
Mathematical Foundation of Computer Sciences II
Context-Free Languages and Pushdown Automata

Guoqiang Li
School of Software

1/52

A Program Example

void m() { void s() {
if (?) { if (?) return;

s(); right(); up(); m(); down();

if (?) m(); }
} else {

up(); m(); down(); main() {
} s();

} }

Figure 2.1: An example program.

As an example, consider the program in Figure 2.1. The program, pre-
sented in C-like pseudo-code, controls a plotter, creating random bar graphs
via the commands up, right, and down. Figure 2.2 displays the set of flow
graphs created from the program. (We represent up, right, and down by flow
graphs with just a return action. Note that the behaviour of this example
could not be modelled by a finite state system since there is no bound on the
depth of the recursion.

In the second step, we apply a straightforward transformation to obtain
a pushdown system. Let N be the union of the node sets of all flow graphs
(assuming that the node sets of different procedures are disjoint). Then we
construct a pushdown system ({ · }, N,∆, 〈 · ,main0〉) with a single control
location. The stack alphabet consists of the flow graph nodes where main0

should be the start node of the procedure main. The rewrite rules are as
follows:

• 〈 · , n〉 ↪→ 〈 · , n′〉 if control passes from n to n′ without a procedure call
(for instance, through an assignment).

• 〈 · , n〉 ↪→ 〈 · , f0n′〉 if an edge between points n and n′ contains a call to
procedure f , assuming that f0 is f ’s entry point; n′ can be seen as the
return address of that call.

• 〈 · , n〉 ↪→ 〈 · , ε〉 if an edge leaving n contains a return statement.

Thus, a configuration 〈 · , nw〉 represents the fact that execution is cur-
rently at node n whereas w represents the return addresses of the calling pro-
cedures. Figure 2.3 shows the rewrite rules derived from the example. Notice
that the resulting pushdown system does not have any notion of procedures;

13

2/52

A Program Example
Pushdown Automata — PDA

stack

memory
z2

z1

zk

Finite

Control

input taperead
head

a0 a1 a2 ... an. . . .

State

COMP 2600 — Pushdown Automata 2

3/52

Context Free Languages

4/52

An Example

The grammar

A → 0A1

A → B

B → #

A derivation:

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000#111.

5/52

An Example

The grammar

A → 0A1

A → B

B → #

A derivation:

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000#111.

5/52

An Example

⟨SENTENCE⟩ → ⟨NOUN-PHRASE⟩⟨VERB-PHRASE⟩
⟨NOUN-PHRASE⟩ → ⟨CMPLX-NOUN⟩ | ⟨CMPLX-NOUN⟩⟨PREP-PHRASE⟩
⟨VERB-PHRASE⟩ → ⟨CMPLX-VERB⟩ | ⟨CMPLX-VERB⟩⟨PREP-PHRASE⟩
⟨PREP-PHRASE⟩ → ⟨PREP⟩⟨CMPLX-NOUN⟩
⟨CMPLX-NOUN⟩ → ⟨ARTICLE⟩⟨NOUN⟩
⟨CMPLX-VERB⟩ → ⟨VERB⟩ | ⟨VERB⟩⟨NOUN-PHRASE⟩

⟨ARTICLE⟩ → a | the
⟨NOUN⟩ → boy | girl | flower
⟨VERB⟩ → touches | likes | sees
⟨prep⟩ → with

6/52

An Example

⟨SENTENCE⟩ ⇒ ⟨NOUN-PHRASE⟩⟨VERB-PHRASE⟩
⇒ ⟨CMPLX-NOUN⟩⟨VERB-PHRASE⟩
⇒ ⟨ARTICLE⟩⟨NOUN⟩⟨VERB-PHRASE⟩
⇒ a ⟨NOUN⟩⟨VERB-PHRASE⟩
⇒ a boy⟨VERB-PHRASE⟩
⇒ a boy⟨CMPLX-VERB⟩
⇒ a boy⟨VERB⟩
⇒ a boy sees.

