

Computability Theory VII

S-M-N Theorem

Guoqiang Li

Shanghai Jiao Tong University

Nov. 14, 2014

Problem Index

Motivation

By Church-Turing Thesis one may study computability theory using any of the computation models.

It is much more instructive however to carry out the study in a model independent manner.

The first step is to assign index to computable function.

Review Tips

Effective Denumerable Set

$\mathbb{N} \times \mathbb{N}$

$\mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+$

$\bigcup_{k>0} \mathbb{N}^k$

Effective Denumerable Set

$$\mathbb{N} \times \mathbb{N}$$

$$\mathbb{N}^+ \times \mathbb{N}^+ \times \mathbb{N}^+$$

$$\bigcup_{k>0} \mathbb{N}^k$$

\mathcal{I} is effectively denumerable.

\mathcal{P} is effectively denumerable.

$$\gamma(P) = \tau(\beta(I_1), \dots, \beta(I_s))$$

The value $\gamma(P)$ is called the **Gödel number** of P .

Synopsis

- ① Gödel Index
- ② S-m-n Theorem

Gödel Index

Basic Idea

We see a number as an index for a problem/function if it is the Gödel number of a programme that solves/calculates the problem/function.

Definition

Suppose $a \in \mathbb{N}$ and $n \geq 1$.

$\phi_a^{(n)}$ = the n ary function computed by P_a

= $f_{P_a}^{(n)}$,

$W_a^{(n)}$ = the domain of $\phi_a^{(n)} = \{(x_1, \dots, x_n) \mid P_a(x_1, \dots, x_n) \downarrow\}$,

$E_a^{(n)}$ = the range of $\phi_a^{(n)}$.

The super script (n) is omitted when $n = 1$.

Example

Let $a = 4127$. Then $P_{4127} = S(2); T(2, 1)$.

Example

Let $a = 4127$. Then $P_{4127} = S(2); T(2, 1)$.

If the program is seen to calculate a unary function, then

$$\phi_{4127}(x) = 1,$$

$$W_{4127} = \mathbb{N},$$

$$E_{4127} = \{1\}.$$

Example

Let $a = 4127$. Then $P_{4127} = S(2); T(2, 1)$.

If the program is seen to calculate a unary function, then

$$\phi_{4127}(x) = 1,$$

$$W_{4127} = \mathbb{N},$$

$$E_{4127} = \{1\}.$$

If the program is seen to calculate an n -ary function, then

$$\phi_{4127}^{(n)}(x_1, \dots, x_n) = x_2 + 1,$$

$$W_{4127}^n = \mathbb{N}^n,$$

$$E_{4127}^n = \mathbb{N}^+.$$

Gödel Index for Computable Function

Suppose f is an n -ary computable function..

A number a is an **index** for f if $f = \phi_a^{(n)}$.

Padding Lemma

Padding Lemma

Every computable function has infinite indices. Moreover for each x we can effectively find an infinite recursive set A_x of indices for ϕ_x .

Padding Lemma

Padding Lemma

Every computable function has infinite indices. Moreover for each x we can effectively find an infinite recursive set A_x of indices for ϕ_x .

Proof

Systematically add useless instructions to P_x .

Enumeration of Computable Function

Proposition

\mathcal{C}_n , and \mathcal{C} as well, is denumerable.

Enumeration of Computable Function

Proposition

\mathcal{C}_n , and \mathcal{C} as well, is denumerable.

We may list for example all the elements of \mathcal{C}_n as $\phi_0^{(n)}, \phi_1^{(n)}, \phi_2^{(n)}, \dots$

Diagonal Method

Fact

There is a total unary function that is not computable.

Diagonal Method

Fact

There is a total unary function that is not computable.

Proof

Suppose $\phi_0, \phi_1, \phi_2, \dots$ is an enumeration of \mathcal{C} . Define

$$f(n) = \begin{cases} \phi_n(n) + 1, & \text{if } \phi_n(n) \text{ is defined,} \\ 0, & \text{if } \phi_n(n) \text{ is undefined.} \end{cases}$$

By Church-Turing Thesis the function $f(n)$ is not computable.

Diagonal Method

Fact

There is a total unary function that is not computable.

Proof

Suppose $\phi_0, \phi_1, \phi_2, \dots$ is an enumeration of \mathcal{C} . Define

$$f(n) = \begin{cases} \phi_n(n) + 1, & \text{if } \phi_n(n) \text{ is defined,} \\ 0, & \text{if } \phi_n(n) \text{ is undefined.} \end{cases}$$

By Church-Turing Thesis the function $f(n)$ is not computable.

Is the following function computable?

$$f(n) \simeq \begin{cases} \phi_n(n) + 1, & \text{if } \phi_n(n) \text{ is defined,} \\ \uparrow, & \text{if } \phi_n(n) \text{ is undefined.} \end{cases}$$

Diagonal Method

Suppose there is a sequence $f_0, f_1, \dots, f_n, \dots$

Diagonalize out of f_0, f_1, \dots by making f differ from f_n at n .

S-m-n Theorem

Motivation

How do different indexing systems relate?

S-m-n Theorem, the Unary Case

Given a binary function $f(x, y)$, we get a unary computable function $f(a, y)$ by fixing a value a for x .

