Algorithm Design and Implementation
Principle of Algorithms XII

NP Problem I

Guoqiang Li
May 25, 2020
School of Software, Shanghai Jiao Tong University
Poly-Time Reductions
Algorithm design patterns and antipatterns

Algorithm design patterns.
Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.
Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness.
Algorithm design patterns.

-Greedy.
-Divide and conquer.
-Dynamic programming.
-Duality.
-Reductions.
-Local search.
-Randomization.

Algorithm design antipatterns.

- NP-completeness. $O(n^k)$ algorithm unlikely.
Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. \(O(n^k)\) algorithm unlikely.
- PSPACE-completeness
Algorithm design patterns and antipatterns

Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. \(O(n^k)\) algorithm unlikely.
- PSPACE-completeness \(O(n^k)\) certification algorithm unlikely.
Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. \(O(n^k)\) algorithm unlikely.
- PSPACE-completeness \(O(n^k)\) certification algorithm unlikely.
- Undecidability
Algorithm design patterns.

- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.

- **NP-completeness.** $O(n^k)$ algorithm unlikely.
- **PSPACE-completeness** $O(n^k)$ certification algorithm unlikely.
- **Undecidability** No algorithm possible.
Q. Which problems will we be able to solve in practice?
Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.
Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.
 - Turing machine, word RAM, uniform circuits, . . .
Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.
- Turing machine, word RAM, uniform circuits, . . .

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

<table>
<thead>
<tr>
<th></th>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td></td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td></td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td></td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td></td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td></td>
<td>vertex cover</td>
</tr>
<tr>
<td>2D-matching</td>
<td></td>
<td>3D-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td></td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td></td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those that cannot.
Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?
Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?
Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

![Diagram of poly-time reductions](image)
Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.
Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_P Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_P Y$ with $Y \leq_P X$.
Suppose that $X \leq_P Y$. Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
D. If Y cannot be solved in polynomial time, then neither can X.
Which of the following poly-time reductions are known?

A. \(\text{FIND-MAX-FLOW} \leq_P \text{FIND-MIN-CUT} \).
B. \(\text{FIND-MIN-CUT} \leq_P \text{FIND-MAX-FLOW} \).
C. Both A and B.
D. Neither A nor B.
Poly-time reductions

Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.
Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.
Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. In this case, X can be solved in polynomial time iff Y can be.
Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_P Y$ and $Y \leq_P X$, we use notation $X \equiv_P Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
Packing and Covering Problems
Independent Set. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?
Independent Set. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Example. Is there an independent set of size ≥ 6?

Example. Is there an independent set of size ≥ 7?
Vertex Cover. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?
Vertex Cover. Given a graph $G = (V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Example. Is there a vertex cover of size ≤ 4?
Example. Is there a vertex cover of size ≤ 3?
Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.
B. The black vertices are an independent set of size 3.
C. Both A and B.
D. Neither A nor B.
Vertex cover and independent set reduce to one another

Theorem

\[\text{Independent Set} \equiv_P \text{Vertex Cover}. \]
Theorem

Independent Set \equiv_P Vertex Cover.

Proof. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.
Theorem

\[\text{Independent Set} \equiv_P \text{Vertex Cover}. \]

Proof. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).
Vertex cover and independent set reduce to one another

Theorem

Independent Set \equiv_p *Vertex Cover*.

Proof. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Rightarrow

- Let S be any independent set of size k.
- $V - S$ is of size $n - k$.
- Consider an arbitrary edge $(u, v) \in E$.

Vertex cover and independent set reduce to one another

Theorem

Independent Set \equiv_P Vertex Cover.