7/52

Context-Free Grammar

Definition

A context-free grammar (CFG) is a 4-tuple (V,Σ, R, S), where

1 V is a finite set called the variables,

2 Σ is a finite set, disjoint from V , called the terminals,

3 R is a finite set of rules, with each rule being a variable and a string of variables and terminals,

4 S ∈ V is the start variable.

8/52

Derivations

Let u, v, w be strings of variables and terminals, and

A → w ∈ R

Then uAv yields uwv: uAv ⇒ uwv.

u derives v, written u
∗⇒ v, if

• u = v, or
• there is a sequence u1, u2, . . . , uk for k ≥ 0 and

u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ | S ⋆⇒ w}.

which is a context-free language(CFL).

9/52

Derivations

Let u, v, w be strings of variables and terminals, and

A → w ∈ R

Then uAv yields uwv: uAv ⇒ uwv.

u derives v, written u
∗⇒ v, if

• u = v, or
• there is a sequence u1, u2, . . . , uk for k ≥ 0 and

u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ | S ⋆⇒ w}.

which is a context-free language(CFL).

9/52

Derivations

Let u, v, w be strings of variables and terminals, and

A → w ∈ R

Then uAv yields uwv: uAv ⇒ uwv.

u derives v, written u
∗⇒ v, if

• u = v, or

• there is a sequence u1, u2, . . . , uk for k ≥ 0 and

u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ | S ⋆⇒ w}.

which is a context-free language(CFL).

9/52

Derivations

Let u, v, w be strings of variables and terminals, and

A → w ∈ R

Then uAv yields uwv: uAv ⇒ uwv.

u derives v, written u
∗⇒ v, if

• u = v, or
• there is a sequence u1, u2, . . . , uk for k ≥ 0 and

u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ | S ⋆⇒ w}.

which is a context-free language(CFL).

9/52

Derivations

Let u, v, w be strings of variables and terminals, and

A → w ∈ R

Then uAv yields uwv: uAv ⇒ uwv.

u derives v, written u
∗⇒ v, if

• u = v, or
• there is a sequence u1, u2, . . . , uk for k ≥ 0 and

u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ | S ⋆⇒ w}.

which is a context-free language(CFL).

9/52

Derivations

Let u, v, w be strings of variables and terminals, and

A → w ∈ R

Then uAv yields uwv: uAv ⇒ uwv.

u derives v, written u
∗⇒ v, if

• u = v, or
• there is a sequence u1, u2, . . . , uk for k ≥ 0 and

u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ | S ⋆⇒ w}.

which is a context-free language(CFL).

9/52

Examples

1 Language {0n1n | n ≥ 0}, grammar

S1 → 0S11 | ϵ.

2 Language {1n0n | n ≥ 0}, grammar
S2 → 1S20 | ϵ.

3 Language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}, grammar

S → S1 | S2

S1 → 0S11 | ϵ
S2 → 1S20 | ϵ.

10/52

Examples

1 Language {0n1n | n ≥ 0}, grammar
S1 → 0S11 | ϵ.

2 Language {1n0n | n ≥ 0}, grammar

S2 → 1S20 | ϵ.

3 Language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}, grammar

S → S1 | S2

S1 → 0S11 | ϵ
S2 → 1S20 | ϵ.

10/52

Examples

1 Language {0n1n | n ≥ 0}, grammar
S1 → 0S11 | ϵ.

2 Language {1n0n | n ≥ 0}, grammar
S2 → 1S20 | ϵ.

3 Language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}, grammar

S → S1 | S2

S1 → 0S11 | ϵ
S2 → 1S20 | ϵ.

10/52

Examples

1 Language {0n1n | n ≥ 0}, grammar
S1 → 0S11 | ϵ.

2 Language {1n0n | n ≥ 0}, grammar
S2 → 1S20 | ϵ.

3 Language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}, grammar

S → S1 | S2

S1 → 0S11 | ϵ
S2 → 1S20 | ϵ.

10/52

Examples

1 Language {0n1n | n ≥ 0}, grammar
S1 → 0S11 | ϵ.

2 Language {1n0n | n ≥ 0}, grammar
S2 → 1S20 | ϵ.

3 Language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}, grammar

S → S1 | S2

S1 → 0S11 | ϵ
S2 → 1S20 | ϵ.

