

Computability Theory III

Primitive Recursive Function

Guoqiang Li

Shanghai Jiao Tong University

Oct. 10, 2014

Assignment 1 is announced! (deadline Oct. 24)

Review Tips

Register

An Unlimited Register Machine (**URM**) has an **infinite** number of **register** labeled R_1, R_2, R_3, \dots

r_1	r_2	r_3	r_4	r_5	r_6	r_7	\dots
-------	-------	-------	-------	-------	-------	-------	---------

$R_1 \quad R_2 \quad R_3 \quad R_4 \quad R_5 \quad R_6 \quad R_7 \quad \dots$

Every register can hold a **natural number** at any moment.

The registers can be equivalently written as for example

$[r_1, r_2, r_3]_1^3 [r_4]_4^4 [r_5, r_6, r_7]_5^7 [0, 0, 0, \dots]_8^\infty$

or simply

$[r_1, r_2, r_3]_1^3 [r_4]_4^4 [r_5, r_6, r_7]_5^7.$

Instruction

Type	Instruction	Response of the URM
Zero	$Z(n)$	Replace r_n by 0.
Successor	$S(n)$	Add 1 to r_n .
Transfer	$T(m, n)$	Copy r_m to R_n .
Jump	$J(m, n, q)$	If $r_m = r_n$, go to the q -th instruction; otherwise go to the next instruction.

Recursive Function

Recursion Theory

Recursion Theory offers a mathematical model for the study of effective calculability.

- ① All effective objects can be encoded by natural numbers.
- ② All effective procedures can be modeled by functions from numbers to numbers.

Synopsis

① Primitive Recursive Function

Primitive Recursive Function

Basic Definitions

Initial Function

① The **zero** function

- **0**
- **0**(\tilde{x}) = 0

Initial Function

- ① The **zero** function
 - **0**
 - **0**(\tilde{x}) = 0
- ② The **successor** function
 - $s(x) = x + 1$

Initial Function

- ① The **zero** function
 - **0**
 - $\mathbf{0}(\tilde{x}) = 0$
- ② The **successor** function
 - $s(x) = x + 1$
- ③ The **projection** function
 - $U_i^n(x_1, \dots, x_n) = x_i$

Composition

Suppose $f(y_1, \dots, y_k)$ is a k -ary function and $g_1(\tilde{x}), \dots, g_k(\tilde{x})$ are n -ary functions, where \tilde{x} abbreviates x_1, \dots, x_n .

Composition

Suppose $f(y_1, \dots, y_k)$ is a k -ary function and $g_1(\tilde{x}), \dots, g_k(\tilde{x})$ are n -ary functions, where \tilde{x} abbreviates x_1, \dots, x_n .

The **composition** function $h(\tilde{x})$ is defined by

$$h(\tilde{x}) = f(g_1(\tilde{x}), \dots, g_k(\tilde{x})),$$

Recursion

Suppose that $f(\tilde{x})$ is an n -ary function and $g(\tilde{x}, y, z)$ is an $(n+2)$ -ary function.

Recursion

Suppose that $f(\tilde{x})$ is an n -ary function and $g(\tilde{x}, y, z)$ is an $(n+2)$ -ary function.

The **recursion** function $h(\tilde{x}, y)$ is defined by

$$h(\tilde{x}, 0) = f(\tilde{x}), \quad (1)$$

$$h(\tilde{x}, y + 1) = g(\tilde{x}, y, h(\tilde{x}, y)). \quad (2)$$

Recursion

Suppose that $f(\tilde{x})$ is an n -ary function and $g(\tilde{x}, y, z)$ is an $(n+2)$ -ary function.

The **recursion** function $h(\tilde{x}, y)$ is defined by

$$h(\tilde{x}, 0) = f(\tilde{x}), \quad (1)$$

$$h(\tilde{x}, y + 1) = g(\tilde{x}, y, h(\tilde{x}, y)). \quad (2)$$

Clearly there is a unique function that satisfies (1) and (2).

Primitive Recursive Recursion

The set of **primitive recursive function** is the least set generated from the initial functions, composition and recursion.

Dummy Parameter

Proposition

Suppose that $f(y_1, \dots, y_k)$ is a primitive recursive and that x_{i_1}, \dots, x_{i_k} is a sequence of k variables from x_1, \dots, x_n (possibly with repetition). Then the function h given by

$$h(x_1, \dots, x_n) = f(x_{i_1}, \dots, x_{i_k})$$

is primitive recursive.

