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Church-Turing Thesis



Fundamental Question

How do computation models characterize the informal notion of
effective computability?



Fundamental Result

Theorem. The set of functions definable (the Turing Machine Model,
the URM Model) is precisely the set of functions definable in the
Recursive Function Model.

Proof.
We showed that
µ-definable⇒ λ-definable⇒ Turing definable⇒ URM-definable.

We will show that URM-definable⇒ µ-definable.
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Church-Turing Thesis

Church-Turing Thesis.
The functions definable in all computation models are the same. They
are precisely the computable functions.

1. Church believed that all computable functions are λ-definable.

2. Kleene termed it Church Thesis.

3. Gödel accepted it only after he saw Turing’s equivalence proof.

4. Church-Turing Thesis is now universally accepted.
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Computable Function

Let C be the set of all computable functions.

Let Cn be the set of all n-ary computable functions.



Power of Church-Turing Thesis

No one has come up with a computable function that is not in C.

When you are convincing people of your model of computation, you
are constructing an effective translation from a well-known
computation model to your model.



Use of Church-Turing Thesis

Church-Turing Thesis allows us to give an informal argument for the
computability of a function.

We will make use of a computable function without explicitly defining
it.



Comment on Church-Turing Thesis

CTT and Physical Implementation
• Deterministic Turing Machines are physically implementable.

This is the well-known von Neumann Architecture.
• Are quantum computers physically implementable? Can a

quantum computer compute more? Can it compute more
efficiently?

CTT, is it a Law of Nature or a Wisdom of Human?
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Synopsis

1 Gödel Encoding (section 4.1)

2 URM is Recursive (Appendix of chapter 5)



Gödel Encoding



Everything is number!



Godel’s Insight

The set of syntactical objects of a formal system is denumerable.

More importantly, every syntactical object can be coded up effectively
by a number in such a way that a unique syntactical object can be
recovered from the number.

This is the crucial technique Gödel used in his proof of the
Incompleteness Theorem.
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Enumeration

An enumeration of a set X is a surjection g : N→ X;
this is often represented by writing {x0, x1, x2, . . .}.

It is an enumeration without repetition if g is injective.



Denumeration

A set X is denumerable if there is a bijection f : X → N.
(denumerate = denote + enumerate)

Let X be a set of “finite objects”.

Then X is effectively denumerable if there is a bijection f : X → N
such that both f and f−1 are computable.
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Effective Denumerable Set

Fact. N× N is effectively denumerable.

Proof. A bijection π : N× N→ N is defined by

π(m, n) def
= 2m(2n + 1)− 1,

π−1(l) def
= (π1(l), π2(l)),

where

π1(x)
def
= (x + 1)1,

π2(x)
def
= ((x + 1)/2π1(x) − 1)/2.
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Effective Denumerable Set

Fact. N+ × N+ × N+ is effectively denumerable.

Proof. A bijection ζ : N+ × N+ × N+ → N is defined by

ζ(m, n, q) def
= π(π(m − 1, n− 1), q − 1),

ζ−1(l) def
= (π1(π1(l)) + 1, π2(π1(l)) + 1, π2(l) + 1).
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Effective Denumerable Set

Fact.
⋃

k>0 Nk is effectively denumerable.

Proof. A bijection τ :
⋃

k>0 Nk → N is defined by

τ(a1, . . . , ak)
def
= 2a1 + 2a1+a2+1 + 2a1+a2+a3+2 + . . .

+ 2a1+a2+a3+...,ak+k−1 − 1.

Now given x it is easy to find b1 < b2 < . . . < bk such that

2b1 + 2b2 + 2b3 + . . .+ 2bk = x + 1.

It is then clear how to calculate a1, a2, a3, . . . , ak . Details are next.



Effective Denumerable Set
A number x ∈ N has a unique expression as

x =

∞∑
i=0

αi2i,

where αi is either 0 or 1 for all i ≥ 0.

1. The function α(i, x) = αi is primitive recursive:

α(i, x) = rm(2,qt(2i, x)).