10/52

Ambiguity

⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ | ⟨EXPR⟩ × ⟨EXPR⟩ | (⟨EXPR⟩) | a

The string a+ a× a have two different derivations:

1 ⟨EXPR⟩ → ⟨EXPR⟩ × ⟨EXPR⟩ ⇒ ⟨EXPR⟩+ ⟨EXPR⟩ × ⟨EXPR⟩ ∗⇒ a+ a× a

2 ⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ ⇒ ⟨EXPR⟩+ ⟨EXPR⟩ × ⟨EXPR⟩ ∗⇒ a+ a× a

11/52

Ambiguity

⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ | ⟨EXPR⟩ × ⟨EXPR⟩ | (⟨EXPR⟩) | a

The string a+ a× a have two different derivations:

1 ⟨EXPR⟩ → ⟨EXPR⟩ × ⟨EXPR⟩ ⇒ ⟨EXPR⟩+ ⟨EXPR⟩ × ⟨EXPR⟩ ∗⇒ a+ a× a

2 ⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ ⇒ ⟨EXPR⟩+ ⟨EXPR⟩ × ⟨EXPR⟩ ∗⇒ a+ a× a

11/52

Ambiguity

⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ | ⟨EXPR⟩ × ⟨EXPR⟩ | (⟨EXPR⟩) | a

The string a+ a× a have two different derivations:

1 ⟨EXPR⟩ → ⟨EXPR⟩ × ⟨EXPR⟩ ⇒ ⟨EXPR⟩+ ⟨EXPR⟩ × ⟨EXPR⟩ ∗⇒ a+ a× a

2 ⟨EXPR⟩ → ⟨EXPR⟩+ ⟨EXPR⟩ ⇒ ⟨EXPR⟩+ ⟨EXPR⟩ × ⟨EXPR⟩ ∗⇒ a+ a× a

11/52

Leftmost derivations

A derivation of a sting w in a grammar G is a leftmost derivation if at every step the leftmost
remaining variable is the one replaced.

12/52

Ambiguity

A string w is derived ambiguously is a context free grammar G if it has two or more different leftmost
derivations.

Grammar G is ambiguous if it generates some string ambiguously..

{a} has two different grammars S1 → S2 | a;S2 → a and S → a. The first is ambiguous, while the
second is not.

{aibjck | i = j ∨ j = k} is inherently ambiguous,i.e., its every grammar is ambiguous.

13/52

Ambiguity

A string w is derived ambiguously is a context free grammar G if it has two or more different leftmost
derivations.

Grammar G is ambiguous if it generates some string ambiguously.

.

{a} has two different grammars S1 → S2 | a;S2 → a and S → a. The first is ambiguous, while the
second is not.

{aibjck | i = j ∨ j = k} is inherently ambiguous,i.e., its every grammar is ambiguous.

13/52

Ambiguity

A string w is derived ambiguously is a context free grammar G if it has two or more different leftmost
derivations.

Grammar G is ambiguous if it generates some string ambiguously..

{a} has two different grammars S1 → S2 | a;S2 → a and S → a. The first is ambiguous, while the
second is not.

{aibjck | i = j ∨ j = k} is inherently ambiguous,i.e., its every grammar is ambiguous.

13/52

Ambiguity

A string w is derived ambiguously is a context free grammar G if it has two or more different leftmost
derivations.

Grammar G is ambiguous if it generates some string ambiguously..

{a} has two different grammars S1 → S2 | a;S2 → a and S → a. The first is ambiguous, while the
second is not.

{aibjck | i = j ∨ j = k} is inherently ambiguous,

i.e., its every grammar is ambiguous.

13/52

Ambiguity

A string w is derived ambiguously is a context free grammar G if it has two or more different leftmost
derivations.

Grammar G is ambiguous if it generates some string ambiguously..

{a} has two different grammars S1 → S2 | a;S2 → a and S → a. The first is ambiguous, while the
second is not.

{aibjck | i = j ∨ j = k} is inherently ambiguous,i.e., its every grammar is ambiguous.

