
Computability Theory III
Primitive Recursive Function

Guoqiang Li

Shanghai Jiao Tong University

Oct. 10, 2014

Assignment 1 is announced! (deadline Oct. 24)

Review Tips

Register
An Unlimited Register Machine (URM) has an infinite number of
register labeled R1,R2,R3,

r1 r2 r3 r4 r5 r6 r7 …

R1 R2 R3 R4 R5 R6 R7 …

Every register can hold a natural number at any moment.

The registers can be equivalently written as for example

[r1, r2, r3]
3
1[r4]

4
4[r5, r6, r7]

7
5[0, 0, 0, . . .]

∞
8

or simply
[r1, r2, r3]

3
1[r4]

4
4[r5, r6, r7]

7
5.

Instruction

Type Instruction Response of the URM
Zero Z(n) Replace rn by 0.
Successor S(n) Add 1 to rn.
Transfer T(m, n) Copy rm to Rn.
Jump J(m, n, q) If rm = rn, go to the q-th instruction;

otherwise go to the next instruction.

Recursive Function

Recursion Theory

Recursion Theory offers a mathematical model for the study of
effective calculability.

1 All effective objects can be encoded by natural numbers.

2 All effective procedures can be modeled by functions from
numbers to numbers.

Synopsis

1 Primitive Recursive Function

Primitive Recursive Function

Basic Definitions

Initial Function

1 The zero function
• 0
• 0(x̃) = 0

2 The successor function

• s(x) = x + 1

3 The projection function

• Un
i (x1, . . . , xn) = xi

Initial Function

1 The zero function
• 0
• 0(x̃) = 0

2 The successor function
• s(x) = x + 1

3 The projection function

• Un
i (x1, . . . , xn) = xi

Initial Function

1 The zero function
• 0
• 0(x̃) = 0

2 The successor function
• s(x) = x + 1

3 The projection function
• Un

i (x1, . . . , xn) = xi

Composition

Suppose f (y1, . . . , yk) is a k-ary function and g1(x̃), . . . , gk(x̃) are
n-ary functions, where x̃ abbreviates x1, . . . , xn.

The composition function h(x̃) is defined by

h(x̃) = f (g1(x̃), . . . , gk(x̃)),

Composition

Suppose f (y1, . . . , yk) is a k-ary function and g1(x̃), . . . , gk(x̃) are
n-ary functions, where x̃ abbreviates x1, . . . , xn.

The composition function h(x̃) is defined by

h(x̃) = f (g1(x̃), . . . , gk(x̃)),

Recursion

Suppose that f (x̃) is an n-ary function and g(x̃, y, z) is an (n+2)-ary
function.

The recursion function h(x̃, y) is defined by

h(x̃, 0) = f (x̃), (1)

h(x̃, y + 1) = g(x̃, y, h(x̃, y)). (2)

Clearly there is a unique function that satisfies (1) and (2).

Recursion

Suppose that f (x̃) is an n-ary function and g(x̃, y, z) is an (n+2)-ary
function.

The recursion function h(x̃, y) is defined by

h(x̃, 0) = f (x̃), (1)

h(x̃, y + 1) = g(x̃, y, h(x̃, y)). (2)

Clearly there is a unique function that satisfies (1) and (2).

Recursion

Suppose that f (x̃) is an n-ary function and g(x̃, y, z) is an (n+2)-ary
function.

The recursion function h(x̃, y) is defined by

h(x̃, 0) = f (x̃), (1)

h(x̃, y + 1) = g(x̃, y, h(x̃, y)). (2)

Clearly there is a unique function that satisfies (1) and (2).

Primitive Recursive Recursion

The set of primitive recursive function is the least set generated from
the initial functions, composition and recursion.

Dummy Parameter

Proposition
Suppose that f (y1, . . . , yk) is a primitive recursive and that xi1 , . . . , xik
is a sequence of k variables from x1, . . . , xn (possibly with repetition).
Then the function h given by

h(x1, . . . , xn) = f (xi1 , . . . , xik)

is primitive recursive.

Proof
h(x̃) = f (Un

i1(x̃), . . . ,U
n
ik (x̃)).

Dummy Parameter

Proposition
Suppose that f (y1, . . . , yk) is a primitive recursive and that xi1 , . . . , xik
is a sequence of k variables from x1, . . . , xn (possibly with repetition).
Then the function h given by

h(x1, . . . , xn) = f (xi1 , . . . , xik)

is primitive recursive.

Proof
h(x̃) = f (Un

i1(x̃), . . . ,U
n
ik (x̃)).

