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Review Tips



Initial Function

1 The zero function
• 0
• 0(x̃) = 0

2 The successor function
• s(x) = x + 1

3 The projection function
• Un

i (x1, . . . , xn) = xi



Composition

Suppose f (y1, . . . , yk) is a k-ary function and g1(x̃), . . . , gk(x̃) are
n-ary functions, where x̃ abbreviates x1, . . . , xn.

The composition function h(x̃) is defined by

h(x̃) = f (g1(x̃), . . . , gk(x̃)),



Recursion

Suppose that f (x̃) is an n-ary function and g(x̃, y, z) is an (n+2)-ary
function.

The recursion function h(x̃, y) is defined by

h(x̃, 0) = f (x̃), (1)

h(x̃, y + 1) = g(x̃, y, h(x̃, y)). (2)

Clearly there is a unique function that satisfies (1) and (2).



Quiz

LCM(x, y)

Sol. LCM(x, y) = µz < xy + 1(div(x, z)div(y, z) = 1).

HCF(x, y))

Sol. HCF(x, y) = xy
LCM(x,y) .
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Synopsis

1 Recursive Function

2 Ackermann Function

3 Definability in URM



Recursive Function



An Example

g(x) =

{ √
x if x is a pefect square.

undefined otherwise.



Minimization Operator, or Search
Operator

Minimization function, or µ-function, or search function:

µy(f (x̃, y) = 0) '


the least y such that

f (x̃, z) is defined for all z ≤ y, and
f (x̃, y) = 0,

undefined if otherwise.

Here ' is the computational equality.

• The recursion operation is a well-founded going-down procedure.
• The search operation is a possibly divergent going-up procedure.
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Recursive Function

The set of recursive functions is the least set generated from the initial
functions, composition, recursion and minimization.



Decidable Predicate

A predicate R(x̃) is decidable if its characteristic function

cR(x̃)
def
=

{
1, if R(x̃) is true,
0, otherwise.

is a recursive function.

The predicate R(x̃) is partially decidable if its
partial characteristic function

χR(x̃)
def
=

{
1, if R(x̃) is true,
↑, otherwise.

is a recursive function.
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↑, otherwise.

is a recursive function.



Closure Property

The following statements are valid:
• If R(x̃) is decidable, then so is ¬R(x̃).
• If R(x̃), S(x̃) are (partially) decidable, then the following

predicates are (partially) decidable:
• R(x̃) ∧ S(x̃);
• R(x̃) ∨ S(x̃).

• If R(x̃, y) is (partially) decidable, then the following predicates
are (partially) decidable:

• ∀z < y.R(x̃, y);
• ∃z < y.R(x̃, y).



Definition by Cases

Suppose f1(x̃), . . . , fk(x̃) are recursive and M1(x̃), . . . ,Mk(x̃) are
partially decidable. For every x̃ at most one of M1(x̃), . . . ,Mk(x̃)
holds. Then the function g(x̃) given by

g(x̃) '


f1(x̃), if M1(x̃) holds,
f2(x̃), if M2(x̃) holds,
...
fk(x̃), if Mk(x̃) holds.

is recursive.



Minimization via Decidable
Predicate

Suppose R(x, y) is a partially decidable predicate. The function

g(x) = µyR(x̃, y)

=

{
the least y such that R(x̃, y) holds, if there is such a y
undefined, otherwise.

is recursive.

Proof
g(x̃) = µy(sg(χR(x̃, y)) = 0).
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Comment

The µ-operator allows one to define partial functions.

The diagonalisation argument does not apply to the set F of recursive
functions.

Using the µ-operator, one may define total functions that are not
primitive recursive.
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Minimization Operator is a Search
Operator

It is clear from the above proof why the minimization operator is
sometimes called a search operator.



Definable Function

A function is definable if there is a recursive function calculating it.