13/52

Chomsky Normal Form

A context-free grammar is in Chomsky normal form if every rule is of the form

A → BC

A → a

where a is any terminal and A, B and C are any variables, except that B and C may be not the start
variable.

In addition, we permit the rule S → ϵ, where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

14/52

Chomsky Normal Form

A context-free grammar is in Chomsky normal form if every rule is of the form

A → BC

A → a

where a is any terminal and A, B and C are any variables, except that B and C may be not the start
variable.

In addition, we permit the rule S → ϵ, where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

14/52

Proof of the Theorem

1 Add a new start variable S0 with the rule S0 → S, where S is the original start variable.

2 Remove every A → ϵ, where A ̸= S0.
For each occurrence of A on the right-hand side of a rule, we add a new rule with that
occurrence deleted.

a R → uAv will be replace by R → uv;

b Do the above operation for each occurrence of A: e.g. R → uAvAw, will be replaced by
R → uvAw | uAvw | uvw.

c For R → A, we add R → ϵ unless we had previously removed R → ϵ.

3 Remove every A → B.

Whenever a rule B → u appears, where u is a string of variables and terminals, we add the rule
A → u unless this was previously removed.

15/52

Proof of the Theorem

1 Add a new start variable S0 with the rule S0 → S, where S is the original start variable.

2 Remove every A → ϵ, where A ̸= S0.
For each occurrence of A on the right-hand side of a rule, we add a new rule with that
occurrence deleted.

a R → uAv will be replace by R → uv;

b Do the above operation for each occurrence of A: e.g. R → uAvAw, will be replaced by
R → uvAw | uAvw | uvw.

c For R → A, we add R → ϵ unless we had previously removed R → ϵ.

3 Remove every A → B.

Whenever a rule B → u appears, where u is a string of variables and terminals, we add the rule
A → u unless this was previously removed.

15/52

Proof of the Theorem

1 Add a new start variable S0 with the rule S0 → S, where S is the original start variable.

2 Remove every A → ϵ, where A ̸= S0.
For each occurrence of A on the right-hand side of a rule, we add a new rule with that
occurrence deleted.

a R → uAv will be replace by R → uv;

b Do the above operation for each occurrence of A: e.g. R → uAvAw,

will be replaced by
R → uvAw | uAvw | uvw.

c For R → A, we add R → ϵ unless we had previously removed R → ϵ.

3 Remove every A → B.

Whenever a rule B → u appears, where u is a string of variables and terminals, we add the rule
A → u unless this was previously removed.

15/52

Proof of the Theorem

1 Add a new start variable S0 with the rule S0 → S, where S is the original start variable.

2 Remove every A → ϵ, where A ̸= S0.
For each occurrence of A on the right-hand side of a rule, we add a new rule with that
occurrence deleted.

a R → uAv will be replace by R → uv;

b Do the above operation for each occurrence of A: e.g. R → uAvAw, will be replaced by
R → uvAw | uAvw | uvw.

c For R → A, we add R → ϵ unless we had previously removed R → ϵ.

3 Remove every A → B.

Whenever a rule B → u appears, where u is a string of variables and terminals, we add the rule
A → u unless this was previously removed.

15/52

Proof of the Theorem

1 Add a new start variable S0 with the rule S0 → S, where S is the original start variable.

2 Remove every A → ϵ, where A ̸= S0.
For each occurrence of A on the right-hand side of a rule, we add a new rule with that
occurrence deleted.

a R → uAv will be replace by R → uv;

b Do the above operation for each occurrence of A: e.g. R → uAvAw, will be replaced by
R → uvAw | uAvw | uvw.

c For R → A, we add R → ϵ unless we had previously removed R → ϵ.

3 Remove every A → B.

Whenever a rule B → u appears, where u is a string of variables and terminals, we add the rule
A → u unless this was previously removed.

15/52

Proof of the Theorem

1 Add a new start variable S0 with the rule S0 → S, where S is the original start variable.

2 Remove every A → ϵ, where A ̸= S0.
For each occurrence of A on the right-hand side of a rule, we add a new rule with that
occurrence deleted.

a R → uAv will be replace by R → uv;

b Do the above operation for each occurrence of A: e.g. R → uAvAw, will be replaced by
R → uvAw | uAvw | uvw.

c For R → A, we add R → ϵ unless we had previously removed R → ϵ.