Proof. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Rightarrow

- Let S be any independent set of size k.
- $V - S$ is of size $n - k$.
- Consider an arbitrary edge $(u, v) \in E$.
- S independent \Rightarrow either $u \notin S$, or $v \notin S$, or both.
 \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
Vertex cover and independent set reduce to one another

\textbf{Theorem}

\[\text{Independent Set} \equiv_P \text{Vertex Cover}. \]

\textbf{Proof.} We show \(S\) is an independent set of size \(k\) iff \(V - S\) is a vertex cover of size \(n - k\).

\[\Rightarrow \]

- Let \(S\) be any independent set of size \(k\).
- \(V - S\) is of size \(n - k\).
- Consider an arbitrary edge \((u, v) \in E\).
- \(S\) independent \(\Rightarrow\) either \(u \notin S\), or \(v \notin S\), or both.
 \[\Rightarrow \] either \(u \in V - S\), or \(v \in V - S\), or both.
- Thus, \(V - S\) covers \((u, v)\).
Vertex cover and independent set reduce to one another

Theorem

$\text{Independent Set} \equiv_p \text{Vertex Cover}$

Proof. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\Rightarrow

- Let $V - S$ be any independent set of size $n - k$.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.
- $V - S$ is a vertex cover \Rightarrow either $u \in V - S$, or $v \in V - S$, or both.
- \Rightarrow either $u \notin S$, or $v \notin S$, or both.
- Thus, S is an independent set.

\Leftarrow
Vertex cover and independent set reduce to one another

Theorem

\[\text{Independent Set} \equiv_p \text{Vertex Cover} \]

Proof. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\(\Leftarrow \)

- Let \(V - S \) be any independent set of size \(n - k \).
- \(S \) is of size \(k \).
- Consider an arbitrary edge \((u, v) \in E \).
Vertex cover and independent set reduce to one another

Theorem

\[\text{Independent Set} \equiv_P \text{Vertex Cover}. \]

Proof. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\leftarrow \]

- Let \(V - S \) be any independent set of size \(n - k \).
- \(S \) is of size \(k \).
- Consider an arbitrary edge \((u, v) \in E \).

\[V - S \text{ is a vertex cover} \Rightarrow \text{either } u \in V - S, \text{ or } v \in V - S, \text{ or both.} \]

\[\Rightarrow \text{either } u \not\in S, \text{ or } v \not\in S, \text{ or both.} \]
Theorem

Independent Set \equiv_P \text{Vertex Cover.}

Proof. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\(\Leftarrow \)

- Let \(V - S \) be any independent set of size \(n - k \).
- \(S \) is of size \(k \).
- Consider an arbitrary edge \((u, v) \in E\).

\(V - S \) is a vertex cover \(\Rightarrow \) either \(u \in V - S \), or \(v \in V - S \), or both.

\(\Rightarrow \) either \(u \notin S \), or \(v \notin S \), or both.

- Thus, \(S \) is an independent set.
Set Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?
Set cover

Set Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U?

Sample application.

- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
\begin{align*}
U &= \{1, 2, 3, 4, 5, 6, 7\} \\
S_a &= \{3, 7\} \\
S_b &= \{2, 4\} \\
S_c &= \{3, 4, 5, 6\} \\
S_d &= \{5\} \\
S_e &= \{1\} \\
k &= 2 \\
S_f &= \{1, 2, 6, 7\}
\end{align*}
\]

a set cover instance
Given the universe $U = \{1, 2, 3, 4, 5, 6, 7\}$ and the following sets, which is the minimum size of a set cover?

A. 1
B. 2
C. 3
D. None of the above.

$U = \{1, 2, 3, 4, 5, 6, 7\}$
$S_a = \{1, 4, 6\}$ $S_b = \{1, 6, 7\}$
$S_c = \{1, 2, 3, 6\}$ $S_d = \{1, 3, 5, 7\}$
$S_e = \{2, 6, 7\}$ $S_f = \{3, 4, 5\}$
Vertex cover reduces to set cover

Theorem

\[\text{Vertex Cover} \leq_P \text{Set Cover} \]
Theorem

Vertex Cover \(\leq_P \) Set Cover.

Proof.
Vertex cover reduces to set cover

Theorem

Vertex Cover \leq_P Set Cover.

Proof. Given a Vertex Cover instance $G = (V, E)$ and k, we construct a Set Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

- **Universe** $U = E$.
- Include one subset for each node $v \in V$: $S_v = \{ e \in E : e \text{ incident to } v \}$.