Dummy Parameter

Proposition

Suppose that $f(y_1, \dots, y_k)$ is a primitive recursive and that x_{i_1}, \dots, x_{i_k} is a sequence of k variables from x_1, \dots, x_n (possibly with repetition). Then the function h given by

$$h(x_1, \dots, x_n) = f(x_{i_1}, \dots, x_{i_k})$$

is primitive recursive.

Proof

$$h(\tilde{x}) = f(\mathsf{U}_{i_1}^n(\tilde{x}), \dots, \mathsf{U}_{i_k}^n(\tilde{x})).$$

Basic Arithmetic Function

Basic Arithmetic Function

- $x + y$

- xy

- x^y

Basic Arithmetic Function

- $x + y$

-

$$x + 0 = x,$$

$$x + (y + 1) = s(x + y).$$

- xy

- x^y

Basic Arithmetic Function

- $x + y$

•

$$x + 0 = x,$$

$$x + (y + 1) = s(x + y).$$

- xy

•

$$x0 = 0,$$

$$x(y + 1) = xy + x.$$

- x^y

Basic Arithmetic Function

- $x + y$

•

$$\begin{aligned}x + 0 &= x, \\x + (y + 1) &= s(x + y).\end{aligned}$$

- xy

•

$$\begin{aligned}x0 &= 0, \\x(y + 1) &= xy + x.\end{aligned}$$

- x^y

•

$$\begin{aligned}x^0 &= 1, \\x^{y+1} &= x^y x.\end{aligned}$$

Quiz

$x + y + z$

Basic Arithmetic Function

- $x \dot{-} 1$
- $x \dot{-} y \stackrel{\text{def}}{=} \begin{cases} x - y, & \text{if } x \geq y, \\ 0, & \text{otherwise.} \end{cases}$

Basic Arithmetic Function

- $x \dot{-} 1$

-

$$0 \dot{-} 1 = 0,$$

$$(x + 1) \dot{-} 1 = x.$$

- $x \dot{-} y \stackrel{\text{def}}{=} \begin{cases} x - y, & \text{if } x \geq y, \\ 0, & \text{otherwise.} \end{cases}$

Basic Arithmetic Function

- $x \dot{-} 1$

-

$$0 \dot{-} 1 = 0,$$

$$(x + 1) \dot{-} 1 = x.$$

- $x \dot{-} y \stackrel{\text{def}}{=} \begin{cases} x - y, & \text{if } x \geq y, \\ 0, & \text{otherwise.} \end{cases}$

-

$$x \dot{-} 0 = x,$$

$$x \dot{-} (y + 1) = (x \dot{-} y) \dot{-} 1.$$

Basic Arithmetic Function

- $\text{sg}(x) \stackrel{\text{def}}{=} \begin{cases} 0, & \text{if } x = 0, \\ 1, & \text{if } x \neq 0. \end{cases}$
- $\overline{\text{sg}}(x) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{if } x \neq 0. \end{cases}$

Basic Arithmetic Function

- $\text{sg}(x) \stackrel{\text{def}}{=} \begin{cases} 0, & \text{if } x = 0, \\ 1, & \text{if } x \neq 0. \end{cases}$

•

$$\text{sg}(0) = 0,$$

$$\text{sg}(x + 1) = 1.$$

- $\overline{\text{sg}}(x) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{if } x \neq 0. \end{cases}$

Basic Arithmetic Function

- $\text{sg}(x) \stackrel{\text{def}}{=} \begin{cases} 0, & \text{if } x = 0, \\ 1, & \text{if } x \neq 0. \end{cases}$

•

$$\text{sg}(0) = 0,$$

$$\text{sg}(x + 1) = 1.$$

- $\overline{\text{sg}}(x) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{if } x \neq 0. \end{cases}$