3 Remove every A → B.

Whenever a rule B → u appears, where u is a string of variables and terminals, we add the rule
A → u unless this was previously removed.

15/52

Proof of the Theorem (cont.)

1 New start variable S0.

2 Remove every A → ϵ.

3 Remove every A → B.

4 Replace each rule A → u1u2 · · ·uk with k ≥ 3 and each ui is a variable or terminal with the
rules

A → u1A1, A1 → u2A2, A2 → u2A3, · · · , and Ak−2 → uk−1uk.

The Ais are new variables. We replace any terminal ui with the new variable Ui and add
Ui → ui.

16/52

Proof of the Theorem (cont.)

1 New start variable S0.

2 Remove every A → ϵ.

3 Remove every A → B.

4 Replace each rule A → u1u2 · · ·uk with k ≥ 3 and each ui is a variable or terminal with the
rules

A → u1A1, A1 → u2A2, A2 → u2A3, · · · , and Ak−2 → uk−1uk.

The Ais are new variables. We replace any terminal ui with the new variable Ui and add
Ui → ui.

16/52

An Example

Applying the first step to make a new start variable appears on the right.

S → ASA | aB
A → B | S
B → b | ε

S0 → S

S → ASA | aB
A → B | S
B → b | ε

17/52

An Example

Applying the first step to make a new start variable appears on the right.

S → ASA | aB
A → B | S
B → b | ε

S0 → S

S → ASA | aB
A → B | S
B → b | ε

17/52

An Example

Remove ε-rules B → ε on the left, and A → ε on the right.

S0 → S

S → ASA | aB | a
A → B | S | ε
B → b | ε

S0 → S

S → ASA | aB | a | AS | SA | S
A → B | S | ε
B → b

18/52

An Example

Remove ε-rules B → ε on the left, and A → ε on the right.

S0 → S

S → ASA | aB | a
A → B | S | ε
B → b | ε

S0 → S

S → ASA | aB | a | AS | SA | S
A → B | S | ε
B → b

18/52

An Example

Remove unit rules S → S on the left, and S0 → S on the right.

S0 → S

S → ASA | aB | a | AS | SA
A → B | S
B → b

S0 → S | ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → B | S
B → b

19/52

An Example

Remove unit rules S → S on the left, and S0 → S on the right.

S0 → S

S → ASA | aB | a | AS | SA
A → B | S
B → b

S0 → S | ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → B | S
B → b

19/52

An Example

Remove unit rules A → B on the left, and A → S on the right.

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → B | S | b
B → b

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → S | b | ASA | aB | a | AS | SA
B → b

20/52

An Example

Remove unit rules A → B on the left, and A → S on the right.

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → B | S | b
B → b

S0 → ASA | aB | a | AS | SA
S → ASA | aB | a | AS | SA
A → S | b | ASA | aB | a | AS | SA
B → b

20/52

An Example

Convert the remaining rules into the proper form by adding additional variables and rules.

S0 → AA1 | UB | a | SA | AS

S → AA1 | UB | a | SA | AS

A → b | AA1 | UB | a | SA | AS

A1 → SA

U → a

B → b

21/52

Efficient Derivation

Theorem

If G is a context-free grammar in Chomsky normal form then any w ∈ L(G) such that w ̸= ε can be
derived from the start state in exactly 2|w| − 1 steps.

22/52

Pushdown automata

23/52

Pushdown Automata

Definition

A pushdown automata (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F), where

1 Q is a finite set of states,

2 Σ is a finite set of input alphabet,

3 Γ is a finite set of stack alphabet,

4 δ : Q× Σϵ × Γϵ → P(Q× Γϵ) is the transition function,

5 q0 ∈ Q is the start state,

6 F ⊆ Q is the set of accept states.

24/52

Formal Definition of Computation

Let M = (Q,Σ,Γ, δ, q0, F) be a pushdown automaton. M accepts input w if w can be written as
w = w1 . . . wm, and sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ exist that
satisfy the following three conditions.

