Computability Theory VI

Church-Turing Thesis

Guogqiang Li
Shanghai Jiao Tong University

Oct. 31, 2014

Church-Turing Thesis

Fundamental Question

How do computation models characterize the informal notion of
effective computability?

Fundamental Result

Theorem. The set of functions definable (the Turing Machine Model,
the URM Model) is precisely the set of functions definable in the
Recursive Function Model.

Fundamental Result

Theorem. The set of functions definable (the Turing Machine Model,
the URM Model) is precisely the set of functions definable in the
Recursive Function Model.

Proof.
We showed that
p-definable = A-definable = Turing definable = URM-definable.

We will show that URM-definable = p-definable.

Church-Turing Thesis

Church-Turing Thesis.

The functions definable in all computation models are the same. They
are precisely the computable functions.

Church-Turing Thesis

Church-Turing Thesis.

The functions definable in all computation models are the same. They
are precisely the computable functions.

1. Church believed that all computable functions are A-definable.
2. Kleene termed it Church Thesis.

3. Godel accepted it only after he saw Turing’s equivalence proof.

4. Church-Turing Thesis is now universally accepted.

Computable Function

Let C be the set of all computable functions.

Let C,, be the set of all n-ary computable functions.

Power of Church-Turing Thesis

No one has come up with a computable function that is not in C.

When you are convincing people of your model of computation, you
are constructing an effective translation from a well-known
computation model to your model.

Use of Church-Turing Thesis

Church-Turing Thesis allows us to give an informal argument for the
computability of a function.

We will make use of a computable function without explicitly defining
it.

Comment on Church-Turing Thesis

CTT and Physical Implementation

* Deterministic Turing Machines are physically implementable.
This is the well-known von Neumann Architecture.

* Are quantum computers physically implementable? Can a

quantum computer compute more? Can it compute more
efficiently?

Comment on Church-Turing Thesis

CTT and Physical Implementation

* Deterministic Turing Machines are physically implementable.
This is the well-known von Neumann Architecture.

* Are quantum computers physically implementable? Can a
quantum computer compute more? Can it compute more
efficiently?

CTT, is it a Law of Nature or a Wisdom of Human?

Synopsis

@ Godel Encoding (section 4.1)
® URM is Recursive (Appendix of chapter 5)

an
g
-
hS)
o]
Q
g
=3
—
Q
)
0
O

Everything is number!

Godel’s Insight

The set of syntactical objects of a formal system is denumerable.

Godel’s Insight

The set of syntactical objects of a formal system is denumerable.

More importantly, every syntactical object can be coded up effectively
by a number in such a way that a unique syntactical object can be
recovered from the number.

Godel’s Insight

The set of syntactical objects of a formal system is denumerable.

More importantly, every syntactical object can be coded up effectively
by a number in such a way that a unique syntactical object can be
recovered from the number.

This is the crucial technique Godel used in his proof of the
Incompleteness Theorem.

Enumeration

An enumeration of a set X is a surjection g : N — X;
this is often represented by writing {xo, x1,x2, . . .}.

It is an enumeration without repetition if g is injective.

Denumeration

A set X is denumerable if there is a bijection f : X — N.
(denumerate = denote + enumerate)

Denumeration

A set X is denumerable if there is a bijection f : X — N.
(denumerate = denote + enumerate)

Let X be a set of “finite objects”.

Then X is effectively denumerable if there is a bijection f : X — N
such that both f and f~! are computable.

Effective Denumerable Set

Fact. N x N is effectively denumerable.

Effective Denumerable Set

Fact. N x N is effectively denumerable.

Proof. A bijection 7 : N x N — N is defined by

w(m,n) & 2"(2n+1) - 1,
) L (m@),),

where

mx) = (x+1),
mE) £ ((x+1)/2m® —1)/2.

Effective Denumerable Set

Fact. Nt x Nt x N7 is effectively denumerable.

Effective Denumerable Set

Fact. Nt x Nt x N7 is effectively denumerable.

Proof. A bijection ¢ : NT x Nt x N* — N is defined by

¢((m,n,q) = w(m(m—1,n—1),q — 1),
D) = (mm@) +1,ma(m @) + 1, m2(l) + 1.

Effective Denumerable Set

Fact. (J;~¢ NF is effectively denumerable.

Proof. A bijection 7 : | ;- Nf — N is defined by

def
T(ala .- ;ak) om 4 gamitatl | gaitartast2

de 2a1+az+a3+.--7ak+k—l SN
Now given x it is easy to find by < by < ... < by such that
AT I L RS LI)

It is then clear how to calculate a;,ap, as, . . ., a;. Details are next.