Example:

- **Vertex cover instance** ($k = 2$)
 - $U = \{1, 2, 3, 4, 5, 6, 7\}$
 - $S_a = \{3, 7\}$
 - $S_b = \{2, 4\}$
 - $S_c = \{3, 4, 5, 6\}$
 - $S_d = \{5\}$
 - $S_e = \{1\}$
 - $S_f = \{1, 2, 6, 7\}$
Vertex cover reduces to set cover

Theorem

Vertex Cover \leq_P Set Cover.

Proof. Given a Vertex Cover instance $G = (V, E)$ and k, we construct a Set Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.
- Universe $U = E$.
- Include one subset for each node $v \in V$: $S_v = \{e \in E : e$ incident to $v \}$.

vertex cover instance $(k = 2)$

set cover instance $(k = 2)$

$U = \{1, 2, 3, 4, 5, 6, 7\}$
$S_a = \{3, 7\}$
$S_c = \{3, 4, 5, 6\}$
$S_e = \{1\}$
$S_b = \{2, 4\}$
$S_d = \{5\}$
$S_f = \{1, 2, 6, 7\}$
Vertex cover reduces to set cover

Lemma

\[G = (V, E) \] contains a vertex cover of size \(k \) iff \((U, S, k) \) contains a set cover of size \(k \).
Vertex cover reduces to set cover

Lemma

$G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Proof. ⇒

Let $X \subseteq V$ be a vertex cover of size k in G.

- Then $Y = \{S_v : v \in X\}$ is a set cover of size k.

vertex cover instance

$(k = 2)$

set cover instance

$(k = 2)$

$U = \{1, 2, 3, 4, 5, 6, 7\}$

$S_a = \{3, 7\}$

$S_b = \{2, 4\}$

$S_c = \{3, 4, 5, 6\}$

$S_d = \{5\}$

$S_e = \{1\}$

$S_f = \{1, 2, 6, 7\}$
Lemma

$G = (V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Proof. \Leftarrow

Let $Y \subseteq S$ be a set cover of size k in (U, S, k).
- Then $X = \{v : S_v \in Y\}$ is a vertex cover of size k in G.

vertex cover instance
$(k = 2)$

set cover instance
$(k = 2)$
Constraint Satisfaction Problems
Literal. A Boolean variable or its negation: \(x_i \) or \(\bar{x}_i \).
Satisfiability

Literal. A Boolean variable or its negation: x_i or \overline{x}_i.

Clause. A disjunction of literals: $C_j = x_1 \lor \overline{x}_2 \lor x_3$
Literal. A Boolean variable or its negation: \(x_i \) or \(\overline{x_i} \).

Clause. A disjunction of literals: \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

Conjunctive normal form (CNF): \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)
Satisfiability

Literal. A Boolean variable or its negation: \(x_i \) or \(\overline{x}_i \).

Clause. A disjunction of literals: \(C_j = x_1 \lor \overline{x}_2 \lor x_3 \)

Conjunctive normal form (CNF): \(\Phi = C_1 \land C_2 \land C_3 \land C_4 \)

SAT. Given a CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)
Literal. A Boolean variable or its negation: x_i or \overline{x}_i.

Clause. A disjunction of literals: $C_j = x_1 \lor \overline{x}_2 \lor x_3$

Conjunctive normal form (CNF): $\Phi = C_1 \land C_2 \land C_3 \land C_4$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).
Satisfiability

Literal. A Boolean variable or its negation: x_i or \overline{x}_i.

Clause. A disjunction of literals: $C_j = x_1 \lor \overline{x}_2 \lor x_3$

Conjunctive normal form (CNF): $\Phi = C_1 \land C_2 \land C_3 \land C_4$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4)$$

yes instance: $x_1 = \text{true}$, $x_2 = \text{true}$, $x_3 = \text{false}$, $x_4 = \text{false}$
Satisfiability

Literal. A Boolean variable or its negation: x_i or \overline{x}_i.