1 r0 = q0 and s0 = ϵ.

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at and si+1 = bt for some
a, b ∈ Γϵ and t ∈ Γ∗.

3 rm ∈ F .

25/52

Formal Definition of Computation

Let M = (Q,Σ,Γ, δ, q0, F) be a pushdown automaton. M accepts input w if w can be written as
w = w1 . . . wm, and sequences of states r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ exist that
satisfy the following three conditions.

1 r0 = q0 and s0 = ϵ.

2 For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a), where si = at and si+1 = bt for some
a, b ∈ Γϵ and t ∈ Γ∗.

3 rm ∈ F .

25/52

PDA for {0n1n | n ≥ 0}

Q = {q1, q2, q3, q4},
Σ = {0, 1},
Γ = {0, $},
q1 is the start state
F = {q1, q4}

The transition function is defined by the following table, wherein blank entries signify ∅

Input: 0 1 ϵ

Stack: 0 $ ϵ 0 $ ϵ 0 $ ϵ

q1 {(q2, $)}
q2 {(q2, 0)} {(q3, ϵ)}
q3 {(q3, ϵ)} {(q4, ϵ)}
q4

26/52

Equivalence of CFL and PDA

Theorem

A language is context free if and only if some pushdown automaton recognizes it.

27/52

Every Context-Free Language Can Be Recognized by a PDA

1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a. If
they match, repeat.If they do not match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if it has all been
read.

28/52

Every Context-Free Language Can Be Recognized by a PDA

1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a. If
they match, repeat.If they do not match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if it has all been
read.

28/52

Every Context-Free Language Can Be Recognized by a PDA

1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a. If
they match, repeat.If they do not match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if it has all been
read.

28/52

Every Context-Free Language Can Be Recognized by a PDA

1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a.

If
they match, repeat.If they do not match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if it has all been
read.

28/52

Every Context-Free Language Can Be Recognized by a PDA

1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a. If
they match, repeat.

If they do not match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if it has all been
read.

28/52

Every Context-Free Language Can Be Recognized by a PDA

1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a. If
they match, repeat.If they do not match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if it has all been
read.

28/52

Every Context-Free Language Can Be Recognized by a PDA

1 Place the marker symbol $ and the start variable on the stack.

2 Repeat the following steps forever.

1 If the top of stack is a variable symbol A, nondeterministically select one of the rules for A and
substitute A by the string on the right-hand side of the rule.

2 If the top of stack is a terminal symbol a, read the next symbol from the input and compare it to a. If
they match, repeat.If they do not match, reject on this branch of the nondeterminism.

3 If the top of stack is the symbol $, enter the accept state. Doing so accepts the input if it has all been
read.

28/52

Push a long string in “one step”

Let q and r be states of the PDA and let a ∈ Σε and s ∈ Γε.

We want the PDA to go from q to r when it reads a and pops s. Furthermore, we want it to push the
entire string u = u1 . . . ul on the stack at the same time.

(q1, ul) ∈ δ(q, a, s)

δ(q1, ε, ε) = {(q2, ul−1)}
δ(q2, ε, ε) = {(q3, ul−2)}
...
δ(ql−1, ε, ε) = {(r, u1)}

We use the abbreviation
(r, u) ∈ δ(q, a, s)

29/52

Proof

We construct a pushdown automaton P as follows.

The states of P are
Q = {qstart, qloop, qaccept} ∪ E

where E is the set of states we need for the construction in the previous slide.

For the transition function,

• δ(qstart, ε, ε) = {(qloop, S$)}
• δ(qloop, ε, A) = {(qloop, w) | A → w is a rule in the given grammar}
• δ(qloop, a, a) = {(qloop, ε)}
• δ(qloop, ε, $) = {(qaccept, ε)}

30/52

Proof

We construct a pushdown automaton P as follows.

The states of P are
Q = {qstart, qloop, qaccept} ∪ E

where E is the set of states we need for the construction in the previous slide.

