
Computability Theory II
Unlimited Register Machine

Guoqiang Li

Shanghai Jiao Tong University

Sep. 26, 2014



Review Tips



Computable Functions

• In a formal theory of computability, every problem instance can
be represented by a number and every number represents a
problem instance.

• A problem is a function f : N→ N from numbers to numbers.
• A problem is computable if it can be calculated by a program.



Decision Problem

A problem f : N→ N is a decision problem if the range ran(f ) of f is
{0, 1}, where 1 denotes a ‘yes’ answer and 0 a ‘no’ answer.

A decision problem g can be identified with the set {n | g(n) = 1}.

Conversely a subset A of N can be seen as a decision problem via the
characteristic function of A:

cA(n) =

{
1, if x ∈ A,
0, otherwise.



Decision Problem as Predicate

A decision problem can be stated as a predicate P(x) on number.

It relates to the problem-as-function viewpoint by the following characteristic
function of P(x):

cP(n) =

{
1, if P(n) is valid,
0, otherwise.



Decision Problem ⇔ Subset of N
⇔ Predicate on N



Register Machine



Remark

Register Machines are more advanced than Turing Machines.



Remark

Register Machine Models can be classified into three groups:
• CM (Counter Machine Model).
• RAM (Random Access Machine Model).
• RASP (Random Access Stored Program Machine Model).



Synopsis

1 Unlimited Register Machine

2 Definability in URM



Unlimited Register Machine



Unlimited Register Machine Model

The Unlimited Register Machine Model belongs to the CM class.

Computability and Recursive Functions, by J. Shepherdson and H.
Sturgis, in Journal of Symbolic Logic (32):1-63, 1965.



Register
An Unlimited Register Machine (URM) has an infinite number of
register labeled R1,R2,R3, . . ..

r1 r2 r3 r4 r5 r6 r7 …

R1 R2 R3 R4 R5 R6 R7 …

Every register can hold a natural number at any moment.

The registers can be equivalently written as for example

[r1, r2, r3]
3
1[r4]

4
4[r5, r6, r7]

7
5[0, 0, 0, . . .]

∞
8

or simply
[r1, r2, r3]

3
1[r4]

4
4[r5, r6, r7]

7
5.



Register
An Unlimited Register Machine (URM) has an infinite number of
register labeled R1,R2,R3, . . ..

r1 r2 r3 r4 r5 r6 r7 …

R1 R2 R3 R4 R5 R6 R7 …

Every register can hold a natural number at any moment.

The registers can be equivalently written as for example

[r1, r2, r3]
3
1[r4]

4
4[r5, r6, r7]

7
5[0, 0, 0, . . .]

∞
8

or simply
[r1, r2, r3]

3
1[r4]

4
4[r5, r6, r7]

7
5.



Program

A URM also has a program, which is a finite list of instructions.



Instruction

Type Instruction Response of the URM
Zero Z(n) Replace rn by 0.
Successor S(n) Add 1 to rn.
Transfer T(m, n) Copy rm to Rn.
Jump J(m, n, q) If rm = rn, go to the q-th instruction;

otherwise go to the next instruction.



Program Rules

• P = {I1, I2, · · · , Is} → URM.
• URM starts by obeying instruction I1.
• When URM finishes obeying Ik , it proceeds to the next

instruction in the computation,
• if Ik is not a jump instruction, then the next instruction is Ik+1;
• if Ik = J(m, n, q) then next instruction is

• Iq, if rm = rn; or
• Ik+1, otherwise.

• Computation stops when the next instruction is Iv, where v > s.
• if k = s, and Is is an arithmetic instruction;
• if Ik = J(m, n, q), rm = rn and q > s;
• if Ik = J(m, n, q), rm 6= rn and k = s.



Computation

Registers:

9 7 0 0 0 0 0 …

R1 R2 R3 R4 R5 R6 R7

Program:

I1 : J(1, 2, 6)
I2 : S(2)
I3 : S(3)
I4 : J(1, 2, 6)
I5 : J(1, 1, 2)
I6 : T(3, 1)



Configuration and Computation

Configuration: register contents + current instruction number.