Basic Arithmetic Function

Basic Arithmetic Function
• x + y

•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy

•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.

Basic Arithmetic Function
• x + y
•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy

•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.

Basic Arithmetic Function
• x + y
•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy
•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.

Basic Arithmetic Function
• x + y
•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy
•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.

Quiz

x + y + z

Basic Arithmetic Function

• x−̇1

•

0−̇1 = 0,

(x + 1)−̇1 = x.

• x−̇y def
=

{
x − y, if x ≥ y,
0, otherwise.

•

x−̇0 = x,

x−̇(y + 1) = (x−̇y)−̇1.

Basic Arithmetic Function

• x−̇1
•

0−̇1 = 0,

(x + 1)−̇1 = x.

• x−̇y def
=

{
x − y, if x ≥ y,
0, otherwise.

•

x−̇0 = x,

x−̇(y + 1) = (x−̇y)−̇1.

Basic Arithmetic Function

• x−̇1
•

0−̇1 = 0,

(x + 1)−̇1 = x.

• x−̇y def
=

{
x − y, if x ≥ y,
0, otherwise.

•

x−̇0 = x,

x−̇(y + 1) = (x−̇y)−̇1.

Basic Arithmetic Function

• sg(x) def
=

{
0, if x = 0,
1, if x 6= 0.

•

sg(0) = 0,

sg(x + 1) = 1.

• sg(x) def
=

{
1, if x = 0,
0, if x 6= 0.

•
sg(x) = 1−̇sg(x).

Basic Arithmetic Function

• sg(x) def
=

{
0, if x = 0,
1, if x 6= 0.

•

sg(0) = 0,

sg(x + 1) = 1.

• sg(x) def
=

{
1, if x = 0,
0, if x 6= 0.

•
sg(x) = 1−̇sg(x).

Basic Arithmetic Function

• sg(x) def
=

{
0, if x = 0,
1, if x 6= 0.

•

sg(0) = 0,

sg(x + 1) = 1.

• sg(x) def
=

{
1, if x = 0,
0, if x 6= 0.

•
sg(x) = 1−̇sg(x).

Basic Arithmetic Function

• |x − y|

• |x − y| = (x−̇y) + (y−̇x)

• x!

•

0! = 1,

(x + 1)! = x!(x + 1).

• min(x, y)

• min(x, y) = x−̇(x−̇y).

• max(x, y)

• max(x, y) = x + (y−̇x).

Basic Arithmetic Function

• |x − y|
• |x − y| = (x−̇y) + (y−̇x)
• x!

•

0! = 1,

(x + 1)! = x!(x + 1).

• min(x, y)

• min(x, y) = x−̇(x−̇y).

• max(x, y)

• max(x, y) = x + (y−̇x).

Basic Arithmetic Function

• |x − y|
• |x − y| = (x−̇y) + (y−̇x)
• x!
•

0! = 1,

(x + 1)! = x!(x + 1).

• min(x, y)

• min(x, y) = x−̇(x−̇y).

• max(x, y)

• max(x, y) = x + (y−̇x).

Basic Arithmetic Function

• |x − y|
• |x − y| = (x−̇y) + (y−̇x)
• x!
•

0! = 1,

(x + 1)! = x!(x + 1).

• min(x, y)
• min(x, y) = x−̇(x−̇y).
• max(x, y)

• max(x, y) = x + (y−̇x).

Basic Arithmetic Function

• |x − y|
• |x − y| = (x−̇y) + (y−̇x)
• x!
•

0! = 1,

(x + 1)! = x!(x + 1).

• min(x, y)
• min(x, y) = x−̇(x−̇y).
• max(x, y)
• max(x, y) = x + (y−̇x).

Basic Arithmetic Function

rm(x, y) def
= the remainder when y is devided by x

rm(x, y + 1) def
=

{
rm(x, y) + 1 if rm(x, y) + 1 < x,
0, otherwise.

The recursive definition is given by

rm(x, 0) = 0,

rm(x, y + 1) = (rm(x, y) + 1)sg(x−̇(rm(x, y) + 1)).

Basic Arithmetic Function

rm(x, y) def
= the remainder when y is devided by x

rm(x, y + 1) def
=

{
rm(x, y) + 1 if rm(x, y) + 1 < x,
0, otherwise.

The recursive definition is given by

rm(x, 0) = 0,

rm(x, y + 1) = (rm(x, y) + 1)sg(x−̇(rm(x, y) + 1)).