For the transition function,

• δ(qstart, ε, ε) = {(qloop, S$)}
• δ(qloop, ε, A) = {(qloop, w) | A → w is a rule in the given grammar}
• δ(qloop, a, a) = {(qloop, ε)}
• δ(qloop, ε, $) = {(qaccept, ε)}

30/52

Every Language Recognized by a PDA is Context Free

Let P be a PDA. For each pair of states p and q, the grammar has a variable Apq which generates

all strings taking P from p with an empty stack to q with an empty stack.

We modify P such that:

1 It has a single accept state qaccept.

2 It empties its stack before accepting.

3 Each transition either pushes a symbol onto the stack or pops one off the stack, but it does not
do both at the same time.

31/52

Every Language Recognized by a PDA is Context Free

Let P be a PDA. For each pair of states p and q, the grammar has a variable Apq which generates

all strings taking P from p with an empty stack to q with an empty stack.

We modify P such that:

1 It has a single accept state qaccept.

2 It empties its stack before accepting.

3 Each transition either pushes a symbol onto the stack or pops one off the stack, but it does not
do both at the same time.

31/52

Inductive Definition of Apq

Two possibilities occur during P ’s computation on an input string x.

1 The symbol popped at the end is the symbol that was pushed at the beginning. Then, we have
a rule Apq → aArsb.

2 Otherwise, we have a rule Apq → AprArq.

32/52

Proof (1)

Assume P = (Q,Σ,Γ, δ, q0, {qaccept}).

The variables of the desired context-free grammar G are

{Apq | p, q ∈ Q}

in which the start variable is Aq0,qaccept .

For the rules:

R1 For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u), then G

has the rule
Apq → aArsb

R2 For each p, q, r ∈ Q, G has the rule
Apq → AprArq

R3 For each p ∈ Q, G has the rule
App → ε

33/52

Proof (1)

Assume P = (Q,Σ,Γ, δ, q0, {qaccept}).

The variables of the desired context-free grammar G are

{Apq | p, q ∈ Q}

in which the start variable is Aq0,qaccept .

For the rules:

R1 For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u), then G

has the rule
Apq → aArsb

R2 For each p, q, r ∈ Q, G has the rule
Apq → AprArq

R3 For each p ∈ Q, G has the rule
App → ε

33/52

Proof (1)

Assume P = (Q,Σ,Γ, δ, q0, {qaccept}).

The variables of the desired context-free grammar G are

{Apq | p, q ∈ Q}

in which the start variable is Aq0,qaccept .

For the rules:

R1 For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u), then G

has the rule
Apq → aArsb

R2 For each p, q, r ∈ Q, G has the rule
Apq → AprArq

R3 For each p ∈ Q, G has the rule
App → ε

33/52

Proof (1)

Assume P = (Q,Σ,Γ, δ, q0, {qaccept}).

The variables of the desired context-free grammar G are

{Apq | p, q ∈ Q}

in which the start variable is Aq0,qaccept .

For the rules:

R1 For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u), then G

has the rule
Apq → aArsb

R2 For each p, q, r ∈ Q, G has the rule
Apq → AprArq

R3 For each p ∈ Q, G has the rule
App → ε

33/52

Proof (2)

Claim

If Apq generates x, the x can bring P from p with empty stack to q with empty stack.

Basis: The derivation has 1 step. A derivation with a single step must use a rule whose right-hand
side contains no variables. The only rules in G where no variables occur on the right-hand side are
App → ε.

Induction step: The derivation has k + 1 step with Apq ⇒∗ x. Thus, either Apq ⇒ aArsb or
Apq ⇒ AprArq.

In case Apq ⇒ aArsb the claim follows from (R1) and the induction hypothesis.

For Apq ⇒ AprArq, there exist y and z with x = yz such that Apr ⇒∗ y and Aqr ⇒∗ z both in at
most k steps. The claim then again follows from the induction hypothesis.

34/52

Proof (2)

Claim

If Apq generates x, the x can bring P from p with empty stack to q with empty stack.

Basis: The derivation has 1 step. A derivation with a single step must use a rule whose right-hand
side contains no variables. The only rules in G where no variables occur on the right-hand side are
App → ε.

Induction step: The derivation has k + 1 step with Apq ⇒∗ x. Thus, either Apq ⇒ aArsb or
Apq ⇒ AprArq.