Initial configuration, computation, final configuration.



Configuration and Computation

Configuration: register contents + current instruction number.

Initial configuration, computation, final configuration.



Some Notation

Suppose P is the program of a URM and a1, a2, a3, . . . are the
numbers stored in the registers.

• P(a1, a2, . . . , am) is P(a1, a2, . . . , am, 0, 0, . . .).
• P(a1, a2, a3, . . .) is the initial configuration.
• P(a1, a2, a3, . . .) ↓ means that the computation converges.
• P(a1, a2, a3, . . .) ↑ means that the computation diverges.



Definability in URM



URM-Computable Function

Let f (x̃) be an n-ary (partial) function.

What does it mean that a URM computes f (x̃)?



URM-Computable Function

Suppose P is the program of a URM and a1, . . . , an, b ∈ N.

The computation P(a1, . . . , an) converges to b if P(a1, . . . , an) ↓ and
r1 = b in the final configuration.

In this case we write P(a1, . . . , an) ↓ b.

P URM-computes f if, for all a1, . . . , an, b ∈ N, P(a1, . . . , an) ↓ b iff
f (a1, . . . , an) = b.

The function f is URM-definable if there is a program that
URM-computes f .



URM-Computable Function

Suppose P is the program of a URM and a1, . . . , an, b ∈ N.

The computation P(a1, . . . , an) converges to b if P(a1, . . . , an) ↓ and
r1 = b in the final configuration.

In this case we write P(a1, . . . , an) ↓ b.

P URM-computes f if, for all a1, . . . , an, b ∈ N, P(a1, . . . , an) ↓ b iff
f (a1, . . . , an) = b.

The function f is URM-definable if there is a program that
URM-computes f .



URM-Computable Function

Suppose P is the program of a URM and a1, . . . , an, b ∈ N.

The computation P(a1, . . . , an) converges to b if P(a1, . . . , an) ↓ and
r1 = b in the final configuration.

In this case we write P(a1, . . . , an) ↓ b.

P URM-computes f if, for all a1, . . . , an, b ∈ N, P(a1, . . . , an) ↓ b iff
f (a1, . . . , an) = b.

The function f is URM-definable if there is a program that
URM-computes f .



URM-Computable Function

Suppose P is the program of a URM and a1, . . . , an, b ∈ N.

The computation P(a1, . . . , an) converges to b if P(a1, . . . , an) ↓ and
r1 = b in the final configuration.

In this case we write P(a1, . . . , an) ↓ b.

P URM-computes f if, for all a1, . . . , an, b ∈ N, P(a1, . . . , an) ↓ b iff
f (a1, . . . , an) = b.

The function f is URM-definable if there is a program that
URM-computes f .



URM-Computable Function

Suppose P is the program of a URM and a1, . . . , an, b ∈ N.

The computation P(a1, . . . , an) converges to b if P(a1, . . . , an) ↓ and
r1 = b in the final configuration.

In this case we write P(a1, . . . , an) ↓ b.

P URM-computes f if, for all a1, . . . , an, b ∈ N, P(a1, . . . , an) ↓ b iff
f (a1, . . . , an) = b.

The function f is URM-definable if there is a program that
URM-computes f .



We shall abbreviate “URM-computable” to “computable”.



Let
C

be the set of computable functions and

Cn

be the set of n-ary computable functions.



Example of URM I

Construct a URM that computes x + y.

I1 : J(3, 2, 5)
I2 : S(1)
I3 : S(3)
I4 : J(1, 1, 1)



Example of URM I

Construct a URM that computes x + y.

I1 : J(3, 2, 5)
I2 : S(1)
I3 : S(3)
I4 : J(1, 1, 1)



Example of URM II

Construct a URM that computes x−̇1 =

{
x − 1, if x > 0,
0, if x = 0.

