

Computability Theory VI

Church-Turing Thesis

Guoqiang Li

Shanghai Jiao Tong University

Oct. 31, 2014

Church-Turing Thesis

Fundamental Question

How do computation models characterize the informal notion of effective computability?

Fundamental Result

Theorem. The set of functions definable (the Turing Machine Model, the URM Model) is precisely the set of functions definable in the Recursive Function Model.

Fundamental Result

Theorem. The set of functions definable (the **Turing Machine** Model, the **URM** Model) is precisely the set of functions definable in the **Recursive Function** Model.

Proof.

We showed that

$$\mu\text{-definable} \Rightarrow \lambda\text{-definable} \Rightarrow \text{Turing definable} \Rightarrow \text{URM-definable}.$$

We will show that **URM-definable** \Rightarrow **μ -definable**.

Church-Turing Thesis

Church-Turing Thesis.

The functions definable in all computation models are the same. They are precisely the **computable functions**.

Church-Turing Thesis

Church-Turing Thesis.

The functions definable in all computation models are the same. They are precisely the **computable functions**.

1. Church believed that all computable functions are λ -definable.
2. Kleene termed it **Church Thesis**.
3. Gödel accepted it only after he saw Turing's equivalence proof.
4. Church-Turing Thesis is now universally accepted.

Computable Function

Let \mathcal{C} be the set of all computable functions.

Let \mathcal{C}_n be the set of all n -ary computable functions.

Power of Church-Turing Thesis

No one has come up with a computable function that is not in \mathcal{C} .

When you are convincing people of your model of computation, you are constructing an effective translation from a well-known computation model to your model.

Use of Church-Turing Thesis

Church-Turing Thesis allows us to give an informal argument for the computability of a function.

We will make use of a computable function without explicitly defining it.

Comment on Church-Turing Thesis

CTT and Physical Implementation

- Deterministic Turing Machines are physically implementable. This is the well-known **von Neumann Architecture**.
- Are quantum computers physically implementable? Can a quantum computer compute more? Can it compute more efficiently?

Comment on Church-Turing Thesis

CTT and Physical Implementation

- Deterministic Turing Machines are physically implementable. This is the well-known **von Neumann Architecture**.
- Are quantum computers physically implementable? Can a quantum computer compute more? Can it compute more efficiently?

CTT, is it a **Law of Nature** or a **Wisdom of Human**?

Synopsis

- ① Gödel Encoding (section 4.1)
- ② URM is Recursive (Appendix of chapter 5)

Gödel Encoding

Everything is number!

Godel's Insight

The set of **syntactical objects** of a formal system is denumerable.

Godel's Insight

The set of **syntactical objects** of a formal system is denumerable.

More importantly, every syntactical object can be coded up **effectively** by a number in such a way that a unique syntactical object can be **recovered** from the number.

Godel's Insight

The set of **syntactical objects** of a formal system is denumerable.

More importantly, every syntactical object can be coded up **effectively** by a number in such a way that a unique syntactical object can be **recovered** from the number.

This is the crucial technique Gödel used in his proof of the **Incompleteness Theorem**.

Enumeration

An **enumeration** of a set X is a **surjection** $g : \mathbb{N} \rightarrow X$;
this is often represented by writing $\{x_0, x_1, x_2, \dots\}$.

It is an enumeration without repetition if g is **injective**.

Denumeration

A set X is **denumerable** if there is a **bijection** $f : X \rightarrow \mathbb{N}$.
(denumerate = denote + enumerate)

Denumeration

A set X is **denumerable** if there is a **bijection** $f : X \rightarrow \mathbb{N}$.
(denumerate = denote + enumerate)

Let X be a set of “finite objects”.

Then X is **effectively denumerable** if there is a **bijection** $f : X \rightarrow \mathbb{N}$ such that both f and f^{-1} are computable.

Effective Denumerable Set

Fact. $\mathbb{N} \times \mathbb{N}$ is effectively denumerable.

Effective Denumerable Set

Fact. $\mathbb{N} \times \mathbb{N}$ is effectively denumerable.

