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Assignment

Assignment 4 was announced!

The deadline is Dec. 26!



An Exercise

Let A,B ⊆ N. Define sets of A⊕ B and A⊗ B by

A⊕ B = {2x | x ∈ A} ∪ {2x + 1 | x ∈ B}
A⊗ B = {π(x, y) | x ∈ A ∧ y ∈ B}

1 A⊕ B is recursive iff A and B are both recursive.

2 if A,B 6= ∅, then A⊗ B is recursive iff A and B are both recursive.
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We have seen that many sets, although not recursive, can be effectively
generated in the sense that, for any such set, there is an effective
procedure that produces the elements of the set in a non-stop manner.

We shall formalize this intuition in this lecture.



Synopsis

1 Recursively Enumerable Set
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3 Rice-Shapiro Theorem



Recursively Enumerable Set



The Definition of R.E. Set

The partial characteristic function of a set A is given by

χA(x) =

{
1, if x ∈ A,
↑, if x /∈ A.

A is recursively enumerable if χA is computable.

We shall often abbreviate ‘recursively enumerable set’ to ‘r.e. set’.



Partially Decidable Problem

A problem f : N→ {0, 1} is partially decidable if dom(f ) is r.e.



Partially Decidable Predicate

A predicate M(x̃) of natural number is partially decidable if its partial
characteristic function

χM(x̃) =

{
1, if M(x̃) holds,
↑, if M(x̃) does not hold,

is computable.



Partially Decidable Problem ⇔ Partially Decidable Predicate

⇔ Recursively Enumerable Set



Example

The halting problem is partially decidable. Its partial characteristic
function is given by

χH(x, y) =

{
1, if Px(y) ↓,
↑, otherwise.

K ,K0,K1 are r.e.. But none of K ,K0,K1 is r.e..
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Index for Recursively Enumerable
Set

A set is r.e. iff it is the domain of a unary computable function.

So W0,W1,W2, . . . is an enumeration of all r.e. sets.

Every r.e. set has an infinite number of indexes.
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Closure Property

Union Theorem. The recursively enumerable sets are closed under
union and intersection uniformly and effectively.

Proof. According to S-m-n Theorem there are primitive recursive
functions r(x, y), s(x, y) such that

Wr(x,y) = Wx ∪Wy,

Ws(x,y) = Wx ∩Wy.
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The Most Hard Recursively
Enumerable Set

Fact. If A ≤m B and B is r.e. then A is r.e..

Theorem. A is r.e. iff A ≤1 K .

Proof. Suppose A is r.e. Let f (x, y) be defined by

f (x, y) =

{
1, if x ∈ A,
↑, if x /∈ A.

By S-m-n Theorem there is an injective primitive recursive function
s(x) s.t. f (x, y) = φs(x)(y). It is clear that x ∈ A iff s(x) ∈ K .

Comment. No r.e. set is more difficult than K .
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Characterization of R.E. Set



Normal Form Theorem

Normal Form Theorem. M(x̃) is partially decidable iff there is a
primitive recursive predicate R(x̃, y) such that M(x̃) iff ∃y.R(x̃, y).

Proof. If R(x̃, y) is primitive recursive and M(x̃)⇔ ∃y.R(x̃, y), then
the computable function ‘if µyR(x̃, y) then 1 else ↑’ is the partial
characteristic function of M(x̃).

Conversely suppose M(x̃) is partially decided by P. Let R(x̃, y) be

P(x̃) ↓ in y steps.

Then R(x̃, y) is primitive recursive and M(x̃)⇔ ∃y.R(x̃, y).
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Quantifier Contraction Theorem

Quantifier Contraction Theorem. If M(x̃, y) is partially decidable,
so is ∃y.M(x̃, y).

Proof. Let R(x̃, y, z) be a primitive recursive predicate such that

M(x̃, y)⇔ ∃z.R(x̃, y, z)

Then ∃y.M(x̃, y)⇔ ∃y.∃z.R(x̃, y, z)⇔ ∃u.R(x̃, (u)0, (u)1).
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x ∈ E(n)
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Wx 6= ∅
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Uniformisation Theorem

Uniformisation Theorem. If R(x, y) is partially decidable, then there
is a computable function c(x) such that c(x) ↓ iff ∃y.R(x, y) and
c(x) ↓ implies R(x, c(x)).

We may think of c(x) as a choice function for R(x, y). The theorem
states that the choice function is computable.
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A is r.e. iff there is a partially decidable predicate R(x, y) such that
x ∈ A iff ∃y.R(x, y).



Complementation Theorem

Complementation Theorem. A is recursive iff A and A are r.e.

Proof. Suppose A and A are r.e. Then some primitive recursive
predicates R(x, y), S(x, y) exist such that

x ∈ A ⇔ ∃yR(x, y),

x ∈ A ⇔ ∃yS(x, y).

Now let f (x) be µy(R(x, y) ∨ S(x, y)).

Then f (x) is total and computable, and

x ∈ A⇔ R(x, f (x))
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Applying Complementation
Theorem

Fact. K is not r.e.

Comment. If K ≤m A then A is not r.e. either.
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Applying Complementation
Theorem

Fact. If A is r.e. but not recursive, then A 6≤m A 6≤m A.