Clause. A disjunction of literals: $C_j = x_1 \lor \overline{x}_2 \lor x_3$

Conjunctive normal form (CNF): $\Phi = C_1 \land C_2 \land C_3 \land C_4$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$\Phi = (\overline{x}_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_1 \lor x_2 \lor x_4)$$

yes instance: $x_1 = \text{true}, \ x_2 = \text{true}, \ x_3 = \text{false} \ x_4 = \text{false}$

Key application. Electronic design automation (EDA).
Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.
Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP This hypothesis is equivalent to $P \neq NP$ conjecture.
Scientific hypothesis. There does not exist a poly-time algorithm for 3-SAT.

P vs. NP This hypothesis is equivalent to $P \neq NP$ conjecture.

Computer Scientists have so much funding and time and can't even figure out the boolean satisfiability problem. SAT!
Theorem

3-SAT \leq_P Independent Set.
3-satisfiability reduces to independent set

Theorem

$3\text{-SAT} \leq_P \text{Independent Set.}$

Proof.
3-satisfiability reduces to independent set

Theorem

\[3\text{-SAT} \leq_P \text{Independent Set.} \]

Proof.

Given an instance \(\Phi \) of 3-SAT, we construct an instance \((G, k)\) of Independent Set that has an independent set of size \(k = |\Phi| \) iff \(\Phi \) is satisfiable.

Construction.

- \(G \) contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

\[
\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\]
3-satisfiability reduces to independent set

Theorem

3-SAT \leq_P Independent Set.

Proof.
3-satisfiability reduces to independent set

Theorem

3-SAT \leq_p Independent Set.

Proof.

\implies Consider any satisfying assignment for Φ.

- Select one true literal from each clause/triangle.
- This is an independent set of size $k = |\Phi|$.

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$
3-satisfiability reduces to independent set

\[3\text{-SAT} \leq_P \text{Independent Set}. \]

Proof.
3-satisfiability reduces to independent set

Theorem

\[3\text{-SAT} \leq_P \text{Independent Set.}\]

Proof.

\[\iff \text{Let } S \text{ be independent set of size } k.\]

- \(S\) must contain exactly one node in each triangle.
- Set these literals to \text{true}
3-satisfiability reduces to independent set

Theorem

\[3\text{-SAT} \leq_P \text{Independent Set}. \]

Proof.

\[\iff \] Let \(S \) be independent set of size \(k \).

- \(S \) must contain exactly one node in each triangle.
- Set these literals to true and remaining literals consistently.
- All clauses in \(\Phi \) are satisfied.

\[\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \]
Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_P Vertex Cover
- Special case to general case: Vertex Cover \leq_P Set Cover.
- Encoding with gadgets: 3-SAT \leq_P Independent Set.
Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_P Vertex Cover
- Special case to general case: Vertex Cover \leq_P Set Cover.
- Encoding with gadgets: 3-SAT \leq_P Independent Set.

Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.
Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_P Vertex Cover
- Special case to general case: Vertex Cover \leq_P Set Cover.
- Encoding with gadgets: 3-SAT \leq_P Independent Set.

Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.

Proof idea. Compose the two algorithms.
Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_P Vertex Cover
- Special case to general case: Vertex Cover \leq_P Set Cover.
- Encoding with gadgets: 3-SAT \leq_P Independent Set.

Transitivity. If $X \leq_P Y$ and $Y \leq_P Z$, then $X \leq_P Z$.

Proof idea. Compose the two algorithms.

Example. 3-SAT \leq_P Independent Set \leq_P Vertex Cover \leq_P Set Cover.
Decision problem. Does there exist a vertex cover of size $\leq k$?
Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).
Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Optimization problem. Find a vertex cover of minimum size.
Decision problem. Does there exist a vertex cover of size $\leq k$?

Search problem. Find a vertex cover of size $\leq k$.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.
Vertex cover. Does there exist a vertex cover of size $\le k$?