•

$$\overline{\text{sg}}(x) = 1 \dot{-} \text{sg}(x).$$

Basic Arithmetic Function

- $|x - y|$
- $x!$
- $\min(x, y)$
- $\max(x, y)$

Basic Arithmetic Function

- $|x - y|$
- $|x - y| = (x \dot{-} y) + (y \dot{-} x)$
- $x!$

- $\min(x, y)$
- $\max(x, y)$

Basic Arithmetic Function

- $|x - y|$
- $|x - y| = (x \dot{-} y) + (y \dot{-} x)$
- $x!$
-

$$\begin{aligned} 0! &= 1, \\ (x + 1)! &= x!(x + 1). \end{aligned}$$

- $\min(x, y)$
- $\max(x, y)$

Basic Arithmetic Function

- $|x - y|$
- $|x - y| = (x \dot{-} y) + (y \dot{-} x)$
- $x!$
-

$$\begin{aligned} 0! &= 1, \\ (x + 1)! &= x!(x + 1). \end{aligned}$$

- $\min(x, y)$
- $\min(x, y) = x \dot{-} (x \dot{-} y).$
- $\max(x, y)$

Basic Arithmetic Function

- $|x - y|$
- $|x - y| = (x \dot{-} y) + (y \dot{-} x)$
- $x!$
-

$$\begin{aligned} 0! &= 1, \\ (x + 1)! &= x!(x + 1). \end{aligned}$$

- $\min(x, y)$
- $\min(x, y) = x \dot{-} (x \dot{-} y).$
- $\max(x, y)$
- $\max(x, y) = x + (y \dot{-} x).$

Basic Arithmetic Function

$\text{rm}(x, y) \stackrel{\text{def}}{=} \text{the remainder when } y \text{ is divided by } x$

$$\text{rm}(x, y + 1) \stackrel{\text{def}}{=} \begin{cases} \text{rm}(x, y) + 1 & \text{if } \text{rm}(x, y) + 1 < x, \\ 0, & \text{otherwise.} \end{cases}$$

Basic Arithmetic Function

$\text{rm}(x, y) \stackrel{\text{def}}{=} \text{the remainder when } y \text{ is devided by } x$

$$\text{rm}(x, y + 1) \stackrel{\text{def}}{=} \begin{cases} \text{rm}(x, y) + 1 & \text{if } \text{rm}(x, y) + 1 < x, \\ 0, & \text{otherwise.} \end{cases}$$

The recursive definition is given by

$$\begin{aligned} \text{rm}(x, 0) &= 0, \\ \text{rm}(x, y + 1) &= (\text{rm}(x, y) + 1) \text{sg}(x \dotminus (\text{rm}(x, y) + 1)). \end{aligned}$$

Basic Arithmetic Function

$\text{qt}(x, y) \stackrel{\text{def}}{=} \text{the quotient when } y \text{ is devided by } x$

$$\text{qt}(x, y + 1) \stackrel{\text{def}}{=} \begin{cases} \text{qt}(x, y) + 1, & \text{if } \text{rm}(x, y) + 1 = x, \\ \text{qt}(x, y), & \text{if } \text{rm}(x, y) + 1 \neq x. \end{cases}$$

Basic Arithmetic Function

$\text{qt}(x, y) \stackrel{\text{def}}{=} \text{the quotient when } y \text{ is devided by } x$

$$\text{qt}(x, y + 1) \stackrel{\text{def}}{=} \begin{cases} \text{qt}(x, y) + 1, & \text{if } \text{rm}(x, y) + 1 = x, \\ \text{qt}(x, y), & \text{if } \text{rm}(x, y) + 1 \neq x. \end{cases}$$

The recursive definition is given by

$$\begin{aligned} \text{qt}(x, 0) &= 0, \\ \text{qt}(x, y + 1), &= \text{qt}(x, y) + \text{sg}(x - (\text{rm}(x, y) + 1)). \end{aligned}$$

Basic Arithmetic Function

$$\text{div}(x, y) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } x \text{ divides } y, \\ 0, & \text{otherwise.} \end{cases}$$

Basic Arithmetic Function

$$\text{div}(x, y) \stackrel{\text{def}}{=} \begin{cases} 1, & \text{if } x \text{ divides } y, \\ 0, & \text{otherwise.} \end{cases}$$

$$\text{div}(x, y) = \overline{\text{sg}}(\text{rm}(x, y)).$$

Bounded Minimalisation Operator

Bounded Sum and Bounded Product

Bounded sum:

$$\begin{aligned}\sum_{y<0} f(\tilde{x}, y) &= 0, \\ \sum_{y<z+1} f(\tilde{x}, y) &= \sum_{y<z} f(\tilde{x}, y) + f(\tilde{x}, z).\end{aligned}$$

Bounded product:

$$\begin{aligned}\prod_{y<0} f(\tilde{x}, y) &= 1, \\ \prod_{y<z+1} f(\tilde{x}, y) &= \left(\prod_{y<z} f(\tilde{x}, y)\right) \cdot f(\tilde{x}, z).\end{aligned}$$