S-m-n Theorem, the Unary Case

Given a binary function $f(x, y)$, we get a unary computable function $f(a, y)$ by fixing a value a for x .

Let e be an index for $f(a, y)$. Then

$$f(a, y) \simeq \phi_e(y)$$

S-m-n Theorem, the Unary Case

Given a binary function $f(x, y)$, we get a unary computable function $f(a, y)$ by fixing a value a for x .

Let e be an index for $f(a, y)$. Then

$$f(a, y) \simeq \phi_e(y)$$

S-m-n Theorem states that the index e can be computed from a .

S-m-n Theorem, the Unary Case

Fact

Suppose that $f(x, y)$ is a computable function. There is a primitive recursive function $k(x)$ such that

$$f(x, y) \simeq \phi_{k(x)}(y).$$

S-m-n Theorem, the Unary Case

Proof

S-m-n Theorem, the Unary Case

Proof

Let F be a program that computes f . Consider the following program

$$\begin{array}{c} T(1, 2) \\ Z(1) \\ S(1) \\ \vdots \\ S(1) \\ F \end{array} \quad \left. \begin{array}{c} \\ \\ \end{array} \right\} a \text{ times}$$

S-m-n Theorem, the Unary Case

Proof

Let F be a program that computes f . Consider the following program

$$\begin{array}{c} T(1, 2) \\ Z(1) \\ S(1) \\ \vdots \\ S(1) \\ F \end{array} \quad \left. \begin{array}{c} \\ \\ \end{array} \right\} a \text{ times}$$

The above program can be effectively constructed from a .

S-m-n Theorem, the Unary Case

Proof

Let F be a program that computes f . Consider the following program

$$\begin{array}{c} T(1, 2) \\ Z(1) \\ S(1) \\ \vdots \\ S(1) \\ F \end{array} \quad \left. \begin{array}{c} \\ \\ \end{array} \right\} a \text{ times}$$

The above program can be effectively constructed from a .

Let $k(a)$ be the **Gödel number** of the above program. It can be effectively computed from the above program.

Examples

Let $f(x, y) = y^x$.

Examples

Let $f(x, y) = y^x$.

Then $\phi_{k(x)}(y) = y^x$. For each fixed n , $k(n)$ is an index for y^n .

Examples

Let $f(x, y) = y^x$.

Then $\phi_{k(x)}(y) = y^x$. For each fixed n , $k(n)$ is an index for y^n .

Let $f(x, y) \simeq \begin{cases} y, & \text{if } y \text{ is a multiple of } x, \\ \uparrow, & \text{otherwise.} \end{cases}$

Examples

Let $f(x, y) = y^x$.

Then $\phi_{k(x)}(y) = y^x$. For each fixed n , $k(n)$ is an index for y^n .

Let $f(x, y) \simeq \begin{cases} y, & \text{if } y \text{ is a multiple of } x, \\ \uparrow, & \text{otherwise.} \end{cases}$

Then $\phi_{k(n)}(y)$ is defined if and only if y is a multiple of n .

S-m-n Theorem

S-m-n Theorem

For m, n , there is an injective primitive recursive $(m + 1)$ -function $s_n^m(x, \tilde{x})$ such that for all e the following holds:

$$\phi_e^{(m+n)}(\tilde{x}, \tilde{y}) \simeq \phi_{s_n^m(e, \tilde{x})}^{(n)}(\tilde{y})$$

S-m-n Theorem

S-m-n Theorem

For m, n , there is an injective primitive recursive $(m + 1)$ -function $s_n^m(x, \tilde{x})$ such that for all e the following holds:

$$\phi_e^{(m+n)}(\tilde{x}, \tilde{y}) \simeq \phi_{s_n^m(e, \tilde{x})}^{(n)}(\tilde{y})$$

S-m-n Theorem is also called **Parameter Theorem**.

S-m-n Theorem

Proof

Given e, x_1, \dots, x_m , we can effectively construct the following program and its index

$$T(n, m + n)$$
$$\vdots$$
$$T(1, m + 1)$$
$$Q(1, x_1)$$
$$\vdots$$
$$Q(m, x_m)$$
$$P_e$$

where $Q(i, x)$ is the program $Z(i), \underbrace{S(i), \dots, S(i)}_{x \text{ times}}$.

S-m-n Theorem

Proof

Given e, x_1, \dots, x_m , we can effectively construct the following program and its index

$$T(n, m + n)$$
$$\vdots$$
$$T(1, m + 1)$$
$$Q(1, x_1)$$
$$\vdots$$
$$Q(m, x_m)$$
$$P_e$$

where $Q(i, x)$ is the program $Z(i), \underbrace{S(i), \dots, S(i)}_{x \text{ times}}$.

The **injectivity** is achieved by padding enough useless instructions.

Exercise I

Show that there is a total computable function k such that for each n , $k(n)$ is an index of the function $\lceil \sqrt[n]{x} \rceil$.

Exercise II

Show that there is a total computable function k such that for each n ,
 $W_k(n) = \text{the set of perfect } n\text{th power.}$

Exercise III

Show that there is a total computable function k such that

$$W_{k(n)}^{(m)} = \{(y_1, \dots, y_m) : y_1 + y_2 + \dots + y_m = n\}$$

suppose $m \geq 1$.