Computability Theory I
Introduction
Guogqiang Li

Sep. 19, 2014



Instructor and Teaching Assistant

* Guogiang LI



Instructor and Teaching Assistant

* Guogiang LI
* Homepage: http://basics.sjtu.edu.cn/~liguogiang
* Course page:
http://basics.sjtu.edu.cn/~liguogiang/teaching/comp14/index.htm
* Email: li-gq@cs.sjtu.edu.cn
* Office: Rm. 1212, Building of Software
e Phone: 3420-4167



Instructor and Teaching Assistant

* Guogiang LI

* TA:

Homepage: http://basics.sjtu.edu.cn/~liguogiang

Course page:
http://basics.sjtu.edu.cn/~liguogiang/teaching/comp14/index.htm
Email: li-gq@cs.sjtu.edu.cn

Office: Rm. 1212, Building of Software

Phone: 3420-4167

YSSY: many IDs...

weibo: http://www.weibo.com/flyinsail



Instructor and Teaching Assistant

* Guogiang LI

* TA:

Homepage: http://basics.sjtu.edu.cn/~liguogiang

Course page:
http://basics.sjtu.edu.cn/~liguogiang/teaching/comp14/index.htm
Email: li-gq@cs.sjtu.edu.cn

Office: Rm. 1212, Building of Software

Phone: 3420-4167

YSSY: many IDs...

weibo: http://www.weibo.com/flyinsail

Mingzhang HUANG: mingzhanghuang @ gmail.com
Xiuting TAO: taoxiuting @ gmail.com

 Office hour: Wed. 14:00-17:00 @ SEIEE 3-327



What do you think you can learn from this course?




Aim of the Course

* Q: Can the course improve the skill of programming?



Aim of the Course

* Q: Can the course improve the skill of programming?
* A: Nope!



Aim of the Course

* Q: Can the course improve the skill of programming?
* A: Nope!
* Q: Can the course improve the ability of algorithms?



Aim of the Course

* Q: Can the course improve the skill of programming?
* A: Nope!

* Q: Can the course improve the ability of algorithms?
* A: Perhaps, seldom.



Aim of the Course

* Q: Can the course improve the skill of programming?
* A: Nope!
* Q: Can the course improve the ability of algorithms?
* A: Perhaps, seldom.
* The course may provide a view of computation, an overlook of
what we are doing in computer science, and a basic study of
theoretical computer science.



Aim of the Course

* Q: Can the course improve the skill of programming?
* A: Nope!

* Q: Can the course improve the ability of algorithms?
* A: Perhaps, seldom.

* The course may provide a view of computation, an overlook of
what we are doing in computer science, and a basic study of
theoretical computer science.

* It is rather a philosophy than a technique, although some parts
are quite technically.



It May Answer




It May Answer

* A software company that is developing a compiler capable of
checking if a program contains a loop.



It May Answer

* A software company that is developing a compiler capable of
checking if a program contains a loop.

* A hardware company that is determined to design a computer
that can solve problems that no existing computers can solve.



It May Answer

* A software company that is developing a compiler capable of
checking if a program contains a loop.

* A hardware company that is determined to design a computer
that can solve problems that no existing computers can solve.

* A service provider that is working on a theorem prover that is
supposed to answer every question about numbers.



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.

¢ Wheels: Mid-4th millennium BC.



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.

¢ Wheels: Mid-4th millennium BC.
e Automobiles: 1762



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.

* Wheels: Mid-4th millennium BC.
* Automobiles: 1762

* Trains: 1807

* Airplanes: 1903



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.

* Wheels: Mid-4th millennium BC.
* Automobiles: 1762

* Trains: 1807

* Airplanes: 1903

* Supersonic: 1947 343.2m/s



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.

Wheels: Mid-4th millennium BC.
Automobiles: 1762

Trains: 1807

Airplanes: 1903

Supersonic: 1947 343.2m/s

Circular velocity 1957 7.9km/s

Earth escape velocity 1959 11.2km/s

Solar system escape velocity 1977 16.7km/s



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.

Wheels: Mid-4th millennium BC.
Automobiles: 1762

Trains: 1807

Airplanes: 1903

Supersonic: 1947 343.2m/s

Circular velocity 1957 7.9km/s
Earth escape velocity 1959 11.2km/s

Solar system escape velocity 1977 16.7km/s
Q: Can we achieve in arbitrarily fast velocity?



History of Velocity

Human beings are keen on speed, and cannot stop the step to chase
moving as fast as possible.