Bounded Sum and Bounded Product

By composition the following functions are also primitive recursive if $k(\tilde{x}, \tilde{w})$ is primitive recursive:

$$\sum_{z < k(\tilde{x}, \tilde{w})} f(\tilde{x}, z)$$

and

$$\prod_{z < k(\tilde{x}, \tilde{w})} f(\tilde{x}, z).$$

Bounded Minimization Operator

Bounded search:

$$\mu z < y (f(\tilde{x}, z) = 0) \stackrel{\text{def}}{=} \begin{cases} \text{the least } z < y, & \text{such that } f(\tilde{x}, z) = 0; \\ y, & \text{if there is no such } z. \end{cases}$$

Bounded Minimization Operator

Bounded search:

$$\mu z < y (f(\tilde{x}, z) = 0) \stackrel{\text{def}}{=} \begin{cases} \text{the least } z < y, & \text{such that } f(\tilde{x}, z) = 0; \\ y, & \text{if there is no such } z. \end{cases}$$

Proposition

If $f(\tilde{x}, z)$ is primitive recursive, then so is $\mu z < y (f(\tilde{x}, z) = 0)$

Bounded Minimization Operator

Bounded search:

$$\mu z < y (f(\tilde{x}, z) = 0) \stackrel{\text{def}}{=} \begin{cases} \text{the least } z < y, & \text{such that } f(\tilde{x}, z) = 0; \\ y, & \text{if there is no such } z. \end{cases}$$

Proposition

If $f(\tilde{x}, z)$ is primitive recursive, then so is $\mu z < y (f(\tilde{x}, z) = 0)$

Proof

$$\mu z < y (f(\tilde{x}, z) = 0) = \sum_{v < y} (\prod_{u < v+1} \text{sg}(f(\tilde{x}, u)))$$

Bounded Minimization Operator

If $f(\tilde{x}, z)$ and $k(\tilde{x}, \tilde{w})$ are primitive recursive functions, then so is the function

$$\mu z < k(\tilde{x}, \tilde{w}) (f(\tilde{x}, z) = 0).$$

Primitive Recursive Predicate

Primitive Recursive Predicate

Suppose $M(x_1, \dots, x_n)$ is an n -ary predicate of natural numbers. The characteristic function $c_M(\tilde{x})$, where $\tilde{x} = x_1, \dots, x_n$, is

$$c_M(a_1, \dots, a_n) = \begin{cases} 1, & \text{if } M(a_1, \dots, a_n) \text{ holds,} \\ 0, & \text{if otherwise.} \end{cases}$$

The predicate $M(\tilde{x})$ is primitive recursive if c_M is primitive recursive.

Closure Property

Proposition

The following statements are valid:

- If $R(\tilde{x})$ is a primitive recursive predicate, then so is $\neg R(\tilde{x})$.
- If $R(\tilde{x})$, $S(\tilde{x})$ are primitive recursive predicates, then the following predicates are primitive recursive:
 - $R(\tilde{x}) \wedge S(\tilde{x})$;
 - $R(\tilde{x}) \vee S(\tilde{x})$.
- If $R(\tilde{x}, y)$ is a primitive recursive predicate, then the following predicates are primitive recursive:
 - $\forall z < y. R(\tilde{x}, z)$;
 - $\exists z < y. R(\tilde{x}, z)$.

Closure Property

Proposition

The following statements are valid:

- If $R(\tilde{x})$ is a primitive recursive predicate, then so is $\neg R(\tilde{x})$.
- If $R(\tilde{x})$, $S(\tilde{x})$ are primitive recursive predicates, then the following predicates are primitive recursive:
 - $R(\tilde{x}) \wedge S(\tilde{x})$;
 - $R(\tilde{x}) \vee S(\tilde{x})$.
- If $R(\tilde{x}, y)$ is a primitive recursive predicate, then the following predicates are primitive recursive:
 - $\forall z < y. R(\tilde{x}, z)$;
 - $\exists z < y. R(\tilde{x}, z)$.

Proof

For example $c_{\forall z < y. R(\tilde{x}, z)}(\tilde{x}, y) = \prod_{z < y} c_R(\tilde{x}, z)$.