Basic Arithmetic Function

qt(x, y) def
= the quotient when y is devided by x

qt(x, y + 1) def
=

{
qt(x, y) + 1, if rm(x, y) + 1 = x,
qt(x, y), if rm(x, y) + 1 6= x.

The recursive definition is given by

qt(x, 0) = 0,

qt(x, y + 1), = qt(x, y) + sg(x − (rm(x, y) + 1)).

Basic Arithmetic Function

qt(x, y) def
= the quotient when y is devided by x

qt(x, y + 1) def
=

{
qt(x, y) + 1, if rm(x, y) + 1 = x,
qt(x, y), if rm(x, y) + 1 6= x.

The recursive definition is given by

qt(x, 0) = 0,

qt(x, y + 1), = qt(x, y) + sg(x − (rm(x, y) + 1)).

Basic Arithmetic Function

div(x, y) def
=

{
1, if x divides y,
0, otherwise.

div(x, y) = sg(rm(x, y)).

Basic Arithmetic Function

div(x, y) def
=

{
1, if x divides y,
0, otherwise.

div(x, y) = sg(rm(x, y)).

Bounded Minimalisation Operator

Bounded Sum and Bounded Product
Bounded sum: ∑

y<0

f (x̃, y) = 0,

∑
y<z+1

f (x̃, y) =
∑
y<z

f (x̃, y) + f (x̃, z).

Bounded product:∏
y<0

f (x̃, y) = 1,

∏
y<z+1

f (x̃, y) = (
∏
y<z

f (x̃, y)) · f (x̃, z).

Bounded Sum and Bounded Product

By composition the following functions are also primitive recursive if
k(x̃, w̃) is primitive recursive:∑

z<k(x̃,w̃)

f (x̃, z)

and ∏
z<k(x̃,w̃)

f (x̃, z).

Bounded Minimization Operator

Bounded search:

µz<y(f (x̃, z) = 0) def
=

{
the least z < y, such that f (x̃, z) = 0;
y, if there is no such z.

Proposition
If f (x̃, z) is primitive recursive, then so is µz<y(f (x̃, z) = 0)

Proof
µz<y(f (x̃, z) = 0) =

∑
v<y(

∏
u<v+1 sg(f (x̃, u)))

Bounded Minimization Operator

Bounded search:

µz<y(f (x̃, z) = 0) def
=

{
the least z < y, such that f (x̃, z) = 0;
y, if there is no such z.

Proposition
If f (x̃, z) is primitive recursive, then so is µz<y(f (x̃, z) = 0)

Proof
µz<y(f (x̃, z) = 0) =

∑
v<y(

∏
u<v+1 sg(f (x̃, u)))

Bounded Minimization Operator

Bounded search:

µz<y(f (x̃, z) = 0) def
=

{
the least z < y, such that f (x̃, z) = 0;
y, if there is no such z.

Proposition
If f (x̃, z) is primitive recursive, then so is µz<y(f (x̃, z) = 0)

Proof
µz<y(f (x̃, z) = 0) =

∑
v<y(

∏
u<v+1 sg(f (x̃, u)))

Bounded Minimization Operator

If f (x̃, z) and k(x̃, w̃) are primitive recursive functions, then so is the
function

µz<k(x̃, w̃)(f (x̃, z) = 0).

Primitive Recursive Predicate

Primitive Recursive Predicate

Suppose M(x1, . . . , xn) is an n-ary predicate of natural numbers. The
characteristic function cM(x̃), where x̃ = x1, . . . , xn, is

cM(a1, . . . , an) =

{
1, if M(a1, . . . , an) holds,
0, if otherwise.

The predicate M(x̃) is primitive recursive if cM is primitive recursive.

Closure Property

Proposition
The following statements are valid:

• If R(x̃) is a primitive recursive predicate, then so is ¬R(x̃).
• If R(x̃), S(x̃) are primitive recursive predicates, then the

following predicates are primitive recursive:
• R(x̃) ∧ S(x̃);
• R(x̃) ∨ S(x̃).

• If R(x̃, y) is a primitive recursive predicate, then the following
predicates are primitive recursive:

• ∀z < y.R(x̃, z);
• ∃z < y.R(x̃, z).

Proof
For example c∀z<y.R(x̃,z)(x̃, y) =

∏
z<y cR(x̃, z).

Closure Property

Proposition
The following statements are valid:

• If R(x̃) is a primitive recursive predicate, then so is ¬R(x̃).
• If R(x̃), S(x̃) are primitive recursive predicates, then the

following predicates are primitive recursive:
• R(x̃) ∧ S(x̃);
• R(x̃) ∨ S(x̃).

