Computability Theory IV
Recursive Function
Guoqiang Li
Shanghai Jiao Tong University

Oct. 17,2014

Review Tips

Initial Function

©® The zero function

<0
c0(x)=0

@® The successor function
s s(x)=x+1

® The projection function
5 WG 0 00 0%0) = 35

Composition

Suppose f (y1, - - ., yk) is a k-ary function and g; (X), . .., gx(x) are
n-ary functions, where X abbreviates xi, . . ., X,.

The composition function /(x) is defined by

hx) = fla1(®),...,&(x),

Recursion

Suppose that f(x) is an n-ary function and g(x,y, z) is an (n+2)-ary

function.

The recursion function A(x,y) is defined by

h(x,0) = f(x),
hEx,y+1) = g%y, hEy)).

Clearly there is a unique function that satisfies (1) and (2).

(1
2)

LCM(x,y)

Sol. LCM (x,y) = pz < xy + 1(div(x, z)div(y,z) = 1).

LCM(x,y)

Sol. LCM (x,y) = pz < xy + 1(div(x, z)div(y,z) = 1).

HCF (x,y))

LCM(x,y)
Sol. LCM (x,y) = pz < xy + 1(div(x, z)div(y, z) = 1).

HCF (x,y))

Xy
Sol. HCF(x,y) = ey

Synopsis

@® Recursive Function
® Ackermann Function
© Definability in URM

=)
S
R
o
E
o9
o
'W
31
o}
~

An Example

Gk — VX if x is a pefect square.
SV undefined otherwise.

Minimization Operator, or Search
Operator

Minimization function, or p-function, or search function:

the least y such that
f(x,z) is defined for all z < y, and
f&x,y) =0,

undefined if otherwise.

w(f(x,y) =0) =~

Here ~ is the computational equality.

Minimization Operator, or Search
Operator

Minimization function, or p-function, or search function:

the least y such that
f(x,z) is defined for all z < y, and
f&x,y) =0,

undefined if otherwise.

w(f(x,y) =0) =~

Here ~ is the computational equality.

* The recursion operation is a well-founded going-down procedure.

Minimization Operator, or Search
Operator

Minimization function, or p-function, or search function:

the least y such that
f(x,z) is defined for all z < y, and
f&x,y) =0,

undefined if otherwise.

w(f(x,y) =0) =~

Here ~ is the computational equality.

* The recursion operation is a well-founded going-down procedure.

* The search operation is a possibly divergent going-up procedure.

An Example

(o VX if xis a pefect square.
S undefined otherwise.

An Example

(o VX if xis a pefect square.
S undefined otherwise.

f(xvy) = |x _y2|

Recursive Function

The set of recursive functions is the least set generated from the initial
functions, composition, recursion and minimization.

Decidable Predicate

A predicate R(X) is decidable if its characteristic function

16 def 1, if R(X) is true,
= a 0, otherwise.

is a recursive function.

Decidable Predicate

A predicate R(X) is decidable if its characteristic function

16 def 1, if R(X) is true,
= a 0, otherwise.

is a recursive function. The predicate R(x) is partially decidable if its
partial characteristic function

® def 1, if R(X) is true,
M & 1, otherwise.

is a recursive function.

Closure Property

The following statements are valid:
* If R(X) is decidable, then so is =R(X).
* If R(X), S(x) are (partially) decidable, then the following
predicates are (partially) decidable:
* R(x) AS(X);
* R(x) Vv S(%).
 If R(X,y) is (partially) decidable, then the following predicates
are (partially) decidable:
* Vz <y.R(%,y);
* Jz < y.R(X,y).

Definition by Cases

Suppose fi(X), . .., fx(x) are recursive and M (X), . .., My(x) are
partially decidable. For every X at most one of M (x), ..., Mi(X)
holds. Then the function g(x) given by

fi(®), if M;(%) holds,
i £(), if My(%) holds,
g(x) =~ .

J"k (x), if My (%) holds.

1S recursive.

Minimization via Decidable
Predicate

Suppose R(x,y) is a partially decidable predicate. The function

glx) = wR(,y)
b the least y such that R(x,y) holds, if there is such a y
e undefined, otherwise.

1S recursive.

Minimization via Decidable
Predicate

Suppose R(x,y) is a partially decidable predicate. The function

glx) = wR(,y)
b the least y such that R(x,y) holds, if there is such a y
e undefined, otherwise.

1S recursive.

Proof
g(x) = uy(sg(xr(x,y)) = 0).

Comment

The p-operator allows one to define partial functions.

Comment

The p-operator allows one to define partial functions.

The diagonalisation argument does not apply to the set § of recursive
functions.

Comment

The p-operator allows one to define partial functions.

The diagonalisation argument does not apply to the set § of recursive
functions.

Using the p-operator, one may define total functions that are not
primitive recursive.

Minimization Operator is a Search
Operator

It is clear from the above proof why the minimization operator is
sometimes called a search operator.