Proof. A bijection $\pi : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is defined by

$$\begin{aligned}\pi(m, n) &\stackrel{\text{def}}{=} 2^m(2n + 1) - 1, \\ \pi^{-1}(l) &\stackrel{\text{def}}{=} (\pi_1(l), \pi_2(l)),\end{aligned}$$

where

$$\begin{aligned}\pi_1(x) &\stackrel{\text{def}}{=} (x + 1)_1, \\ \pi_2(x) &\stackrel{\text{def}}{=} ((x + 1)/2^{\pi_1(x)} - 1)/2.\end{aligned}$$

Effective Denumerable Set

Fact. $\mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+$ is effectively denumerable.

Effective Denumerable Set

Fact. $\mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+$ is effectively denumerable.

Proof. A bijection $\zeta : \mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+ \rightarrow \mathbb{N}$ is defined by

$$\begin{aligned}\zeta(m, n, q) &\stackrel{\text{def}}{=} \pi(\pi(m-1, n-1), q-1), \\ \zeta^{-1}(l) &\stackrel{\text{def}}{=} (\pi_1(\pi_1(l)) + 1, \pi_2(\pi_1(l)) + 1, \pi_2(l) + 1).\end{aligned}$$

Effective Denumerable Set

Fact. $\bigcup_{k>0} \mathbb{N}^k$ is effectively denumerable.

Proof. A bijection $\tau : \bigcup_{k>0} \mathbb{N}^k \rightarrow \mathbb{N}$ is defined by

$$\begin{aligned}\tau(a_1, \dots, a_k) \stackrel{\text{def}}{=} & 2^{a_1} + 2^{a_1+a_2+1} + 2^{a_1+a_2+a_3+2} + \dots \\ & + 2^{a_1+a_2+a_3+\dots+a_k+k-1} - 1.\end{aligned}$$

Now given x it is easy to find $b_1 < b_2 < \dots < b_k$ such that

$$2^{b_1} + 2^{b_2} + 2^{b_3} + \dots + 2^{b_k} = x + 1.$$

It is then clear how to calculate $a_1, a_2, a_3, \dots, a_k$. Details are next.

Effective Denumerable Set

A number $x \in \mathbb{N}$ has a unique expression as

$$x = \sum_{i=0}^{\infty} \alpha_i 2^i,$$

where α_i is either 0 or 1 for all $i \geq 0$.

1. The function $\alpha(i, x) = \alpha_i$ is primitive recursive:

$$\alpha(i, x) = \text{rm}(2, \text{qt}(2^i, x)).$$

2. The function $\ell(x) = \text{if } x > 0 \text{ then } k \text{ else } 0$ is primitive recursive:

$$\ell(x) = \sum_{i < x} \alpha(i, x).$$

Effective Denumerable Set

3. If $x > 0$ then it has a unique expression as

$$x = 2^{b_1} + 2^{b_2} + \dots + 2^{b_k},$$

where $1 \leq k$ and $0 \leq b_1 < b_2 < \dots < b_k$.

The function $\mathbf{b}(i, x) = \text{if } (x > 0) \wedge (1 \leq i \leq \ell(x)) \text{ then } b_i \text{ else } 0$ is primitive recursive:

$$\mathbf{b}(i, x) = \begin{cases} \mu y < x \left(\sum_{k \leq y} \alpha(k, x) = i \right), & \text{if } (x > 0) \wedge (1 \leq i \leq \ell(x)); \\ 0, & \text{otherwise.} \end{cases}$$

Effective Denumerable Set

4. If $x > 0$ then it has a unique expression as

$$x = 2^{a_1} + 2^{a_1+a_2+1} + \dots + 2^{a_1+a_2+\dots+a_k+k-1}.$$

The function $\mathbf{a}(i, x) = a_i$ is primitive recursive:

$$\begin{aligned}\mathbf{a}(i, x) &= \mathbf{b}(i, x), \text{ if } i = 0 \text{ or } i = 1, \\ \mathbf{a}(i + 1, x) &= (\mathbf{b}(i + 1, x) \dot{-} \mathbf{b}(i, x)) \dot{-} 1, \text{ if } i \geq 1.\end{aligned}$$

We conclude that $a_1, a_2, a_3, \dots, a_k$ can be calculated by primitive recursive functions.

Encoding Program

Let \mathcal{I} be the set of all instructions.

Let \mathcal{P} be the set of all programs.