Wheels: Mid-4th millennium BC.
Automobiles: 1762

Trains: 1807

Airplanes: 1903

Supersonic: 1947 343.2m/s

Circular velocity 1957 7.9km/s
Earth escape velocity 1959 11.2km/s

Solar system escape velocity 1977 16.7km/s
Q: Can we achieve in arbitrarily fast velocity?
* Grandfather paradox



Computation

Human beings are also keen on computation, and cannot stop the step
to chase computing as complex as possible.



Computation

Human beings are also keen on computation, and cannot stop the step
to chase computing as complex as possible.

* Decimal system: AD 600



Computation

Human beings are also keen on computation, and cannot stop the step
to chase computing as complex as possible.

* Decimal system: AD 600
» Basic arithmetic: Al Khwarizmi (780 - 850)



Computation

Human beings are also keen on computation, and cannot stop the step
to chase computing as complex as possible.

* Decimal system: AD 600
» Basic arithmetic: Al Khwarizmi (780 - 850)
* ENIAC: 1946



Computation

Human beings are also keen on computation, and cannot stop the step
to chase computing as complex as possible.

* Decimal system: AD 600

e Basic arithmetic: Al Khwarizmi (780 - 850)
ENIAC: 1946

* NP problem

* The curse of exponential time



Computation

Human beings are also keen on computation, and cannot stop the step
to chase computing as complex as possible.

* Decimal system: AD 600

e Basic arithmetic: Al Khwarizmi (780 - 850)
ENIAC: 1946

* NP problem

* The curse of exponential time

» Advanced algorithms: simplex, DPLL, antichain.



Computation

Human beings are also keen on computation, and cannot stop the step
to chase computing as complex as possible.

* Decimal system: AD 600

e Basic arithmetic: Al Khwarizmi (780 - 850)
ENIAC: 1946

* NP problem

* The curse of exponential time

» Advanced algorithms: simplex, DPLL, antichain.

* Q: Can we achieve in arbitrarily complex computation?



What problems can be solved by computers?




Computer science is no more about computers than
astronomy is about telescopes.

Edsger Dijkstra



Let us begin to learn some basic astronomical phenomena!




The technique part is quite similar to puzzles of wise men.

So, please have a fun!







Reference Book

N.J. Cutland
* Computability: An Introduction to Recursive
Function Theory.

* Nigel J. Cutland

An introduction

to recursive function

theory




Reference Book

N.J. Cutland
* Computability: An Introduction to Recursive | [0l
Functlon Theory' to recursive function
I theory
* Nigel J. Cutland
* plus extra reading materials.




Scoring Policy

* 10% Attendance.
* 20% Assignments.

¢ 70% Final exam.



Scoring Policy

* 10% Attendance.
* 20% Assignments.
* Four assignments.

¢ 70% Final exam.



Scoring Policy

* 10% Attendance.
* 20% Assignments.

* Four assignments.
* Each one is 5 pts.

¢ 70% Final exam.



Scoring Policy

* 10% Attendance.
* 20% Assignments.

* Four assignments.
* Each one is 5 pts.
* Work out individually.

¢ 70% Final exam.



Scoring Policy

10% Attendance.
20% Assignments.

* Four assignments.
* Each one is 5 pts.
* Work out individually.

70% Final exam.

There are also several homework. The answer may be given in
exercise lectures, two or three times.



Special Requirements

A notebook and a pen.



Any questions?




0. Prologue




Effective Solutions




What problems can be solved by computers?




Famous Problems

Diophantine equations

Shortest path problem

Travelling salesman problem (TSP)
Graph isomorphism problem (GI)



Intuition

An effective procedure consists of a finite set of instructions which,
given an input from some set of possible inputs, enables us to obtain
an output through a systematic execution of the instructions that
terminates in a finite number of steps.



1tion

=
=
—




Intuition

Theorem proving is in general not effective.

Proof verification is effective.



Intuition

Theorem proving is in general not effective.

Proof verification is effective.

Unbounded search is in general not effective.

Bounded search is effective.



Representation of Problem

* How does a computer solve the GI problem or the TSP Problem?



Representation of Problem

* How does a computer solve the GI problem or the TSP Problem?

* How is a problem instance (a graph) represented in a computer?



Representation of Problem

* How does a computer solve the GI problem or the TSP Problem?
* How is a problem instance (a graph) represented in a computer?

* How is the answer to a problem instance represented?