2. The function `(x) = if x > 0 then k else 0 is primitive recursive:

`(x) =
∑
i<x

α(i, x).



Effective Denumerable Set

3. If x > 0 then it has a unique expression as

x = 2b1 + 2b2 + . . .+ 2bk ,

where 1 ≤ k and 0 ≤ b1 < b2 < . . . < bk .

The function b(i, x) = if (x > 0) ∧ (1 ≤ i ≤ `(x)) then bi else 0 is
primitive recursive:

b(i, x) =

{
µy<x

(∑
k≤y α(k, x) = i

)
, if (x > 0) ∧ (1 ≤ i ≤ `(x));

0, otherwise.



Effective Denumerable Set

4. If x > 0 then it has a unique expression as

x = 2a1 + 2a1+a2+1 + . . .+ 2al+a2+...+ak+k−1.

The function a(i, x) = ai is primitive recursive:

a(i, x) = b(i, x), if i = 0 or i = 1,

a(i + 1, x) = (b(i + 1, x)−̇b(i, x))−̇1, if i ≥ 1.

We conclude that a1, a2, a3, . . . , ak can be calculated by primitive
recursive functions.



Encoding Program

Let I be the set of all instructions.

Let P be the set of all programs.

The objects in I, and P as well, are “finite objects”.



Encoding Program

Theorem. I is effectively denumerable.

Proof. The bijection β : I → N is defined as follows:

β(Z(n)) = 4(n− 1),

β(S(n)) = 4(n− 1) + 1,

β(T(m, n)) = 4π(m − 1, n− 1) + 2,

β(J(m, n, q)) = 4ζ(m, n, q) + 3.

The converse β−1 is easy.



Encoding Program

Theorem. P is effectively denumerable.

Proof. The bijection γ : P → N is defined as follows:

γ(P) = τ(β(I1), . . . , β(Is)),

assuming P = I1, . . . , Is.

The converse γ−1 is obvious.



Gödel Number of Program

The value γ(P) is called the Gödel number of P.

Pn = the programme with Godel index n

= γ−1(n)

We shall fix this particular encoding function γ throughout.
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Example

Let P be the program T(1, 3), S(4),Z(6).

β(T(1, 3)) = 18
β(S(4)) = 13
β(Z(6)) = 20

γ(P) = 218 + 232 + 253 − 1
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Example

Consider P4127.

4127 = 25 + 212 − 1.

β(I1) = 4 + 1
β(I2) = 4π(1, 0) + 2

So P4127 is S(2);T(2, 1).
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URM is Recursive



Kleene’s Proof

Kleene demonstrated how to prove that machine computable
functions are recursive functions.



Proof in Detail

The states of the computation of the program Pe(x̃) can be described
by a configuration and an instruction number.

A state can be coded up by the number

σ = π(c, j),

where c is the configuration that codes up the current values in the
registers

c = 2r13r2 . . . =
∏
i≥1

pri
i ,

and j is the next instruction number.
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Proof in Detail

To describe the changes of the states of Pe(x̃), we introduce three
(n + 2)-ary functions:

cn(e, x̃, t) = the configuration after t steps of Pe(x̃),

jn(e, x̃, t) = the number of the next instruction after t steps

of Pe(x̃) (it is 0 if Pe(x̃) stops in t or less steps),

σn(e, x̃, t) = π(cn(e, x̃, t), jn(e, x̃, t)).

If σn is primitive recursive, then cn, jn are primitive recursive!
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Proof in Detail
If the computation of Pe(x̃) stops, it does so in

µt(jn(e, x̃, t) = 0)

steps.

Then the final configuration is

cn(e, x̃, µt(jn(e, x̃, t) = 0)).

We conclude that the value of the computation Pe(x̃) is

(cn(e, x̃, µt(jn(e, x̃, t) = 0)))1.
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µt(jn(e, x̃, t) = 0)

steps.

Then the final configuration is

cn(e, x̃, µt(jn(e, x̃, t) = 0)).