The objects in \mathcal{I} , and \mathcal{P} as well, are “finite objects”.

Encoding Program

Theorem. \mathcal{I} is effectively denumerable.

Proof. The bijection $\beta : \mathcal{I} \rightarrow \mathbb{N}$ is defined as follows:

$$\begin{aligned}\beta(Z(n)) &= 4(n-1), \\ \beta(S(n)) &= 4(n-1) + 1, \\ \beta(T(m, n)) &= 4\pi(m-1, n-1) + 2, \\ \beta(J(m, n, q)) &= 4\zeta(m, n, q) + 3.\end{aligned}$$

The converse β^{-1} is easy.

Encoding Program

Theorem. \mathcal{P} is effectively denumerable.

Proof. The bijection $\gamma : \mathcal{P} \rightarrow \mathbb{N}$ is defined as follows:

$$\gamma(P) = \tau(\beta(I_1), \dots, \beta(I_s)),$$

assuming $P = I_1, \dots, I_s$.

The converse γ^{-1} is obvious.

Gödel Number of Program

The value $\gamma(P)$ is called the **Gödel number** of P .

Gödel Number of Program

The value $\gamma(P)$ is called the **Gödel number** of P .

P_n = the programme with Gödel index n
= $\gamma^{-1}(n)$

Gödel Number of Program

The value $\gamma(P)$ is called the **Gödel number** of P .

$$\begin{aligned}P_n &= \text{the programme with Gödel index } n \\&= \gamma^{-1}(n)\end{aligned}$$

We shall fix this particular encoding function γ throughout.

Example

Let P be the program $T(1, 3), S(4), Z(6)$.

Example

Let P be the program $T(1, 3), S(4), Z(6)$.

$$\beta(T(1, 3)) = 18$$

$$\beta(S(4)) = 13$$

$$\beta(Z(6)) = 20$$

Example

Let P be the program $T(1, 3), S(4), Z(6)$.

$$\beta(T(1, 3)) = 18$$

$$\beta(S(4)) = 13$$

$$\beta(Z(6)) = 20$$

$$\gamma(P) = 2^{18} + 2^{32} + 2^{53} - 1$$

Example

Consider P_{4127} .

Example

Consider P_{4127} .

$$4127 = 2^5 + 2^{12} - 1.$$

Example

Consider P_{4127} .

$$4127 = 2^5 + 2^{12} - 1.$$

$$\beta(I_1) = 4 + 1$$

$$\beta(I_2) = 4\pi(1, 0) + 2$$

Example

Consider P_{4127} .

$$4127 = 2^5 + 2^{12} - 1.$$

$$\beta(I_1) = 4 + 1$$

$$\beta(I_2) = 4\pi(1, 0) + 2$$

So P_{4127} is $S(2); T(2, 1)$.

URM is Recursive

Kleene's Proof

Kleene demonstrated how to prove that machine computable functions are recursive functions.

Proof in Detail

The states of the computation of the program $P_e(\tilde{x})$ can be described by a **configuration** and an **instruction number**.

Proof in Detail

The states of the computation of the program $P_e(\tilde{x})$ can be described by a **configuration** and an **instruction number**.

A **state** can be coded up by the number

$$\sigma = \pi(c, j),$$

where c is the configuration that codes up the current values in the registers

$$c = 2^{r_1} 3^{r_2} \dots = \prod_{i \geq 1} p_i^{r_i},$$

and j is the next instruction number.

Proof in Detail

To describe the changes of the states of $P_e(\tilde{x})$, we introduce three $(n + 2)$ -ary functions:

$c_n(e, \tilde{x}, t) =$ the configuration after t steps of $P_e(\tilde{x})$,

$j_n(e, \tilde{x}, t) =$ the number of the next instruction after t steps
of $P_e(\tilde{x})$ (it is 0 if $P_e(\tilde{x})$ stops in t or less steps),

$\sigma_n(e, \tilde{x}, t) = \pi(c_n(e, \tilde{x}, t), j_n(e, \tilde{x}, t))$.