Representation of Problem

How does a computer solve the GI problem or the TSP Problem?
How is a problem instance (a graph) represented in a computer?
How is the answer to a problem instance represented?

How is an effective procedure formalized?



Representation of Problem

How does a computer solve the GI problem or the TSP Problem?
How is a problem instance (a graph) represented in a computer?
How is the answer to a problem instance represented?

How is an effective procedure formalized?

Can every function from N to N be calculated by a C program?



Representation of Problem

How does a computer solve the GI problem or the TSP Problem?
How is a problem instance (a graph) represented in a computer?
How is the answer to a problem instance represented?

How is an effective procedure formalized?

Can every function from N to N be calculated by a C program?
* Negative.



Punchline

* In a formal theory of computability, every problem instance can
be represented by a number and every number represents a
problem instance.



Punchline

* In a formal theory of computability, every problem instance can
be represented by a number and every number represents a
problem instance.

* A problem is a function f : N — N from numbers to numbers.



Punchline

* In a formal theory of computability, every problem instance can
be represented by a number and every number represents a
problem instance.

* A problem is a function f : N — N from numbers to numbers.

* A problem is computable if it can be calculated by a program.



Everything is number!

Pythagoras




Problem

=
]
=
72}
—

Dec




Decision Problem

A problem f : N — N is a decision problem if the range ran(f) of f is
{0, 1}, where 1 denotes a ‘yes’ answer and 0 a ‘no’ answer.

A decision problem g can be identified with the set {n | g(n) = 1}.

Conversely a subset A of N can be seen as a decision problem via the
characteristic function of A:

N 1, ifx €A,
¢ w 0, otherwise.



Decision Problem as Predicate

A decision problem can be stated as a predicate P(x) on number.

It relates to the problem-as-function viewpoint by the following characteristic
function of P(x):

A 1, if P(n) is valid,
2 = 0, otherwise.



Decision Problem < Subset of N
< Predicate on N



Several Problems




Problem I

Is the function fower(x) defined below computable?

2
tower(x) = 2%

X



Problem I

Is the function fower(x) defined below computable?

2
tower(x) = 2%

X

Theoretically it is computable.



Problem II

Consider the function f defined as follows:

o 1, if n > 1 and 2n is the sum of 2 primes,
R = 0, otherwise.

The Goldbach Conjecture remains unsolved. Is f computable?



Problem II

Consider the function f defined as follows:

o 1, if n > 1 and 2n is the sum of 2 primes,
e 0, otherwise.

The Goldbach Conjecture remains unsolved. Is f computable?

It is clearly computable even if we do not know what it is.



Problem III

Consider the function g defined as follows:

1, if there is a run of exactly n consecutive 7’s
) = in the decimal expansion of T,
0, otherwise.

+...).

~|—

It is known that 7 can be calculated by 4 (l — % + % —
Is g computable?



Problem III

Consider the function g defined as follows:

1, if there is a run of exactly n consecutive 7’s
) = in the decimal expansion of T,
0, otherwise.

It is known that 7 can be calculated by 4 (l — % + % —

+...).
Is g computable?

~|—

We do not know whether it is computable or not.



Problem IV

Consider the function £ defined as follows:

1, if nis the machine code of a C program that
h(n) = terminates in all inputs,
0, otherwise.



Problem IV

Consider the function £ defined as follows:

1, if nis the machine code of a C program that
h(n) = terminates in all inputs,
0, otherwise.

This is the Halting Problem, a well known undecidable problem. In
other words there does not exist any C program calculating 4.

The only general approach to check if a function is defined on all
numbers is to calculate it on all inputs.



Problem V

Consider the function i defined as follows:

1, if oninput x, the machine coded by n
iy 1) — terminates in ¢ steps,
0, otherwise.

There could be a number of ways to interpret “¢ steps’.



Problem V

Consider the function i defined as follows:

1, if oninput x, the machine coded by n
iy 1) — terminates in ¢ steps,
0, otherwise.

There could be a number of ways to interpret “¢ steps’.

The function i is intuitively computable.



Next Lecture

The examples try to suggest that in order to study computability one
might as well look for a theory of computable functions.



Next Lecture

The examples try to suggest that in order to study computability one
might as well look for a theory of computable functions.

We will begin with a machine model, register machine.



Homework

* home reading: diagonal method.

* home reading: Presburger arithmetic.



	Instructor
	The Course
	Reference Book and Scoring
	Prologue
	Effective Solutions
	Decision Problem
	Several Problems

	Homework