Effective Denumerable Set

A number x € N has a unique expression as

o0
%= g o2,
i=0

where «; is either O or 1 for all i > 0.
1. The function a(i, x) = «; is primitive recursive:

a(i,x) = rm(2,qt(2’, x)).

2. The function ¢(x) = if x > O then k else 0 is primitive recursive:

Uy =3 elts):

i<x

Effective Denumerable Set

3. If x > 0O then it has a unique expression as
x =20 400 0B
where 1 < kand 0 < b < by < ... < by.

The function b(i,x) = if (x > 0) A (1 < i < £(x)) then b; else 0 is
primitive recursive:

b(i,x)_{ py<x (Zkgya(k,x):i>, if (x> 0) A (1 < i < 6());

0, otherwise.

Effective Denumerable Set

4. If x > 0 then it has a unique expression as

x =24 1 2al+az+1 Lot 2al+az+-.-+ak+k—1_

The function a(i, x) = g; is primitive recursive:

Jilie ob(7, %), if i = 0ori—tlk
a(i+1,x) = (b(i+1,x)=b(i,x))—1, ifi > 1.
We conclude that a;, as, as, . . ., a; can be calculated by primitive

recursive functions.

Encoding Program

Let Z be the set of all instructions.
Let P be the set of all programs.

The objects in Z, and P as well, are “finite objects”.

Encoding Program

Theorem. 7 is effectively denumerable.

Proof. The bijection 8 : Z — N is defined as follows:

B(Z(n)) = 4@n-1)

B(S(m) = 4n—-1)+1,
B(T(m,n)) = 4n(m—1,n—1)42
B (m,n,q)) = 4((m,n,q)+3

The converse 37! is easy.

Encoding Program

Theorem. P is effectively denumerable.

Proof. The bijection v : P — N is defined as follows:

V(P) - T(B(Il)v"'vﬂ(ls))a

assuming P =1y, .. ., [;.

1

The converse v~ is obvious.

Godel Number of Program

The value v(P) is called the Godel number of P.

Godel Number of Program

The value y(P) is called the Godel number of P.

P, = the programme with Godel index n
= 77 '(n)

Godel Number of Program

The value v(P) is called the Godel number of P.

P, = the programme with Godel index n
= 77 '(n)

We shall fix this particular encoding function ~ throughout.

Example

Let P be the program T'(1,3),S(4),Z(6).

Example

Let P be the program T'(1,3),S(4),Z(6).

Example

Let P be the program T'(1,3),S(4),Z(6).

y(P) =218 +2% 4 2% |

Example

Example

Consider Py127.

o0 012 _ 1

Example

Consider Py127.
WP= 2> | 212 __ 1.

Bh)=4+1
B(L) = 4m(1,0) 42

Example

Consider Py127.
WP= 2> | 212 __ 1.

Bh)=4+1
B(L) = 4m(1,0) 42

So P4127 is S(Z); T(Z, 1).

URM is Recursive

Kleene’s Proof

Kleene demonstrated how to prove that machine computable
functions are recursive functions.

Proof in Detail

The states of the computation of the program P, (x) can be described
by a configuration and an instruction number.

Proof in Detail

The states of the computation of the program P, (x) can be described
by a configuration and an instruction number.

A state can be coded up by the number

O 7T(C7j)7

where c is the configuration that codes up the current values in the
registers

G TS iy Hp?,
i>1

and j is the next instruction number.

Proof in Detail

To describe the changes of the states of P,(x), we introduce three
(n + 2)-ary functions:

Cu(e,x,t) = the configuration after 7 steps of P,(X),
jo(e,x,1) = the number of the next instruction after ¢ steps
of P,(x) (it is O if P,(x) stops in 7 or less steps),

BN — w(Ch(e,X,1),],(e,%,1)).

Proof in Detail

To describe the changes of the states of P,(x), we introduce three
(n + 2)-ary functions:

Cu(e,x,t) = the configuration after 7 steps of P,(X),
jo(e,x,1) = the number of the next instruction after ¢ steps
of P,(x) (it is O if P,(x) stops in 7 or less steps),

BN — w(Ch(e,X,1),],(e,%,1)).

If o, is primitive recursive, then C,, j, are primitive recursive!

Proof in Detail

If the computation of P,(X) stops, it does so in

(i, (e, %,1) = 0)

steps.

Proof in Detail
If the computation of P,(X) stops, it does so in
it (i, (e, %, 1) = 0)
steps.