Find vertex cover. Find a vertex cover of size $\le k$.
Vertex cover. Does there exist a vertex cover of size $\leq k$?

Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover \(\equiv_P\) Find vertex cover.
Search problems VS. Decision problems

Vertex cover. Does there exist a vertex cover of size $\leq k$?

Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover \equiv_P Find vertex cover.

Proof.
Search problems VS. Decision problems

Vertex cover. Does there exist a vertex cover of size $\leq k$?

Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover \equiv_P Find vertex cover.

Proof.

\leq_P. Decision problem is a special case of search problem.
Search problems VS. Decision problems

Vertex cover. Does there exist a vertex cover of size $\leq k$?

Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover \equiv_P Find vertex cover.

Proof.

\leq_P. Decision problem is a special case of search problem.

\geq_P. To find a vertex cover of size $\leq k$:
Vertex cover. Does there exist a vertex cover of size $\leq k$?

Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover \equiv_P Find vertex cover.

Proof.

\leq_P. Decision problem is a special case of search problem.

\geq_P. To find a vertex cover of size $\leq k$:

- Determine if there exists a vertex cover of size $\leq k$.
- Find a vertex v such that $G - \{v\}$ has a vertex cover of size $\leq k - 1$. (any vertex in any vertex cover of size $\leq k$ will have this property)
- Include v in the vertex cover.
- Recursively find a vertex cover of size $\leq k - 1$ in $G - \{v\}$.
Find vertex cover. Find a vertex cover of size $\leq k$.

Find min vertex cover. Find a vertex cover of minimum size.
Optimization problems VS. Search problems VS. Decision problems

Find vertex cover. Find a vertex cover of size $\leq k$.

Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_P Find min vertex cover.
Find vertex cover. Find a vertex cover of size $\leq k$.

Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_P Find min vertex cover.

Proof.
Find vertex cover. Find a vertex cover of size $\leq k$.

Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_P Find min vertex cover.

Proof.

\leq_P. Search problem is a special case of optimization problem.
Find vertex cover. Find a vertex cover of size $\leq k$.

Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_P Find min vertex cover.

Proof.

\leq_P. Search problem is a special case of optimization problem.

\geq_P. To find vertex cover of minimum size:
Find vertex cover. Find a vertex cover of size $\leq k$.

Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_P Find min vertex cover.

Proof.

\leq_P. Search problem is a special case of optimization problem.

\geq_P. To find vertex cover of minimum size:

- Binary search (or linear search) for size k^* of min vertex cover.
- Solve search problem for given k^*.
Sequencing Problems
Hamilton cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?
Hamilton cycle. Given an undirected graph $G = (V, E)$, does there exist a cycle Γ that visits every node exactly once?

no
Directed Hamilton cycle. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem

Directed Hamilton cycle \leq_P Hamilton cycle.
Directed Hamilton cycle. Given a directed graph $G = (V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem

Directed Hamilton cycle \leq_P Hamilton cycle.

Proof. Given a directed graph $G = (V, E)$, construct a graph G' with $3n$ nodes.

![Diagram of directed graph G and G' with labels $a, b, c, d, e, v, v_{in}, v_{out}, a_{out}, b_{out}, c_{out}, d_{in}, e_{in}$]
Directed Hamilton cycle reduces to Hamilton cycle

Lemma

\[G \text{ has a directed Hamilton cycle iff } G' \text{ has a Hamilton cycle.} \]
Directed Hamilton cycle reduces to Hamilton cycle

Lemma

\[G \text{ has a directed Hamilton cycle iff } G' \text{ has a Hamilton cycle.} \]

Proof.
Lemma

G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Proof.

\Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G' has an undirected Hamilton cycle (same order).
Directed Hamilton cycle reduces to Hamilton cycle

Lemma

\[G \text{ has a directed Hamilton cycle iff } G' \text{ has a Hamilton cycle.} \]

Proof.

\[\Rightarrow \]
- Suppose \(G \) has a directed Hamilton cycle \(\Gamma \).
- Then \(G' \) has an undirected Hamilton cycle (same order).

\[\Leftarrow \]
- Suppose \(G' \) has an undirected Hamilton cycle \(\Gamma' \).
- \(\Gamma' \) must visit nodes in \(G' \) using one of following two orders:
 - \(\ldots, \text{black, white, blue, black, white, blue, black, white, blue,} \ldots \)
 - \(\ldots, \text{black, blue, white, black, blue, white, black, blue, white,} \ldots \)
- Black nodes in \(\Gamma' \) comprise either a directed Hamilton cycle \(\Gamma \) in \(G \), or reverse of one.
Theorem

3-SAT \leq_p Directed Hamilton cycle.

Proof. Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.
Theorem

3-SAT \leq_P Directed Hamilton cycle.

Proof.
Theorem

3-SAT \leq_p Directed Hamilton cycle.

Proof.

Given an instance \(\Phi \) of 3-SAT, we construct an instance \(G \) of Directed Hamilton cycle that has a Hamilton cycle iff \(\Phi \) is satisfiable.
3-satisfiability reduces to directed Hamilton cycle

Theorem

3-SAT \leq_P Directed Hamilton cycle.

Proof.

Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^n Hamilton cycles, with each cycle corresponding to one of the 2^n possible truth assignments.
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variables $x_i = \text{true}$
Which is truth assignment corresponding to Hamilton cycle below?

A. $x_1 = true, x_2 = true, x_3 = true$
B. $x_1 = true, x_2 = true, x_3 = false$
C. $x_1 = false, x_2 = false, x_3 = true$
D. $x_1 = false, x_2 = false, x_3 = false$
Construction. Given 3-SAT instance \(\Phi \) with \(n \) variables \(x_i \) and \(k \) clauses.

- For each clause: add a node and 2 edges per literal.
3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- For each clause: add a node and 2 edges per literal.
3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.
3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof.
3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof.

⇒

- Suppose 3-SAT instance Φ has satisfying assignment x*.
- Then, define Hamilton cycle Γ in G as follows:
 - if x_i* = true, traverse row i from left to right.
 - if x_i* = false, traverse row i from right to left.
 - for each clause C_j, there will be at least one row i in which we are going in “correct” direction to splice clause node C_j into cycle (and we splice in C_j exactly once)
Lemma

\(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Proof.
3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof.

\implies

- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_j, it must depart on mate edge.
 - nodes immediately before and after C_j are connected by an edge $e \in E$.
 - removing C_j from cycle, and replacing it with edge e yields Hamilton cycle on $G - \{C_j\}$.
- Continuing in this way, we are left with a Hamilton cycle Γ' in $G - \{C_1, C_2, \ldots, C_k\}$.
- Set $x_i^* = \text{true}$ if Γ' traverses row i left-to-right; otherwise, set $x_i^* = \text{false}$.
- traversed in “correct” direction, and each clause is satisfied.
Graph Coloring
Home reading!
Numerical Problems
Subset sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Subset sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Subset sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Yes. $215 + 355 + 355 + 580 = 1505$.

Subset sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Yes. $215 + 355 + 355 + 580 = 1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Theorem

3-SAT \leq_P Subset sum.
Theorem

3-SAT \leq_P Subset sum.

Proof. Given an instance Φ of 3-SAT, we construct an instance of Subset sum that has solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each having $n + k$ digits:

- Include one digit for each variable x_i and one digit for each clause C_j.
- Include two numbers for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1; sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

\[
\begin{align*}
C_1 &= \neg x_1 \vee x_2 \vee x_3 \\
C_2 &= x_1 \vee \neg x_2 \vee x_3 \\
C_3 &= \neg x_1 \vee \neg x_2 \vee \neg x_3
\end{align*}
\]
3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W.
3-satisfiability reduces to subset sum

Lemma

\[\Phi \text{ is satisfiable iff there exists a subset that sums to } W. \]

Proof.
3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W.

Proof.⇒ Suppose 3-SAT instance Φ has satisfying assignment x*.

