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Problem Index



Motivation

By Church-Turing Thesis one may study computability theory using
any of the computation models.

It is much more instructive however to carry out the study in a model
independent manner.

The first step is to assign index to computable function.



Review Tips



Effective Denumerable Set

N× N

N+ × N+ × N+

⋃
k>0 Nk

I is effectively denumerable.

P is effectively denumerable.

γ(P) = τ(β(I1), . . . , β(Is))

The value γ(P) is called the Gödel number of P.
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Gödel Index



Basic Idea

We see a number as an index for a problem/function if it is the Gödel
number of a programme that solves/calculates the problem/function.



Definition

Suppose a ∈ N and n ≥ 1.

φ
(n)
a = the n ary function computed by Pa

= f (n)Pa
,

W (n)
a = the domain of φ(n)a = {(x1, . . . , xn) | Pa(x1, . . . , xn) ↓},

E(n)
a = the range of φ(n)a .

The super script (n) is omitted when n = 1.



Example
Let a = 4127. Then P4127 = S(2);T(2, 1).

If the program is seen to calculate a unary function, then

φ4127(x) = 1,

W4127 = N,
E4127 = {1}.

If the program is seen to calculate an n-ary function, then

φ
(n)
4127(x1, . . . , xn) = x2 + 1,

Wn
4127 = Nn,

En
4127 = N+.
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Gödel Index for Computable
Function

Suppose f is an n-ary computable function..

A number a is an index for f if f = φ
(n)
a .



Padding Lemma

Padding Lemma
Every computable function has infinite indices. Moreover for each x
we can effectively find an infinite recursive set Ax of indices for φx.

Proof
Systematically add useless instructions to Px.
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Enumeration of Computable
Function

Proposition
Cn, and C as well, is denumerable.

We may list for example all the elements of Cn as φ(n)0 , φ
(n)
1 , φ

(n)
2 , . . ..
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Diagonal Method
Fact

There is a total unary function that is not computable.

Proof
Suppose φ0, φ1, φ2, . . . is an enumeration of C. Define

f (n) =

{
φn(n) + 1, if φn(n) is defined,
0, if φn(n) is undefined.

By Church-Turing Thesis the function f (n) is not computable.

Is the following function computable?

f (n) '
{
φn(n) + 1, if φn(n) is defined,
↑, if φn(n) is undefined.
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Diagonal Method

Suppose there is a sequence f0, f1, . . . , fn, . . .

Diagonalize out of f0, f1, . . . by making f differ from fn at n.



S-m-n Theorem



Motivation

How do different indexing systems relate?



S-m-n Theorem, the Unary Case

Given a binary function f (x, y), we get a unary computable function
f (a, y) by fixing a value a for x.

Let e be an index for f (a, y). Then

f (a, y) ' φe(y)

S-m-n Theorem states that the index e can be computed from a.
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S-m-n Theorem, the Unary Case

Fact
Suppose that f (x, y) is a computable function. There is a primitive
recursive function k(x) such that

f (x, y) ' φk(x)(y).



S-m-n Theorem, the Unary Case

Proof

Let F be a program that computes f . Consider the following program

T(1, 2)
Z(1)
S(1)

...
S(1)

 a times

F

The above program can be effectively constructed from a.

Let k(a) be the Gödel number of the above program. It can be
effectively computed from the above program.
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Examples

Let f (x, y) = yx.

Then φk(x)(y) = yx. For each fixed n, k(n) is an index for yn.

Let f (x, y) '
{

y, if y is a multiple of x,
↑, otherwise.

.

Then φk(n)(y) is defined if and only if y is a multiple of n.
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S-m-n Theorem

S-m-n Theorem

For m, n, there is an injective primitive recursive (m + 1)-function
sm

n (x, x̃) such that for all e the following holds:

φ
(m+n)
e (x̃, ỹ) ' φ(n)sm

n (e,̃x)
(ỹ)

S-m-n Theorem is also called Parameter Theorem.
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S-m-n Theorem
Proof
Given e, x1, . . . , xm, we can effectively construct the following
program and its index

T(n,m + n)
...
T(1,m + 1)
Q(1, x1)
...
Q(m, xm)
Pe

where Q(i, x) is the program Z(i), S(i), . . . , S(i)︸ ︷︷ ︸
x times

.

The injectivity is achieved by padding enough useless instructions.
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Exercise I

Show that there is a total computable function k such that for each n,
k(n) is an index of the function d n

√
xe.



Exercise II

Show that there is a total computable function k such that for each n,
Wk(n) = the set of perfect nth power.



Exercise III

Show that there is a total computable function k such that

W (m)
k(n) = {(y1, . . . , ym) : y1 + y2 + . . .+ ym = n}

suppose m ≥ 1.
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