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Review Tips



Register
An Unlimited Register Machine (URM) has an infinite number of
register labeled R1,R2,R3, . . ..

r1 r2 r3 r4 r5 r6 r7 …

R1 R2 R3 R4 R5 R6 R7 …

Every register can hold a natural number at any moment.

The registers can be equivalently written as for example

[r1, r2, r3]
3
1[r4]

4
4[r5, r6, r7]

7
5[0, 0, 0, . . .]

∞
8

or simply
[r1, r2, r3]

3
1[r4]

4
4[r5, r6, r7]

7
5.



Instruction

Type Instruction Response of the URM
Zero Z(n) Replace rn by 0.
Successor S(n) Add 1 to rn.
Transfer T(m, n) Copy rm to Rn.
Jump J(m, n, q) If rm = rn, go to the q-th instruction;

otherwise go to the next instruction.



Recursive Function



Recursion Theory

Recursion Theory offers a mathematical model for the study of
effective calculability.

1 All effective objects can be encoded by natural numbers.

2 All effective procedures can be modeled by functions from
numbers to numbers.



Synopsis

1 Primitive Recursive Function



Primitive Recursive Function



Basic Definitions



Initial Function

1 The zero function
• 0
• 0(x̃) = 0

2 The successor function

• s(x) = x + 1

3 The projection function

• Un
i (x1, . . . , xn) = xi
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Composition

Suppose f (y1, . . . , yk) is a k-ary function and g1(x̃), . . . , gk(x̃) are
n-ary functions, where x̃ abbreviates x1, . . . , xn.

The composition function h(x̃) is defined by

h(x̃) = f (g1(x̃), . . . , gk(x̃)),
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Recursion

Suppose that f (x̃) is an n-ary function and g(x̃, y, z) is an (n+2)-ary
function.

The recursion function h(x̃, y) is defined by

h(x̃, 0) = f (x̃), (1)

h(x̃, y + 1) = g(x̃, y, h(x̃, y)). (2)

Clearly there is a unique function that satisfies (1) and (2).
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Primitive Recursive Recursion

The set of primitive recursive function is the least set generated from
the initial functions, composition and recursion.



Dummy Parameter

Proposition
Suppose that f (y1, . . . , yk) is a primitive recursive and that xi1 , . . . , xik
is a sequence of k variables from x1, . . . , xn (possibly with repetition).
Then the function h given by

h(x1, . . . , xn) = f (xi1 , . . . , xik )

is primitive recursive.

Proof
h(x̃) = f (Un

i1(x̃), . . . ,U
n
ik (x̃)).
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Basic Arithmetic Function



Basic Arithmetic Function
• x + y

•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy

•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.



Basic Arithmetic Function
• x + y
•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy

•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.



Basic Arithmetic Function
• x + y
•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy
•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.



Basic Arithmetic Function
• x + y
•

x + 0 = x,

x + (y + 1) = s(x + y).

• xy
•

x0 = 0,

x(y + 1) = xy + x.

• xy

•

x0 = 1,

xy+1 = xyx.



Quiz

x + y + z



Basic Arithmetic Function

• x−̇1

•

0−̇1 = 0,

(x + 1)−̇1 = x.

• x−̇y def
=

{
x − y, if x ≥ y,
0, otherwise.

•

x−̇0 = x,

x−̇(y + 1) = (x−̇y)−̇1.
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Basic Arithmetic Function

• sg(x) def
=

{
0, if x = 0,
1, if x 6= 0.

•

sg(0) = 0,

sg(x + 1) = 1.

• sg(x) def
=

{
1, if x = 0,
0, if x 6= 0.

•
sg(x) = 1−̇sg(x).



Basic Arithmetic Function

• sg(x) def
=

{
0, if x = 0,
1, if x 6= 0.

•

sg(0) = 0,

sg(x + 1) = 1.

• sg(x) def
=

{
1, if x = 0,
0, if x 6= 0.

•
sg(x) = 1−̇sg(x).



Basic Arithmetic Function

• sg(x) def
=

{
0, if x = 0,
1, if x 6= 0.

•

sg(0) = 0,

sg(x + 1) = 1.

• sg(x) def
=

{
1, if x = 0,
0, if x 6= 0.

•
sg(x) = 1−̇sg(x).



Basic Arithmetic Function

• |x − y|

• |x − y| = (x−̇y) + (y−̇x)

• x!

•

0! = 1,

(x + 1)! = x!(x + 1).

• min(x, y)

• min(x, y) = x−̇(x−̇y).

• max(x, y)

• max(x, y) = x + (y−̇x).
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Basic Arithmetic Function

rm(x, y) def
= the remainder when y is devided by x

rm(x, y + 1) def
=

{
rm(x, y) + 1 if rm(x, y) + 1 < x,
0, otherwise.

The recursive definition is given by

rm(x, 0) = 0,

rm(x, y + 1) = (rm(x, y) + 1)sg(x−̇(rm(x, y) + 1)).
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Basic Arithmetic Function

qt(x, y) def
= the quotient when y is devided by x

qt(x, y + 1) def
=

{
qt(x, y) + 1, if rm(x, y) + 1 = x,
qt(x, y), if rm(x, y) + 1 6= x.

