G'}$ be level graphs of G_f and $G_{f'}$.
- Only back edges added to G_{f'} (any s → t path that uses a back edge is longer than previous length)

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

- At least one (bottleneck) edge is deleted from L_G per augmentation.
- No new edge added to L_G until shortest path length strictly increases.

Review of Analysis

Lemma 1

The length of a shortest augmenting path never decreases.

Lemma 2

After at most |E| shortest-path augmentations, the length of a shortest augmenting path strictly increases.

Theorem

The Edmonds–Karp's algorithm takes $O(|E|^2|V|)$ time.

Improving the Running Time

Note. $\Theta(|E||V|)$ augmentations necessary for some flow networks.

Improving the Running Time

Note. $\Theta(|E||V|)$ augmentations necessary for some flow networks.

- Try to decrease time per augmentation instead.
- Simple idea $\Rightarrow O(|E||V|^2)$ [Dinitz 1970]

Improving the Running Time

Note. $\Theta(|E||V|)$ augmentations necessary for some flow networks.

- Try to decrease time per augmentation instead.
- Simple idea $\Rightarrow O(|E||V|^2)$ [Dinitz 1970]
- Dynamic trees $\Rightarrow O(|E||V| \log |V|)$ [Sleator-Tarjan 1983]

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ • の Q ○ 30/51</p>

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

level graph L_G

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from L_G and retreat to previous node.

Two types of augmentations.

- Normal: length of shortest path does not change.
- Special: length of shortest path strictly increases.

- Construct level graph L_G .
- Start at s, advance along an edge in L_G until reach t or get stuck.
- If reach t, augment flow; update L_G ; and restart from s.
- If get stuck, delete node from *L*_{*G*} and retreat to previous node.


```
INITIALIZE(G, f)
L_G \leftarrow level-graph of G_f
P \leftarrow \emptyset
GOTO ADVANCE(s);
RETREAT(v)
if v = s then Stop;
else
    Delete v from L_G;
    Remove last edge (u, v)
     from P;
end
GOTO ADVANCE(u);
```

ADVANCE(v)

```
if v = t then

AUGMENT(P);

Remove saturated edges

from L_G;

P \leftarrow \emptyset;

GOTO ADVANCE(s);
```

```
end
```

```
if there exists edge (v, w) \in L_G
then
```

```
Add edge (v, w) to P;
GOTO ADVANCE(w);
```

```
end
```

```
else
```

```
GOTO RETREAT(v);
```

end

How to compute the level graph L_G efficiently?

- A. Depth-first search.
- B. Breadth-first search.
- C. Both A and B.
- D. Neither A nor B.

Lemma

A phase can be implemented to run in O(|E||V|) time.

Lemma

A phase can be implemented to run in O(|E||V|) time.

Proof.

• Initialization happens once per phase.

Lemma

A phase can be implemented to run in O(|E||V|) time.

Proof.

• Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase.

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. $\leftarrow O(|E|)$ per phase

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. ← O(|E|) per phase (because an augmentation deletes at least one edge from L_G)

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. ← O(|E|) per phase (because an augmentation deletes at least one edge from L_G)
- At most |V| retreats per phase.

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. ← O(|E|) per phase (because an augmentation deletes at least one edge from L_G)
- At most |V| retreats per phase. $\leftarrow O(|E| + |V|)$ per phase

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. ← O(|E|) per phase (because an augmentation deletes at least one edge from L_G)
- At most |V| retreats per phase. $\leftarrow O(|E| + |V|)$ per phase (because a retreat deletes one node from L_G)

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. ← O(|E|) per phase (because an augmentation deletes at least one edge from L_G)
- At most |V| retreats per phase. $\leftarrow O(|E| + |V|)$ per phase (because a retreat deletes one node from L_G)
- At most |E||V| advances per phase.

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. ← O(|E|) per phase (because an augmentation deletes at least one edge from L_G)
- At most |V| retreats per phase. $\leftarrow O(|E| + |V|)$ per phase (because a retreat deletes one node from L_G)
- At most |E||V| advances per phase. $\leftarrow O(|E||V|)$ per phase

Lemma

A phase can be implemented to run in O(|E||V|) time.

- Initialization happens once per phase. using BFS $\leftarrow O(|E| + |V|)$
- At most |E| augmentations per phase. ← O(|E|) per phase (because an augmentation deletes at least one edge from L_G)
- At most |V| retreats per phase. $\leftarrow O(|E| + |V|)$ per phase (because a retreat deletes one node from L_G)
- At most |E||V| advances per phase. ← O(|E||V|) per phase (because at most |V| advances before retreat or augmentation)

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O(|E||V|^2)$ time.

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O(|E||V|^2)$ time.

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O(|E||V|^2)$ time.

Proof.

• By Lemma, O(|E||V|) time per phase.

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O(|E||V|^2)$ time.

- By Lemma, O(|E||V|) time per phase.
- At most |V| 1 phases

Theorem (Dinitz 1970)

Dinitz' algorithm runs in $O(|E||V|^2)$ time.

- By Lemma, O(|E||V|) time per phase.
- At most |V| 1 phases (as in shortest-augmenting-path analysis).

Summary

year	method	# augmentations	running time
1955	augmenting path	V C	O(E V C)
1972	fattest path	$ E \log(E C)$	$O\left(E ^2 \log n \log(E C)\right)$
1972	capacity scaling	$ E \log C$	$O\left(E ^2 \log C\right)$
1985	improved capacity scaling	$ E \log C$	$O(E V \log C)$
1970	shortest augmenting path	E V	$O\left(E ^2 V ight)$
1970	level graph	E V	$O\left(E V ^2 ight)$
1983	dynamic trees	E V	$O(E V \log V)$

augmenting-path algorithms with integer capacities between 1 and $\boldsymbol{\mathit{C}}$

Theory Highlights

year	method	worst case	discovered by
1951	simplex	$O\left(E V ^2C\right)$	Dantzig
1955	augmenting paths	O(E V C)	Ford–Fulkerson
1970	shortest augmenting paths	$O\left(E V ^2\right)$	Edmonds-Karp, Dinitz
1974	blocking flows	$O\left(V ^3 ight)$	Karzanov
1983	dynamic trees	$O(E V \log n)$	Sleator-Tarjan
1985	improved capacity scaling	$O(E V \log C)$	Gabow
1988	push-relabel	$O\left(E V \log\left(V ^2/ E ight) ight)$	Goldberg-Tarjan
1998	binary blocking flows	$O\left(E ^{3/2}\log\left(n^2/ E \right)\log C\right)$	Goldberg-Rao
2013	compact networks	O(E V)	Orlin
2014	interior-point methods	$\tilde{O}\left(E E ^{1/2}\log C\right)$	Lee-Sidford
2016	electrical flows	$\tilde{O}\left(E ^{10/7}C^{1/7} ight)$	Madry
20xx		???	

augmenting-path algorithms with integer capacities between 1 and ${\it C}$

Maximum-Flow: Practice

Push-relabel algorithm (Section 7.4) of [KT05]. [Goldberg-Tarjan 1988]

Increases flow one edge at a time instead of one augmenting path at a time.

Maximum-Flow: Practice

Caveat. Worst-case running time is generally not useful for predicting or comparing max-flow algorithm performance in practice.

Best in practice. Push–relabel method with gap relabeling: $O(|E|^{3/2})$ in practice.

Referred Materials

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ • の Q · 50/51</p>

Referred Materials

- Content of this lecture comes from Section 7.3 in [KT05].
- Suggest to read Chapter 26 in [CLRS09].