Definable Function

A function is definable if there is a recursive function calculating it.

Ackermann function

Ackermann Function

The Ackermann function [1928] is defined as follows:

DO R 1
Y(x + 1,0) Y(x, 1),
Win o L T E T e L))

12

The equations clearly define a total function.

Ackermann is not Primitive
Recursive

Lemma 1.
Y(l,m)=m+2and ¥(2,m) =2m+ 3

Ackermann is not Primitive
Recursive

Lemma 1.
Y(l,m)=m+2and ¥(2,m) =2m+ 3

Lemma 2.
P(n,m) > m+ 1

Ackermann is not Primitive
Recursive

Ackermann is not Primitive
Recursive

Lemma 3.
The Ackermann function is monotone:

Y(n,m) < Y(n,m+1),
Yn,m) < Yn+1,m).

Ackermann is not Primitive
Recursive

Lemma 3.
The Ackermann function is monotone:

Y(n,m) < Y(n,m+1),
Yn,m) < Yn+1,m).

Lemma 4.
The Ackermann function grows faster on the first parameter:

p,m+1) < Pn+1,m)

Ackermann is not Primitive
Recursive

Lemma 5.
¥(n,m) + C is dominated by ¢ (J, m) for some large enough J:

Y(n,m) +(n',m) < (max(n,n’) + 4, m),
Y(nym)+m < P(n+4,m).

Ackermann is not Primitive
Recursive

Lemma 6.
Let f(x) be a k-ary primitive recursive function. Then there exists
some J such that for all ny, ..., n; we have that

k

T ¢(],an).

i=1

Ackermann is not Primitive
Recursive

Lemma 6.
Let f(x) be a k-ary primitive recursive function. Then there exists
some J such that for all ny, ..., n; we have that

k

T w(J,an).

i=1

Proof. The proof is by structural induction.

Ackermann is not Primitive
Recursive

Lemma 6.
Let f(x) be a k-ary primitive recursive function. Then there exists
some J such that for all ny, ..., n; we have that

k

T ¢(],an).

i=1

Proof. The proof is by structural induction.

(1) f is one of the initial functions. In this case take J to be 1.

Ackermann 1s not Primitive
Recursive

(ii) f is the composition function A(g; (X), ..., gm(x)). Then
f@) = hgi(n),... em(n)

k
< Yo, Y _&@) < zp](),z G)
: =

< Yo, Zn,) < Y9 J*+1,Zn]~))

k
= w(J*+1,an+1) < YU +2,) n)
j=1 =

Now set J = J* + 2.

Ackermann is not Primitive
Recursive

(ii1) Suppose f is defined by the recursion:

f(x,0)
Bt el

h(x),
g%, 3,1 (%,))-

R [

Ackermann 1s not Primitive
Recursive

(ii1) Suppose f is defined by the recursion:

f(x,0)
Bt el

h(x),
g%, 3,1 (%,))-

~
~

Then h(n) < ¢(Jp, > n) and g(n,m,p) < Y(J,, > n+m+p).

Ackermann 1s not Primitive
Recursive

(ii1) Suppose f is defined by the recursion:

f(x,0)
Bt el

h(x),
g%, 3,1 (%,))-

R [

Then () < (Ja, X2 7) and g(ii,m,p) < $(Jg, 7 +m +p).
It is easy to prove

k

Flun, o mem) <> me +m)

=il

by induction on m.

Ackermann is not Primitive
Recursive

Now suppose ¥(x,y) was primitive recursive.
By composition 9 (x, x) would be primitive recursive.

Ackermann is not Primitive
Recursive

Now suppose ¥(x,y) was primitive recursive.
By composition 9 (x, x) would be primitive recursive.

According to the Lemma 6
P(n,n) <¢(J,n)

for some J and all n,

Ackermann is not Primitive
Recursive

Now suppose ¥(x,y) was primitive recursive.
By composition 9 (x, x) would be primitive recursive.

According to the Lemma 6
P(n,n) <¢(J,n)

for some J and all n, which would lead to the contradiction

P, J) <, J).

Ackermann is not Primitive
Recursive

Theorem
The Ackermann function grows faster than every primitive recursive
function.

Ackermann Function 1s Recursive

Theorem
The Ackermann function is recursive.

Ackermann Function 1s Recursive

A finite set S of triples is said to be suitable if the followings hold:
(i) if (0,y,z) € Sthenz =y + 1;

(ii) if (x + 1,0,z) € S then (x,1,z) € S;

@iii) if (x + 1,y + 1,z) € S then Ju.((x + 1,y,u)€S A (x,u,z)€S).

Ackermann Function 1s Recursive

A finite set S of triples is said to be suitable if the followings hold:
(i) if (0,y,z) € Sthenz =y + 1;

(ii) if (x + 1,0,z) € S then (x,1,z) € S;

@iii) if (x + 1,y + 1,z) € S then Ju.((x + 1,y,u)€S A (x,u,z)€S).

