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Problem Index




Motivation

By Church-Turing Thesis one may study computability theory using
any of the computation models.

It is much more instructive however to carry out the study in a model
independent manner.

The first step is to assign index to computable function.
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7 is effectively denumerable.
P is effectively denumerable.

7<P) = 7(5(11)5 cee aﬁ(ls))

The value v(P) is called the Godel number of P.



Synopsis

©® Gobdel Index

® S-m-n Theorem



Godel Index




Basic Idea

We see a number as an index for a problem/function if it is the Godel
number of a programme that solves/calculates the problem/function.



Definition

Suppose a € Nandn > 1.

¢§1") = the n ary function computed by P,

=
Wa(") = the domain of ¢§”) — {01 o000 20 s .
Eén) = the range of (;5‘(1").

The super script (n) is omitted when n = 1.

7x11) \L}v
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Example
Leta = 4127. Then P4127 = S(Z), T(Z, 1)

If the program is seen to calculate a unary function, then

oaizy(x). =" 1,
Waz7 = N,
Eqy = {1}.

If the program is seen to calculate an n-ary function, then

¢£’;)27(x1,...,x,,) = x+1,
Wiy = N
Ejy; = N



Godel Index for Computable
Function

Suppose f is an n-ary computable function..

A number a is an index for f if f = (;5&").



Padding Lemma

Padding Lemma
Every computable function has infinite indices. Moreover for each x
we can effectively find an infinite recursive set A, of indices for ¢.



Padding Lemma

Padding Lemma
Every computable function has infinite indices. Moreover for each x
we can effectively find an infinite recursive set A, of indices for ¢.

Proof
Systematically add useless instructions to Px.



Enumeration of Computable
Function

Proposition
C,, and C as well, is denumerable.



Enumeration of Computable
Function

Proposition
C,, and C as well, is denumerable.

We may list for example all the elements of C, as d)é"), g{)s"), (n)

5 Ty



Diagonal Method

Fact
There is a total unary function that is not computable.



Diagonal Method

Fact
There is a total unary function that is not computable.

Proof
Suppose ¢g, @1, ¢2, - . . is an enumeration of C. Define

() {¢,,(n)+1, if ¢,(n) is defined,

0, if ¢,(n) is undefined.

By Church-Turing Thesis the function f (n) is not computable.



Diagonal Method

Fact
There is a total unary function that is not computable.

Proof
Suppose ¢g, @1, ¢2, - . . is an enumeration of C. Define

() {¢,,(n)+1, if ¢,(n) is defined,

0, if ¢,(n) is undefined.

By Church-Turing Thesis the function f (n) is not computable.

Is the following function computable?

5 on(n) + 1, if ¢,(n) is defined,
A { 1, if ¢, (n) is undefined.



Diagonal Method

Suppose there is a sequence fy, f1,- - -, fu, - - -

Diagonalize out of fy, f1, . . . by making f differ from f;, at n.



S-m-n Theorem




Motivation

How do different indexing systems relate?



S-m-n Theorem, the Unary Case

Given a binary function f(x,y), we get a unary computable function
f(a,y) by fixing a value a for x.
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S-m-n Theorem, the Unary Case

Given a binary function f(x,y), we get a unary computable function
f(a,y) by fixing a value a for x.

Let e be an index for f(a,y). Then

f(a,y) = ¢e(y)

S-m-n Theorem states that the index e can be computed from a.



S-m-n Theorem, the Unary Case

Fact
Suppose that f(x, y) is a computable function. There is a primitive
recursive function k(x) such that

F(x,y) = e ()



S-m-n Theorem, the Unary Case

Proof



S-m-n Theorem, the Unary Case

Proof
Let F be a program that computes f. Consider the following program

I(1,
Z(1)
1)

S(
: a times
S(1)

F

2)



S-m-n Theorem, the Unary Case

Proof
Let F be a program that computes f. Consider the following program

I(1,
Z(1)
(1)

2)

: a times
S(1)
F

The above program can be effectively constructed from a.



S-m-n Theorem, the Unary Case

Proof
Let F be a program that computes f. Consider the following program

I(1,
Z(1)
(1)

2)

: a times
S(1)
F

The above program can be effectively constructed from a.

Let k(a) be the Godel number of the above program. It can be
effectively computed from the above program.
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Examples

Letf(x,y) = y*.

Then ¢y (x)(y) = y*. For each fixed n, k(n) is an index for y".
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Examples

Letf(xay) =y

Then ¢y (x)(y) = y*. For each fixed n, k(n) is an index for y".

_ J y, if yisamultiple of x,
)= { 1, otherwise. i

Then ¢y, (v) is defined if and only if y is a multiple of n.



S-m-n Theorem

S-m-n Theorem

For m, n, there is an injective primitive recursive (m + 1)-function
si*(x,x) such that for all e the following holds:

S )



S-m-n Theorem

S-m-n Theorem

For m, n, there is an injective primitive recursive (m + 1)-function
si*(x,x) such that for all e the following holds:

S )

S-m-n Theorem is also called Parameter Theorem.



S-m-n Theorem

Proof
Given e, xy, . . ., X, we can effectively construct the following
program and its index

T(n,m+n)

T(l,m+1)

Q( 1 » X1 )

O(m, xm)

P,

where Q(i, x) is the program Z(i), S(i), . . ., S(i).
—_—

X times



S-m-n Theorem

Proof
Given e, xy, . . ., X, we can effectively construct the following
program and its index

T(n,m+n)

T(l,m+1)

Q( 1 » X1 )

O(m, xm)

P,

where Q(i, x) is the program Z(i), S(i), . . ., S(i).
—_———

X times

The injectivity is achieved by padding enough useless instructions.



Exercise 1

Show that there is a total computable function k such that for each n,
k(n) is an index of the function [/x].



Exercise 11

Show that there is a total computable function &k such that for each n,
Wi(n) = the set of perfect nth power.



Exercise 111

Show that there is a total computable function k such that

W& = {1, ym) y1+ 32+ +ym =1}

suppose m > 1.
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