Comment. However A and A are intuitively equally difficult.
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Graph Theorem
Graph Theorem. Let f (x) be a partial function. Then f (x) is
computable iff the predicate ‘f (x) ' y’ is partially decidable iff
{π(x, y) | f (x) ' y} is r.e.

Proof. If f (x) is computable by P(x), then

f (x) ' y⇔ ∃t.(P(x) ↓ y in t steps)

The predicate ‘P(x) ↓ y in t steps’ is primitive recursive.

Conversely let R(x, y, t) be such that

f (x) ' y⇔ ∃t.R(x, y, t).

Now f (x) = µy.R(x, y, µt.R(x, y, t)).
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Listing Theorem

Listing Theorem. A is r.e. iff either A = ∅ or A is the range of a
unary total computable function.

Proof. Suppose A is nonempty and its partial characteristic function is
computed by P. Let a be a member of A. The total function g(x, t)
given by

g(x, t) =

{
x, if P(x) ↓ in t steps,
a, otherwise.

is computable. Clearly A is the range of h(z) = g((z)1, (z)2).

Conversely, x ∈ A iff ∃y.h(y) = x, ∃y.h(y) = x is partially decidable.
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Listing Theorem

The theorem gives rise to the terminology ‘recursively enumerable’.



Implication of Listing Theorem

A set is r.e. iff it is the range of a computable function.



Implication of Listing Theorem

Corollary. For each infinite nonrecursive r.e. A, there is an injective
total recursive function f such that ran(f ) = A.

Corollary. Every infinite r.e. set has an infinite recursive subset.

Proof. Suppose A = ran(f ). An infinite recursive subset is
enumerated by the total increasing computable function g given by

g(0) = f (0),

g(n + 1) = f (µy(f (y) > g(n))).
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Applying Listing Theorem

Fact. The set {x | φx is total} is not r.e.

Proof. If {x | φx is total} were a r.e. set, then there would be a total
computable function f whose range is the r.e. set.

The function g(x) given by g(x) = φf (x)(x) + 1 would be total and
computable.
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Rice-Shapiro Theorem



Rice-Shapiro Theorem

Rice-Shapiro Theorem. Suppose that A is a set of unary computable
functions such that the set {x | φx ∈ A} is r.e.
Then for any unary computable function f , f ∈ A iff there is a finite
function θ ⊆ f with θ ∈ A.

Comment. Intuitively a set of recursive functions is r.e. iff it is
effectively generated by an r.e. set of finite functions.
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Applications of the Rice-Shapiro
Theorem

Both Tot and Tot are not r.e.

Tot = {x | φx is total}

Proof
We apply the Rice-Shapiro theorem on Tot. For no f ∈ Tot is there a
finite θ ⊆ f with θ ∈ Tot.

If f is any total computable function, f /∈ Tot; but every finite function
θ ⊆ f in Tot.
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What Rice-Shapiro Theorem Can Do

Can we apply Rice-Shapiro Theorem to show that any of the
following sets is non-r.e.:

Fin = {x | Wx is finite},
Inf = {x | Wx is infinite},
Tot = {x | φx is total},

Con = {x | φx is total and constant},
Cof = {x | Wx is cofinite},
Rec = {x | Wx is recursive},
Ext = {x | φx is extensible to a total recursive function}.



Proof of Rice-Shapiro Theorem
Suppose A = {x | φx ∈ A} is r.e.

(⇒): Suppose f ∈ A but for all finite θ ⊆ f .θ /∈ A.

Let P be a partial characteristic function of K . Define the computable
function g(z, t) by

g(z, t) '
{

f (t), if P(z) 6↓ in t steps,
↑, otherwise.

According to S-m-n Theorem, there is an injective primitive recursive
function s(z) such that g(z, t) ' φs(z)(t).

By construction φs(z) ⊆ f for all z.

z ∈ K ⇒ φs(z) is finite⇒ s(z) /∈ A;
z /∈ K ⇒ φs(z) = f ⇒ s(z) ∈ A.



Proof of Rice-Shapiro Theorem

(⇐): Suppose f is a computable function and there is a finite θ ∈ A
such that θ ⊆ f and f /∈ A.

Define the computable function g(z, t) by

g(z, t) '
{

f (t), if t ∈ Dom(θ) ∨ z ∈ K ,
↑, otherwise.

According to S-m-n Theorem, there is an injective primitive recursive
function s(z) such that g(z, t) ' φs(z)(t).

z ∈ K ⇒ φs(z) = f ⇒ s(z) /∈ A;
z /∈ K ⇒ φs(z) = θ⇒ s(z) ∈ A.



Reversing Rice-Shapiro Theorem

{x | φx ∈ A} is r.e. if the following hold:

1 Θ = {e(θ) | θ ∈ A and θ is finite} is r.e., where e is a canonical
effective encoding of the finite functions.

2 ∀f ∈ A.∃ finite θ ∈ A.θ ⊆ f .

Comment. We cannot take e as the Gödel encoding function of the
recursive functions. Why? How would you define e?
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Homework

• Homework 6: Exercise 6.14, pp. 119 of the textbook.
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