Proof in Detail

To describe the changes of the states of $P_e(\tilde{x})$, we introduce three $(n + 2)$ -ary functions:

$c_n(e, \tilde{x}, t) =$ the configuration after t steps of $P_e(\tilde{x})$,

$j_n(e, \tilde{x}, t) =$ the number of the next instruction after t steps
of $P_e(\tilde{x})$ (it is 0 if $P_e(\tilde{x})$ stops in t or less steps),

$\sigma_n(e, \tilde{x}, t) = \pi(c_n(e, \tilde{x}, t), j_n(e, \tilde{x}, t)).$

If σ_n is primitive recursive, then c_n, j_n are primitive recursive!

Proof in Detail

If the computation of $P_e(\tilde{x})$ stops, it does so in

$$\mu t(j_n(e, \tilde{x}, t) = 0)$$

steps.

Proof in Detail

If the computation of $P_e(\tilde{x})$ stops, it does so in

$$\mu t(j_n(e, \tilde{x}, t) = 0)$$

steps.

Then the final configuration is

$$c_n(e, \tilde{x}, \mu t(j_n(e, \tilde{x}, t) = 0)).$$

Proof in Detail

If the computation of $P_e(\tilde{x})$ stops, it does so in

$$\mu t(j_n(e, \tilde{x}, t) = 0)$$

steps.

Then the final configuration is

$$c_n(e, \tilde{x}, \mu t(j_n(e, \tilde{x}, t) = 0)).$$

We conclude that the value of the computation $P_e(\tilde{x})$ is

$$(c_n(e, \tilde{x}, \mu t(j_n(e, \tilde{x}, t) = 0)))_1.$$

Proof in Detail

The function σ_n can be defined as follows:

$$\begin{aligned}\sigma_n(e, \tilde{x}, 0) &= \pi(2^{x_1} 3^{x_2} \dots p_n^{x_n}, 1), \\ \sigma_n(e, \tilde{x}, t + 1) &= \pi(\text{config}(e, \sigma_n(e, \tilde{x}, t)), \text{next}(e, \sigma_n(e, \tilde{x}, t))),\end{aligned}$$

where $\text{config}(e, \pi(c, j))$ is the new configuration, and $\text{next}(e, \pi(c, j))$ is the number of the next instruction, after the j -th instruction has been executed upon c .

Proof in Detail

$\text{ln}(e)$ = the number of instructions in P_e ;

$\text{gn}(e, j)$ = $\begin{cases} \text{the code of } I_j \text{ in } P_e, & \text{if } 1 \leq j \leq \text{ln}(e), \\ 0, & \text{otherwise.} \end{cases}$

$\text{ch}(c, z)$ = the resulting configuration when the configuration c is operated on by the instruction with code number z .

$\text{v}(c, j, z)$ = $\begin{cases} \text{the number } j' \text{ of the next instruction} \\ \text{when the configuration } c \text{ is operated} & \text{if } j > 0, \\ \text{on by the } j\text{th instruction with code } z, \\ 0, & \text{if } j = 0. \end{cases}$

Proof in Detail

Proof in Detail

$$\text{config}(e, \sigma) = \begin{cases} \text{ch}(\pi_1(\sigma), \text{gn}(e, \pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \text{ln}(e), \\ \pi_1(\sigma), & \text{otherwise.} \end{cases}$$

Proof in Detail

$$\text{config}(e, \sigma) = \begin{cases} \text{ch}(\pi_1(\sigma), \text{gn}(e, \pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \text{ln}(e), \\ \pi_1(\sigma), & \text{otherwise.} \end{cases}$$

$$\text{next}(e, \sigma) = \begin{cases} \text{v}(\pi_1(\sigma), \pi_2(\sigma), \text{gn}(e, \pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \text{ln}(e), \\ 0, & \text{otherwise.} \end{cases}$$

Proof in Detail (ln , gn)

$\text{ln}(e)$ = the number of instructions in P_e ;

$\text{gn}(e, j)$ = $\begin{cases} \text{the code of } I_j \text{ in } P_e, & \text{if } 1 \leq j \leq \text{ln}(e), \\ 0, & \text{otherwise.} \end{cases}$

Both functions are primitive recursive since

$$\begin{aligned}\text{ln}(e) &= \ell(e + 1), \\ \text{gn}(e, j) &= \text{a}(j, e + 1).\end{aligned}$$

Proof in Detail (ch)