A triple (x,y,z) can be coded up by 2¥375%,
A set {uy,...,u} can be coded up by py, - - - py, -

Ackermann Function 1s Recursive

A finite set S of triples is said to be suitable if the followings hold:
(i) if (0,y,z) € Sthenz =y + 1;

(ii) if (x + 1,0,z) € S then (x,1,z) € S;

@iii) if (x + 1,y + 1,z) € S then Ju.((x + 1,y,u)€S A (x,u,z)€S).

A triple (x,y,z) can be coded up by 2¥375%,
A set {uy,...,u} can be coded up by py, - - - py, -

Let R(x,y,v) be “vis alegal code and 3z < v.(x,y,2)€S,”.

Ackermann Function 1s Recursive

A finite set S of triples is said to be suitable if the followings hold:
(i) if (0,y,z) € Sthenz =y + 1;

(ii) if (x + 1,0,z) € S then (x,1,z) € S;

@iii) if (x + 1,y + 1,z) € S then Ju.((x + 1,y,u)€S A (x,u,z)€S).

A triple (x,y,z) can be coded up by 2¥375%,
A set {uy,...,u} can be coded up by py, - - - py, -

Let R(x,y,v) be “vis alegal code and 3z < v.(x,y,2)€S,”.

The Ackermann function ¥ (x, y) =~ uz((x,y,2) €S R (x,y.v))-

Definability in URM

Definability of Initial Function

Fact. The initial functions are URM-definable.

Definability of Composition

Fact. If f(y1,...,y) and g1(X), ..., gk(¥) are URM-definable, then
the composition function A(X) given by

1s URM-definable.

Some Notations

Suppose the program P computes f.

Let p(P) be the least number i such that the register R; is not used by
the program P.

Some Notations

The notation Pl . .., I, — [] stands for the following program
I (e
" T(l,,n)
Lt @ Z(n+1)
Ly : Z(p(P))
I#

T(1,1)

Definability of Composition

Let F, Gy, . . ., Gy be programs that compute f, g1, . . . , 8-

Let m be max{n, k, p(F), p(G1), ..., p(Gk)}.

Definability of Composition

Let F, Gy, . . ., Gy be programs that compute f, g1, . . . , 8-
Let m be max{n, k, p(F), p(G1), ..., p(Gk)}.

Registers:

e ~ k
BN e () [exBETEE

Definability of Composition

The program for h:

In+k
I

: T(l,m+1)

: T(n,m+n)
: Gim+1,m+2,....m+n - m+n+1]

: Gym+1,m+2,....m+n - m+n+kj
: Fim+n+1....m+n+k — 1]

Definability of Recursion

Fact. Suppose f(X) and g(X,y, z) are URM-definable.
The recursion function A(x,y) defined by the following recursion

o) New ()
h(x,y+1) =~ g(Xy,h(x,y))

is URM-definable.

Definability of Recursion
Let F compute f and G compute g. Let m be max{n, p(F), p(G)}.

Definability of Recursion
Let F compute f and G compute g. Let m be max{n, p(F), p(G)}.

d 1 A3 3
Registers: [.. [P DIm i R (G, bt ts.

Definability of Recursion
Let F compute f and G compute g. Let m be max{n, p(F), p(G)}.

d 1 A3 3
Registers: [.. [P DIm i R (G, bt ts.

Program:

L : Tl,m+1)

s R T(n+1m+n+1)

Livo @ F[1,2,....n = m+n+3]

Lz @ Jm+n+2,m+n+1,n+7)

Liya @ Gm+1,....m4+nm+n+2m+n+3 - m+n+3]
Liys @ S(m+n+2)

el n+ 3)

L7 : T(m+n+3,1)

Definability of Minimization

Fact. If f(x,y) is URM-definable, then the minimization function
wy(f (x,y) = 0) is URM-definable.

Definability of Minimization
Suppose F computes f (X,y). Let m be max{n + 1, p(F)}.

Definability of Minimization
Suppose F computes f (X,y). Let m be max{n + 1, p(F)}.

m

REEisters: [...|7 R L2 (k][04 t2

m-+1 1" m4n+1 M Im4-n+2-

Definability of Minimization
Suppose F computes f (X,y). Let m be max{n + 1, p(F)}.

Registers: [... It optn 2.

Program:

IR (1, m 1)

IFAR T(n m+n)
R Fm+1,m+2,....m+n+1 =8l
(L - 22,1 - 5)
Liys : Sm+n+1)
R T 1, 4 1)
Iniys ¢ Tm+n+1,1)

Main Result

Theorem. All recursive functions are URM-definable.

Homework

 Read the proof that Ackermann function is not primitive.

* Try to solve the exercises in Chapter 1 & 2 as many as possible.

	 Recursive Function
	Ackermann function
	Definability in URM