Definition by Case

Proposition

Suppose that $f_1(\tilde{x}), \dots, f_k(\tilde{x})$ are primitive recursive functions, and $M_1(\tilde{x}), \dots, M_k(\tilde{x})$ are primitive recursive predicates, such that for every \tilde{x} exactly one of $M_1(\tilde{x}), \dots, M_k(\tilde{x})$ holds. Then the function $g(\tilde{x})$ given by

$$g(\tilde{x}) = \begin{cases} f_1(\tilde{x}), & \text{if } M_1(\tilde{x}) \text{ holds,} \\ f_2(\tilde{x}), & \text{if } M_2(\tilde{x}) \text{ holds,} \\ \vdots \\ f_k(\tilde{x}), & \text{if } M_k(\tilde{x}) \text{ holds.} \end{cases}$$

is primitive recursive.

Definition by Case

Proposition

Suppose that $f_1(\tilde{x}), \dots, f_k(\tilde{x})$ are primitive recursive functions, and $M_1(\tilde{x}), \dots, M_k(\tilde{x})$ are primitive recursive predicates, such that for every \tilde{x} exactly one of $M_1(\tilde{x}), \dots, M_k(\tilde{x})$ holds. Then the function $g(\tilde{x})$ given by

$$g(\tilde{x}) = \begin{cases} f_1(\tilde{x}), & \text{if } M_1(\tilde{x}) \text{ holds,} \\ f_2(\tilde{x}), & \text{if } M_2(\tilde{x}) \text{ holds,} \\ \vdots \\ f_k(\tilde{x}), & \text{if } M_k(\tilde{x}) \text{ holds.} \end{cases}$$

is primitive recursive.

Proof

$$g(\tilde{x}) = c_{M_1}(\tilde{x})f_1(\tilde{x}) + \dots + c_{M_k}(\tilde{x})f_k(\tilde{x})$$

More Arithmetic Functions

More Arithmetic Functions

The following functions are primitive recursive.

① $D(x)$ = the number of divisors of x ;

② $Pr(x) = \begin{cases} 1, & \text{if } x \text{ is prime,} \\ 0, & \text{if } x \text{ is not prime.} \end{cases}$

③ p_x = the x -th prime number;

④ $(x)_y = \begin{cases} k, & k \text{ is the exponent of } p_y \text{ in the prime} \\ & \text{factorisation of } x, \text{ for } x, y > 0, \\ 0, & \text{if } x = 0 \text{ or } y = 0. \end{cases}$

More Arithmetic Functions

Proof

$$\textcircled{1} \quad D(x) = \sum_{y < x+1} \text{div}(y, x).$$

More Arithmetic Functions

Proof

- ① $D(x) = \sum_{y < x+1} \text{div}(y, x).$
- ② $Pr(x) = \overline{\text{sg}}(|D(x) - 2|).$

More Arithmetic Functions

Proof

- ① $D(x) = \sum_{y < x+1} \text{div}(y, x).$
- ② $Pr(x) = \overline{\text{sg}}(|D(x) - 2|).$
- ③ p_x can be recursively defined as follows:

$$\begin{aligned} p_0 &= 0, \\ p_{x+1} &= \mu z < (1 + p_x!) \left(1 \dot{=} (z \dot{-} p_x) Pr(z) = 0 \right). \end{aligned}$$

More Arithmetic Functions

Proof

① $D(x) = \sum_{y < x+1} \text{div}(y, x).$

② $Pr(x) = \overline{\text{sg}}(|D(x) - 2|).$

③ p_x can be recursively defined as follows:

$$p_0 = 0,$$

$$p_{x+1} = \mu z < (1 + p_x!) \left(1 \dot{=} (z \dot{-} p_x) Pr(z) = 0 \right).$$

④ $(x)_y = \mu z < x (\text{div}(p_y^{z+1}, x) = 0).$

Encoding a Finite Sequence

Suppose $s = (a_1, a_2, \dots, a_n)$ is a finite sequence of numbers.
It can be coded by the following number

$$b = p_1^{a_1+1} p_2^{a_2+1} \dots p_n^{a_n+1}.$$

Then the length of s can be recovered from

$$\mu z < b((b)_{z+1} = 0),$$

and the i -th component can be recovered from

$$(b)_i \dot{-} 1.$$

Not all Computable Functions are Primitive Recursive

Using the fact that all primitive recursive functions are **total**, a diagonalisation argument shows that non-primitive recursive computable functions must exist.

Not all Computable Functions are Primitive Recursive

Using the fact that all primitive recursive functions are **total**, a diagonalisation argument shows that non-primitive recursive computable functions must exist.

The same diagonalisation argument applies to all finite axiomatizations of computable total function.

Onward to the **partial** functions!