Ackermann function



Ackermann Function

The Ackermann function [1928] is defined as follows:

ψ(0, y) ' y + 1,

ψ(x + 1, 0) ' ψ(x, 1),

ψ(x + 1, y + 1) ' ψ(x, ψ(x + 1, y)).

The equations clearly define a total function.



Ackermann is not Primitive
Recursive

Lemma 1.
ψ(1,m) = m + 2 and ψ(2,m) = 2m + 3

Lemma 2.
ψ(n,m) ≥ m + 1
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Ackermann is not Primitive
Recursive

Lemma 3.
The Ackermann function is monotone:

ψ(n,m) < ψ(n,m + 1),

ψ(n,m) < ψ(n + 1,m).

Lemma 4.

The Ackermann function grows faster on the first parameter:

ψ(n,m + 1) ≤ ψ(n + 1,m)
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Ackermann is not Primitive
Recursive

Lemma 5.
ψ(n,m) + C is dominated by ψ(J,m) for some large enough J:

ψ(n,m) + ψ(n′,m) < ψ(max(n, n′) + 4,m),

ψ(n,m) + m < ψ(n + 4,m).



Ackermann is not Primitive
Recursive

Lemma 6.
Let f (x̃) be a k-ary primitive recursive function. Then there exists
some J such that for all n1, . . . , nk we have that

f (n1, . . . , nk) < ψ(J,
k∑

i=1

nk).

Proof. The proof is by structural induction.

(i) f is one of the initial functions. In this case take J to be 1.



Ackermann is not Primitive
Recursive

Lemma 6.
Let f (x̃) be a k-ary primitive recursive function. Then there exists
some J such that for all n1, . . . , nk we have that

f (n1, . . . , nk) < ψ(J,
k∑

i=1

nk).

Proof. The proof is by structural induction.

(i) f is one of the initial functions. In this case take J to be 1.



Ackermann is not Primitive
Recursive

Lemma 6.
Let f (x̃) be a k-ary primitive recursive function. Then there exists
some J such that for all n1, . . . , nk we have that

f (n1, . . . , nk) < ψ(J,
k∑

i=1

nk).

Proof. The proof is by structural induction.

(i) f is one of the initial functions. In this case take J to be 1.



Ackermann is not Primitive
Recursive

(ii) f is the composition function h(g1(x̃), . . . , gm(x̃)). Then

f (ñ) = h(g1(ñ), . . . , gm(ñ))

< ψ(J0,

m∑
i=1

gi(ñ)) < ψ(J0,

m∑
i=1

ψ(Ji,

k∑
j=1

nj))

< ψ(J0, ψ(J∗,
k∑

j=1

nj)) < ψ(J∗, ψ(J∗ + 1,
k∑

j=1

nj))

= ψ(J∗ + 1,
k∑

j=1

nj + 1) ≤ ψ(J∗ + 2,
k∑

j=1

nj).

Now set J = J∗ + 2.



Ackermann is not Primitive
Recursive

(iii) Suppose f is defined by the recursion:

f (x̃, 0) ' h(x̃),

f (x̃, y + 1) ' g(x̃, y, f (x̃, y)).

Then h(ñ) < ψ(Jh,
∑

ñ) and g(ñ,m, p) < ψ(Jg,
∑

ñ + m + p).

It is easy to prove

f (n1, . . . , nk,m) < ψ(J,
k∑

i=1

nk + m)

by induction on m.
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Ackermann is not Primitive
Recursive

Now suppose ψ(x, y) was primitive recursive.
By composition ψ(x, x) would be primitive recursive.

According to the Lemma 6

ψ(n, n) < ψ(J, n)

for some J and all n, which would lead to the contradiction

ψ(J, J) < ψ(J, J).
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Now suppose ψ(x, y) was primitive recursive.
By composition ψ(x, x) would be primitive recursive.