• If R(x̃, y) is a primitive recursive predicate, then the following
predicates are primitive recursive:

• ∀z < y.R(x̃, z);
• ∃z < y.R(x̃, z).

Proof
For example c∀z<y.R(x̃,z)(x̃, y) =

∏
z<y cR(x̃, z).

Definition by Case
Proposition
Suppose that f1(x̃), . . . , fk(x̃) are primitive recursive functions, and
M1(x̃), . . . ,Mk(x̃) are primitive recursive predicates, such that for
every x̃ exactly one of M1(x̃), . . . ,Mk(x̃) holds. Then the function
g(x̃) given by

g(x̃) =


f1(x̃), if M1(x̃) holds,
f2(x̃), if M2(x̃) holds,
...
fk(x̃), if Mk(x̃) holds.

is primitive recursive.

Proof
g(x̃) = cM1(x̃)f1(x̃) + . . .+ cMk (x̃)fk(x̃)

Definition by Case
Proposition
Suppose that f1(x̃), . . . , fk(x̃) are primitive recursive functions, and
M1(x̃), . . . ,Mk(x̃) are primitive recursive predicates, such that for
every x̃ exactly one of M1(x̃), . . . ,Mk(x̃) holds. Then the function
g(x̃) given by

g(x̃) =


f1(x̃), if M1(x̃) holds,
f2(x̃), if M2(x̃) holds,
...
fk(x̃), if Mk(x̃) holds.

is primitive recursive.

Proof
g(x̃) = cM1(x̃)f1(x̃) + . . .+ cMk (x̃)fk(x̃)

More Arithmetic Functions

More Arithmetic Functions

The following functions are primitive recursive.

1 D(x) = the number of divisors of x;

2 Pr(x) =
{

1, if x is prime,
0, if x is not prime.

3 px = the x-th prime number;

4 (x)y =


k, k is the exponent of py in the prime

factorisation of x, for x, y > 0,
0, if x = 0 or y = 0.

More Arithmetic Functions

Proof

1 D(x) =
∑

y<x+1 div(y, x).

2 Pr(x) = sg(|D(x)− 2|).
3 px can be recursively defined as follows:

p0 = 0,

px+1 = µz < (1 + px!)
(
1−̇(z−̇px)Pr(z) = 0

)
.

4 (x)y = µz<x(div(pz+1
y , x) = 0).

More Arithmetic Functions

Proof

1 D(x) =
∑

y<x+1 div(y, x).

2 Pr(x) = sg(|D(x)− 2|).

3 px can be recursively defined as follows:

p0 = 0,

px+1 = µz < (1 + px!)
(
1−̇(z−̇px)Pr(z) = 0

)
.

4 (x)y = µz<x(div(pz+1
y , x) = 0).

More Arithmetic Functions

Proof

1 D(x) =
∑

y<x+1 div(y, x).

2 Pr(x) = sg(|D(x)− 2|).
3 px can be recursively defined as follows:

p0 = 0,

px+1 = µz < (1 + px!)
(
1−̇(z−̇px)Pr(z) = 0

)
.

4 (x)y = µz<x(div(pz+1
y , x) = 0).

More Arithmetic Functions

Proof

1 D(x) =
∑

y<x+1 div(y, x).

2 Pr(x) = sg(|D(x)− 2|).
3 px can be recursively defined as follows:

p0 = 0,

px+1 = µz < (1 + px!)
(
1−̇(z−̇px)Pr(z) = 0

)
.

4 (x)y = µz<x(div(pz+1
y , x) = 0).

Encoding a Finite Sequence

Suppose s = (a1, a2, . . . , an) is a finite sequence of numbers.
It can be coded by the following number

b = pa1+1
1 pa2+1

2 . . . pan+1
n .

Then the length of s can be recovered from

µz<b((b)z+1 = 0),

and the i-th component can be recovered from

(b)i−̇1.

Not all Computable Functions are
Primitive Recursive

Using the fact that all primitive recursive functions are total, a
diagonalisation argument shows that non-primitive recursive
computable functions must exist.

The same diagonalisation argument applies to all finite
axiomatizations of computable total function.

Not all Computable Functions are
Primitive Recursive

Using the fact that all primitive recursive functions are total, a
diagonalisation argument shows that non-primitive recursive
computable functions must exist.

The same diagonalisation argument applies to all finite
axiomatizations of computable total function.

Onward to the partial functions!

	Recursive Function
	Primitive Recursive Function
	Basic Functions
	Basic Arithmetic Function
	Bounded Minimalisation Operator
	Primitive Recursive Predicate
	More Arithmetic Functions