Then the final configuration is

Cn(eajev Mt(jn(evfia t) o 0))

Proof in Detail

If the computation of P,(X) stops, it does so in
pt(j, (e, %, 1) = 0)
steps.

Then the final configuration is

Cn(ea}lv Mt(jn(evfia t) o 0))

We conclude that the value of the computation P, (x) is

(C,,(e,?c’, /J’t(jn(&}’ t) == O)))l-

Proof in Detail

The function o, can be defined as follows:

ERIER RO 7 (271372 . p'" 1)
on(e,x,t+1) = n(config(e,o,(e,x,1)),next(e,on(e,x,t))),

where config(e, 7(c,j)) is the new configuration, and next(e, 7(c, j))
is the number of the next instruction, after the j-th instruction has been
executed upon c.

Proof in Detail

In(e) = the number of instructions in P,;
A ilicicode of Iin P,, if 1 <= lil{eH
gn(e.j) = { 0, otherwise.

ch(c,z) = the resulting configuration when the
configuration c is operated on by the

instruction with code number z.
the number j’ of the next instruction
when the configuration c is operated if j > 0,
on by the jth instruction with code z,
0, it j = 0.

v(c,j,z) =

il

Deta

S
—

Proof

Proof in Detail

config(e,0) = {;f;((;r)lfcf),gn(mz(a))), if 1 < ma(o) < In(e)

Proof in Detail

config(e,0) = {;f;((;r)lfcf),gn(emﬂa))), if 1 < ma(o) < In(e)

next(e,0) = {g’(ﬂl(a)aW2(U)a9n(€vﬂz(0)))a i)fthlerﬁwzfsze(‘a)éln(e),

Proof in Detail (In, gn)

In(e) = the number of instructions in P,;
5 the code of I;in P,, if 1 <j <In(e),
ey — { 0, otherwise.

Both functions are primitive recursive since

In(e) = 4(e+1),
gn(e,j) = a(j,e+1).

Proof in Detail (ch)

The following function

ch(c,z) = the resulting configuration when the
configuration c is operated on by the

instruction with code number z.

is primitive recursive if

zero(c, u(z)), if rm(4,)

e Rsiice(c, Uz), if rm(4, z)

chic,z) = tran(c, ul(i),m(z)), if rm(4 i)
c, if rm(4,2)

Proof in Detail (ch)

U(z) = m whenever z = 5(Z(m)) or z = 5(S(m)):

u(z) =qt(4,z) + 1.

Proof in Detail (ch)
U(z) = m whenever z = 5(Z(m)) or z = 5(S(m)):
u(z) =qt(4,z) + 1.
Ui(z) = my and Uy (z) = my whenever z = B(T (my,my)):

ui(z) = m(qt4,2))+1,
ux(z) = m(qt4,2))+ 1.

Proof in Detail (ch)

The change in the configuration c effected by instruction Z(m):

zero(c,m) = qt(p,(rf)’”, c).

Proof in Detail (ch)

The change in the configuration c effected by instruction Z(m):

zero(c,m) = qt(p,(rf)’”, c).

The change in the configuration c¢ effected by instruction S(m):

succ(c,m) = ppc.

Proof in Detail (ch)

The change in the configuration c effected by instruction Z(m):

zero(c,m) = qt(p,(rf)’”, c).

The change in the configuration c¢ effected by instruction S(m):

succ(c,m) = ppc.

The change in the configuration c effected by instruction T (m, n):

tran(c,m,n) = qt(p C)",p,, c).

Proof 1n Detail (V)

The following function

the number j’ of the next instruction
when the configuration c is operated if j > 0,
on by the jth instruction with code z,
0, if j =0.

sy z) —

is primitive recursive if

gk, if rm(4, z) # 3,
V(C,j,Z) - .]+ 17 if rm(47Z) =3 A (C)Vl(z) 7é (C)Vg(z)u
V3(Z), if rm(4,z) =3 A (C)VI(Z) = (C)Vz(z)'

Proof in Detail (V)

Vi(z) = my and Vo(z) = mp and v3(z) = q if z = B(J (m1,m2, q)):

vi(z) = m(m(qt
va(z) = m(m(q
vi(z) = m(qt(4 Z) + 1.

Proof in Detail

We can now define the function config(_,) by

config(e,0) = {i?é:;’(a)agn(emz(ff))), it 15 ma(7) < In),

and the function next(_,_) by

rettog) = { RO, 1S me) < i)

Proof in Detail

We conclude that the functions C,, j,, 0, are primitive recursive.

	Church-Turing thesis
	Gödel Encoding
	URM is Recursive