I1 : J(1, 4, 8)
I2 : S(3)
I3 : J(1, 3, 7)
I4 : S(2)
I5 : S(3)
I6 : J(1, 1, 3)
I7 : T(2, 1)



Example of URM II

Construct a URM that computes x−̇1 =

{
x − 1, if x > 0,
0, if x = 0.

I1 : J(1, 4, 8)
I2 : S(3)
I3 : J(1, 3, 7)
I4 : S(2)
I5 : S(3)
I6 : J(1, 1, 3)
I7 : T(2, 1)



Example of URM III

Construct a URM that computes x÷ 2 =

{
x/2, if x is even,
undefined, if x is odd.

I1 : J(1, 2, 6)
I2 : S(3)
I3 : S(2)
I4 : S(2)
I5 : J(1, 1, 1)
I6 : T(3, 1)



Example of URM III

Construct a URM that computes x÷ 2 =

{
x/2, if x is even,
undefined, if x is odd.

I1 : J(1, 2, 6)
I2 : S(3)
I3 : S(2)
I4 : S(2)
I5 : J(1, 1, 1)
I6 : T(3, 1)



Example of URM IV

Construct a URM that computes f (x) = b3x/4c

I1 Z(2)
I2 Z(3)
I3 Z(4)
I4 J(1,2,10)
I5 S(2)
I6 S(3)
I7 S(3)
I8 S(3)
I9 J(1,1,4)
I10 Z(2)
I11 J(2,3,21)

I12 S(2)
I13 J(2,3,21)
I14 S(2)
I15 J(2,3,21)
I16 S(2)
I17 J(2,3,21)
I18 S(2)
I19 S(4)
I20 J(1,1,11)
I21 T(4,1)



Example of URM IV

Construct a URM that computes f (x) = b3x/4c

I1 Z(2)
I2 Z(3)
I3 Z(4)
I4 J(1,2,10)
I5 S(2)
I6 S(3)
I7 S(3)
I8 S(3)
I9 J(1,1,4)
I10 Z(2)
I11 J(2,3,21)

I12 S(2)
I13 J(2,3,21)
I14 S(2)
I15 J(2,3,21)
I16 S(2)
I17 J(2,3,21)
I18 S(2)
I19 S(4)
I20 J(1,1,11)
I21 T(4,1)



Function Defined by Program

f n
P (a1, . . . , an) =

{
b, if P(a1, . . . , an) ↓ b,
undefined, if P(a1, . . . , an) ↑ .



Program in Standard Form

A program P = I1, . . . , Is is in standard form if, for every jump
instruction J(m, n, q) we have q ≤ s + 1.

For every program there is a program in standard form that computes
the same function.

We will focus exclusively on programs in standard form.



Program in Standard Form

A program P = I1, . . . , Is is in standard form if, for every jump
instruction J(m, n, q) we have q ≤ s + 1.

For every program there is a program in standard form that computes
the same function.

We will focus exclusively on programs in standard form.



Program in Standard Form

A program P = I1, . . . , Is is in standard form if, for every jump
instruction J(m, n, q) we have q ≤ s + 1.

For every program there is a program in standard form that computes
the same function.

We will focus exclusively on programs in standard form.



Program Composition

Given Programs P and Q, how do we construct the sequential
composition P;Q?

The jump instructions of P and Q must be modified.



Program Composition

Given Programs P and Q, how do we construct the sequential
composition P;Q?

The jump instructions of P and Q must be modified.



Some Notations

Suppose the program P computes f .

Let ρ(P) be the least number i such that the register Ri is not used by
the program P.



Some Notations
The notation P[l1, . . . , ln → l] stands for the following program

I1 : T(l1, 1)
...

In : T(ln, n)

In+1 : Z(n + 1)
...

Iρ(P) : Z(ρ(P))

_ : P

_ : T(1, l)


	Unlimited Register Machine
	Definability in URM