According to the Lemma 6

ψ(n, n) < ψ(J, n)

for some J and all n, which would lead to the contradiction
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Ackermann is not Primitive
Recursive

Theorem
The Ackermann function grows faster than every primitive recursive
function.



Ackermann Function is Recursive

Theorem
The Ackermann function is recursive.



Ackermann Function is Recursive

A finite set S of triples is said to be suitable if the followings hold:
(i) if (0, y, z) ∈ S then z = y + 1;
(ii) if (x + 1, 0, z) ∈ S then (x, 1, z) ∈ S;
(iii) if (x + 1, y + 1, z) ∈ S then ∃u.((x + 1, y, u)∈S ∧ (x, u, z)∈S).

A triple (x, y, z) can be coded up by 2x3y5z.
A set {u1, . . . , uk} can be coded up by pu1 · · · puk .

Let R(x, y, v) be “v is a legal code and ∃z < v.(x, y, z)∈Sv”.

The Ackermann function ψ(x, y) ' µz((x, y, z)∈SµvR(x,y,v)).
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Definability in URM



Definability of Initial Function

Fact. The initial functions are URM-definable.



Definability of Composition

Fact. If f (y1, . . . , yk) and g1(x̃), . . . , gk(x̃) are URM-definable, then
the composition function h(x̃) given by

h(x̃) ' f (g1(x̃), . . . , gk(x̃))

is URM-definable.



Some Notations

Suppose the program P computes f .

Let ρ(P) be the least number i such that the register Ri is not used by
the program P.



Some Notations
The notation P[l1, . . . , ln → l] stands for the following program

I1 : T(l1, 1)
...

In : T(ln, n)

In+1 : Z(n + 1)
...

Iρ(P) : Z(ρ(P))

_ : P

_ : T(1, l)



Definability of Composition

Let F,G1, . . . ,Gk be programs that compute f , g1, . . . , gk .

Let m be max{n, k, ρ(F), ρ(G1), . . . , ρ(Gk)}.

Registers:
[. . .]m1 [x̃]

m+n
m+1[g1(x̃)]m+n+1

m+n+1 . . . [gk(x̃)]m+n+k
m+n+k
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Definability of Composition

The program for h:

I1 : T(1,m + 1)
...

In : T(n,m + n)

In+1 : G1[m + 1,m + 2, . . . ,m + n → m + n + 1]
...

In+k : Gk[m + 1,m + 2, . . . ,m + n → m + n + k]

In+k+1 : F[m + n + 1 . . . ,m + n + k → 1]



Definability of Recursion

Fact. Suppose f (x̃) and g(x̃, y, z) are URM-definable.
The recursion function h(x̃, y) defined by the following recursion

h(x̃, 0) ' f (x̃),

h(x̃, y + 1) ' g(x̃, y, h(x̃, y))

is URM-definable.



Definability of Recursion
Let F compute f and G compute g. Let m be max{n, ρ(F), ρ(G)}.

Registers: [. . .]m1 [x̃]
m+n
m+1[y]

m+n+1
m+n+1[k]

m+n+2
m+n+2[h(x̃, k)]

m+n+3
m+n+3.

Program:

I1 : T(1,m + 1)
...

In+1 : T(n + 1,m + n + 1)

In+2 : F[1, 2, . . . , n → m + n + 3]

In+3 : J(m + n + 2,m + n + 1, n + 7)

In+4 : G[m + 1, . . . ,m + n,m + n + 2,m + n + 3 → m + n + 3]

In+5 : S(m + n + 2)

In+6 : J(1, 1, n + 3)

In+7 : T(m + n + 3, 1)
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Definability of Minimization

Fact. If f (x̃, y) is URM-definable, then the minimization function
µy(f (x̃, y) = 0) is URM-definable.



Definability of Minimization
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Main Result

Theorem. All recursive functions are URM-definable.



Homework

• Read the proof that Ackermann function is not primitive.
• Try to solve the exercises in Chapter 1 & 2 as many as possible.
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