The recursive definition is given by

qt(x, 0) = 0,

qt(x, y + 1), = qt(x, y) + sg(x − (rm(x, y) + 1)).
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Basic Arithmetic Function

div(x, y) def
=

{
1, if x divides y,
0, otherwise.

div(x, y) = sg(rm(x, y)).



Basic Arithmetic Function

div(x, y) def
=

{
1, if x divides y,
0, otherwise.

div(x, y) = sg(rm(x, y)).



Bounded Minimalisation Operator



Bounded Sum and Bounded Product
Bounded sum: ∑

y<0

f (x̃, y) = 0,

∑
y<z+1

f (x̃, y) =
∑
y<z

f (x̃, y) + f (x̃, z).

Bounded product:∏
y<0

f (x̃, y) = 1,

∏
y<z+1

f (x̃, y) = (
∏
y<z

f (x̃, y)) · f (x̃, z).



Bounded Sum and Bounded Product

By composition the following functions are also primitive recursive if
k(x̃, w̃) is primitive recursive:∑

z<k(x̃,w̃)

f (x̃, z)

and ∏
z<k(x̃,w̃)

f (x̃, z).



Bounded Minimization Operator

Bounded search:

µz<y(f (x̃, z) = 0) def
=

{
the least z < y, such that f (x̃, z) = 0;
y, if there is no such z.

Proposition
If f (x̃, z) is primitive recursive, then so is µz<y(f (x̃, z) = 0)

Proof
µz<y(f (x̃, z) = 0) =

∑
v<y(

∏
u<v+1 sg(f (x̃, u)))
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Bounded Minimization Operator

If f (x̃, z) and k(x̃, w̃) are primitive recursive functions, then so is the
function

µz<k(x̃, w̃)(f (x̃, z) = 0).



Primitive Recursive Predicate



Primitive Recursive Predicate

Suppose M(x1, . . . , xn) is an n-ary predicate of natural numbers. The
characteristic function cM(x̃), where x̃ = x1, . . . , xn, is

cM(a1, . . . , an) =

{
1, if M(a1, . . . , an) holds,
0, if otherwise.

The predicate M(x̃) is primitive recursive if cM is primitive recursive.



Closure Property

Proposition
The following statements are valid:

• If R(x̃) is a primitive recursive predicate, then so is ¬R(x̃).
• If R(x̃), S(x̃) are primitive recursive predicates, then the

following predicates are primitive recursive:
• R(x̃) ∧ S(x̃);
• R(x̃) ∨ S(x̃).

• If R(x̃, y) is a primitive recursive predicate, then the following
predicates are primitive recursive:

• ∀z < y.R(x̃, z);
• ∃z < y.R(x̃, z).

Proof
For example c∀z<y.R(x̃,z)(x̃, y) =

∏
z<y cR(x̃, z).
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Definition by Case
Proposition
Suppose that f1(x̃), . . . , fk(x̃) are primitive recursive functions, and
M1(x̃), . . . ,Mk(x̃) are primitive recursive predicates, such that for
every x̃ exactly one of M1(x̃), . . . ,Mk(x̃) holds. Then the function
g(x̃) given by

g(x̃) =


f1(x̃), if M1(x̃) holds,
f2(x̃), if M2(x̃) holds,
...
fk(x̃), if Mk(x̃) holds.

is primitive recursive.

Proof
g(x̃) = cM1(x̃)f1(x̃) + . . .+ cMk (x̃)fk(x̃)
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More Arithmetic Functions



More Arithmetic Functions

The following functions are primitive recursive.

1 D(x) = the number of divisors of x;

2 Pr(x) =
{

1, if x is prime,
0, if x is not prime.

3 px = the x-th prime number;

4 (x)y =


k, k is the exponent of py in the prime

factorisation of x, for x, y > 0,
0, if x = 0 or y = 0.



More Arithmetic Functions

Proof

1 D(x) =
∑

y<x+1 div(y, x).

2 Pr(x) = sg(|D(x)− 2|).
3 px can be recursively defined as follows:

p0 = 0,

px+1 = µz < (1 + px!)
(
1−̇(z−̇px)Pr(z) = 0

)
.

4 (x)y = µz<x(div(pz+1
y , x) = 0).
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Encoding a Finite Sequence

Suppose s = (a1, a2, . . . , an) is a finite sequence of numbers.
It can be coded by the following number

b = pa1+1
1 pa2+1

2 . . . pan+1
n .

Then the length of s can be recovered from

µz<b((b)z+1 = 0),

and the i-th component can be recovered from

(b)i−̇1.



Not all Computable Functions are
Primitive Recursive

Using the fact that all primitive recursive functions are total, a
diagonalisation argument shows that non-primitive recursive
computable functions must exist.

The same diagonalisation argument applies to all finite
axiomatizations of computable total function.
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Onward to the partial functions!
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