We conclude that the value of the computation Pe(x̃) is
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Proof in Detail

The function σn can be defined as follows:

σn(e, x̃, 0) = π(2x13x2 . . . pxn
n , 1),

σn(e, x̃, t + 1) = π(config(e, σn(e, x̃, t)),next(e, σn(e, x̃, t))),

where config(e, π(c, j)) is the new configuration, and next(e, π(c, j))
is the number of the next instruction, after the j-th instruction has been
executed upon c.



Proof in Detail

ln(e) = the number of instructions in Pe;

gn(e, j) =

{
the code of Ij in Pe, if 1 ≤ j ≤ ln(e),
0, otherwise.

ch(c, z) = the resulting configuration when the

configuration c is operated on by the

instruction with code number z.

v(c, j, z) =


the number j′ of the next instruction
when the configuration c is operated if j > 0,
on by the jth instruction with code z,
0, if j = 0.



Proof in Detail

config(e, σ) =

{
ch(π1(σ),gn(e, π2(σ))), if 1 ≤ π2(σ) ≤ ln(e),
π1(σ), otherwise.

next(e, σ) =

{
v(π1(σ), π2(σ),gn(e, π2(σ))), if 1 ≤ π2(σ) ≤ ln(e),
0, otherwise.
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Proof in Detail (ln,gn)

ln(e) = the number of instructions in Pe;

gn(e, j) =

{
the code of Ij in Pe, if 1 ≤ j ≤ ln(e),
0, otherwise.

Both functions are primitive recursive since

ln(e) = `(e + 1),

gn(e, j) = a(j, e + 1).



Proof in Detail (ch)

The following function

ch(c, z) = the resulting configuration when the

configuration c is operated on by the

instruction with code number z.

is primitive recursive if

ch(c, z) =


zero(c,u(z)), if rm(4, z) = 0,
succ(c,u(z)), if rm(4, z) = 1,
tran(c,u1(z),u2(z)), if rm(4, z) = 2,
c, if rm(4, z) = 3.



Proof in Detail (ch)

u(z) = m whenever z = β(Z(m)) or z = β(S(m)):

u(z) = qt(4, z) + 1.

u1(z) = m1 and u2(z) = m2 whenever z = β(T(m1,m2)):

u1(z) = π1(qt(4, z)) + 1,

u2(z) = π2(qt(4, z)) + 1.
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Proof in Detail (ch)
The change in the configuration c effected by instruction Z(m):

zero(c,m) = qt(p(c)m
m , c).

The change in the configuration c effected by instruction S(m):

succ(c,m) = pmc.

The change in the configuration c effected by instruction T(m, n):

tran(c,m, n) = qt(p(c)n
n , p(c)m

n c).
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Proof in Detail (v)

The following function

v(c, j, z) =


the number j′ of the next instruction
when the configuration c is operated if j > 0,
on by the jth instruction with code z,
0, if j = 0.

is primitive recursive if

v(c, j, z) =


j + 1, if rm(4, z) 6= 3,
j + 1, if rm(4, z) = 3 ∧ (c)v1(z) 6= (c)v2(z),

v3(z), if rm(4, z) = 3 ∧ (c)v1(z) = (c)v2(z).



Proof in Detail (v)

v1(z) = m1 and v2(z) = m2 and v3(z) = q if z = β(J(m1,m2, q)):

v1(z) = π1(π1(qt(4, z))) + 1,

v2(z) = π2(π1(qt(4, z))) + 1,

v3(z) = π2(qt(4, z)) + 1.



Proof in Detail

We can now define the function config(_, _) by

config(e, σ) =

{
ch(π1(σ),gn(e, π2(σ))), if 1 ≤ π2(σ) ≤ ln(e),
π1(σ), otherwise.

and the function next(_, _) by

next(e, σ) =

{
v(π1(σ), π2(σ),gn(e, π2(σ))), if 1 ≤ π2(σ) ≤ ln(e),
0, otherwise.



Proof in Detail

We conclude that the functions cn, jn, σn are primitive recursive.
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