- If \(x_i^* = true \), select integer in row \(x_i \); otherwise, select integer in row \(\neg x_i \).
- Each \(x_i \) digit sums to 1.
- Since Φ is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) and \(\neg x_i \) rows.
- Select dummy integers to make \(C_j \) digits sum to 4.

\[
C_1 = \neg x_1 \lor x_2 \lor x_3 \\
C_2 = x_1 \lor \neg x_2 \lor x_3 \\
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
\]

3-SAT instance

\[
\begin{array}{cccccc}
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 100,010 \\
x_2 & 0 & 1 & 0 & 0 & 0 & 10,010 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 10,011 \\
x_3 & 0 & 0 & 1 & 1 & 0 & 1,110 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1,001 \\
\end{array}
\]

Subset sum instance

\[
\begin{array}{cccc}
C_1 & 0 & 0 & 1 & 0 & 0 & 100 \\
C_2 & 0 & 0 & 2 & 0 & 0 & 200 \\
C_3 & 0 & 0 & 0 & 0 & 1 & 10 \\
W & 0 & 0 & 0 & 2 & 0 & 20 \\
& 0 & 0 & 0 & 0 & 1 & 1 \\
& 0 & 0 & 0 & 0 & 2 & 2 \\
& 111,444
\end{array}
\]

dummies to get clause columns to sum to 4
3-satisfiability reduces to subset sum

Lemma

\(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Proof.
3-satisfiability reduces to subset sum

Lemma

\(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Proof. Suppose there exists a subset \(S^* \) that sums to \(W \).

- Digit \(x_i \) forces subset \(S^* \) to select either row \(x_i \) or row \(\neg x_i \) (but not both).
- If row \(x_i \) selected, assign \(x_i^* = \text{true} \); otherwise, assign \(x_i^* = \text{false} \).

Digit \(C_j \) forces subset \(S^* \) to select at least one literal in clause.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(W \) is the sum of the weights of the literals in the clause.

3-SAT instance

\[
C_1 = \neg x_1 \lor x_2 \lor x_3 \\
C_2 = x_1 \lor \neg x_2 \lor x_3 \\
C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3
\]

Subset sum instance

\[
W \begin{bmatrix}
1 & 1 & 1 & 4 & 4 & 4
\end{bmatrix} + 111,444
\]
Subset sum. Given \(n \) natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

Knapsack. Given a set of items \(X \), weights \(u_i \geq 0 \), values \(v_i \geq 0 \), a weight limit \(U \), and a target value \(V \), is there a subset \(S \subseteq X \) such that:

\[
\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V
\]
Subset sum. Given \(n \) natural numbers \(w_1, \ldots, w_n \) and an integer \(W \), is there a subset that adds up to exactly \(W \)?

Knapsack. Given a set of items \(X \), weights \(u_i \geq 0 \), values \(v_i \geq 0 \), a weight limit \(U \), and a target value \(V \), is there a subset \(S \subseteq X \) such that:

\[
\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V
\]

Recall. \(O(nU) \) dynamic programming algorithm for knapsack.
Subset sum. Given n natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Knapsack. Given a set of items X, weights $u_i \geq 0$, values $v_i \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$\sum_{i \in S} u_i \leq U, \quad \sum_{i \in S} v_i \geq V$$

Recall. $O(nU)$ dynamic programming algorithm for knapsack.

Challenge. Prove subset sum \leq_P Knapsack.
Poly-time reductions

constraint satisfaction

3-SAT

1. INDEPENDENT-SET
 - 3-SAT poly-time reduces to INDEPENDENT-SET
 - VERTEX-COVER
 - SET-COVER

2. DIR-HAM-CYCLE
 - HAM-CYCLE

3. 3-COLOR

4. SUBSET-SUM
 - KNAPSACK

packing and covering
sequencing
partitioning
numerical
Karp's 20 poly-time reductions from satisfiability

FIGURE 1 - Complete Problems

Dick Karp (1972)
1985 Turing Award