The following function

$\text{ch}(c, z) =$ the resulting configuration when the configuration c is operated on by the instruction with code number z .

is primitive recursive if

$$\text{ch}(c, z) = \begin{cases} \text{zero}(c, u(z)), & \text{if } \text{rm}(4, z) = 0, \\ \text{succ}(c, u(z)), & \text{if } \text{rm}(4, z) = 1, \\ \text{tran}(c, u_1(z), u_2(z)), & \text{if } \text{rm}(4, z) = 2, \\ c, & \text{if } \text{rm}(4, z) = 3. \end{cases}$$

Proof in Detail (ch)

$u(z) = m$ whenever $z = \beta(Z(m))$ or $z = \beta(S(m))$:

$$u(z) = qt(4, z) + 1.$$

Proof in Detail (ch)

$u(z) = m$ whenever $z = \beta(Z(m))$ or $z = \beta(S(m))$:

$$u(z) = qt(4, z) + 1.$$

$u_1(z) = m_1$ and $u_2(z) = m_2$ whenever $z = \beta(T(m_1, m_2))$:

$$\begin{aligned} u_1(z) &= \pi_1(qt(4, z)) + 1, \\ u_2(z) &= \pi_2(qt(4, z)) + 1. \end{aligned}$$

Proof in Detail (ch)

The change in the configuration c effected by instruction $Z(m)$:

$$\text{zero}(c, m) = \text{qt}(p_m^{(c)_m}, c).$$

Proof in Detail (ch)

The change in the configuration c effected by instruction $Z(m)$:

$$\text{zero}(c, m) = \text{qt}(p_m^{(c)_m}, c).$$

The change in the configuration c effected by instruction $S(m)$:

$$\text{succ}(c, m) = p_m c.$$

Proof in Detail (ch)

The change in the configuration c effected by instruction $Z(m)$:

$$\text{zero}(c, m) = \text{qt}(p_m^{(c)_m}, c).$$

The change in the configuration c effected by instruction $S(m)$:

$$\text{succ}(c, m) = p_m c.$$

The change in the configuration c effected by instruction $T(m, n)$:

$$\text{tran}(c, m, n) = \text{qt}(p_n^{(c)_n}, p_n^{(c)_m} c).$$

Proof in Detail (v)

The following function

$$v(c, j, z) = \begin{cases} \text{the number } j' \text{ of the next instruction} & \text{if } j > 0, \\ \text{when the configuration } c \text{ is operated} \\ \text{on by the } j\text{th instruction with code } z, \\ 0, & \text{if } j = 0. \end{cases}$$

is primitive recursive if

$$v(c, j, z) = \begin{cases} j + 1, & \text{if } \text{rm}(4, z) \neq 3, \\ j + 1, & \text{if } \text{rm}(4, z) = 3 \wedge (c)_{v_1(z)} \neq (c)_{v_2(z)}, \\ v_3(z), & \text{if } \text{rm}(4, z) = 3 \wedge (c)_{v_1(z)} = (c)_{v_2(z)}. \end{cases}$$

Proof in Detail (V)

$v_1(z) = m_1$ and $v_2(z) = m_2$ and $v_3(z) = q$ if $z = \beta(J(m_1, m_2, q))$:

$$v_1(z) = \pi_1(\pi_1(qt(4, z))) + 1,$$

$$v_2(z) = \pi_2(\pi_1(qt(4, z))) + 1,$$

$$v_3(z) = \pi_2(qt(4, z)) + 1.$$

Proof in Detail

We can now define the function `config(,)` by

$$\text{config}(e, \sigma) = \begin{cases} \text{ch}(\pi_1(\sigma), \text{gn}(e, \pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \ln(e), \\ \pi_1(\sigma), & \text{otherwise.} \end{cases}$$

and the function `next(,)` by

$$\text{next}(e, \sigma) = \begin{cases} \text{v}(\pi_1(\sigma), \pi_2(\sigma), \text{gn}(e, \pi_2(\sigma))), & \text{if } 1 \leq \pi_2(\sigma) \leq \ln(e), \\ 0, & \text{otherwise.} \end{cases}$$

Proof in Detail

We conclude that the functions c_n, j_n, σ_n are primitive recursive.