In case Apq ⇒ aArsb the claim follows from (R1) and the induction hypothesis.

For Apq ⇒ AprArq, there exist y and z with x = yz such that Apr ⇒∗ y and Aqr ⇒∗ z both in at
most k steps. The claim then again follows from the induction hypothesis.

34/52

Proof (2)

Claim

If Apq generates x, the x can bring P from p with empty stack to q with empty stack.

Basis: The derivation has 1 step. A derivation with a single step must use a rule whose right-hand
side contains no variables. The only rules in G where no variables occur on the right-hand side are
App → ε.

Induction step: The derivation has k + 1 step with Apq ⇒∗ x. Thus, either Apq ⇒ aArsb or
Apq ⇒ AprArq.

In case Apq ⇒ aArsb the claim follows from (R1) and the induction hypothesis.

For Apq ⇒ AprArq, there exist y and z with x = yz such that Apr ⇒∗ y and Aqr ⇒∗ z both in at
most k steps. The claim then again follows from the induction hypothesis.

34/52

Proof (2)

Claim

If Apq generates x, the x can bring P from p with empty stack to q with empty stack.

Basis: The derivation has 1 step. A derivation with a single step must use a rule whose right-hand
side contains no variables. The only rules in G where no variables occur on the right-hand side are
App → ε.

Induction step: The derivation has k + 1 step with Apq ⇒∗ x. Thus, either Apq ⇒ aArsb or
Apq ⇒ AprArq.

In case Apq ⇒ aArsb the claim follows from (R1) and the induction hypothesis.

For Apq ⇒ AprArq, there exist y and z with x = yz such that Apr ⇒∗ y and Aqr ⇒∗ z both in at
most k steps. The claim then again follows from the induction hypothesis.

34/52

Proof (3)

Claim

If x can bring P from p with empty stack to q with empty stack, then Apq generates x.

Basis: The computation has 0 steps.
x = ε and we have App → ε.

Induction step:
If the stack is always non-empty in the middle of the computation, then:

• There is a u which is pushed in the first move and popped in the last move.
• In the first move, let a be the input and r be the state after; in the last move let b be the input

and s be the state before.
• We deduce (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u). Hence, G has the rule Apq → aArsb.

We can conclude by the induction hypothesis.
If the stack becomes empty in the middle of the computation, the claim then again follows from the
induction hypothesis.

35/52

Proof (3)

Claim

If x can bring P from p with empty stack to q with empty stack, then Apq generates x.

Basis: The computation has 0 steps.
x = ε and we have App → ε.

Induction step:
If the stack is always non-empty in the middle of the computation, then:

• There is a u which is pushed in the first move and popped in the last move.
• In the first move, let a be the input and r be the state after; in the last move let b be the input

and s be the state before.
• We deduce (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u). Hence, G has the rule Apq → aArsb.

We can conclude by the induction hypothesis.
If the stack becomes empty in the middle of the computation, the claim then again follows from the
induction hypothesis.

35/52

Proof (3)

Claim

If x can bring P from p with empty stack to q with empty stack, then Apq generates x.

Basis: The computation has 0 steps.
x = ε and we have App → ε.

Induction step:
If the stack is always non-empty in the middle of the computation, then:

• There is a u which is pushed in the first move and popped in the last move.
• In the first move, let a be the input and r be the state after; in the last move let b be the input

and s be the state before.
• We deduce (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u). Hence, G has the rule Apq → aArsb.

We can conclude by the induction hypothesis.
If the stack becomes empty in the middle of the computation, the claim then again follows from the
induction hypothesis.

35/52

Proof (3)

Claim

If x can bring P from p with empty stack to q with empty stack, then Apq generates x.

Basis: The computation has 0 steps.
x = ε and we have App → ε.

Induction step:
If the stack is always non-empty in the middle of the computation, then:

• There is a u which is pushed in the first move and popped in the last move.
• In the first move, let a be the input and r be the state after; in the last move let b be the input

and s be the state before.
• We deduce (r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u). Hence, G has the rule Apq → aArsb.

We can conclude by the induction hypothesis.
If the stack becomes empty in the middle of the computation, the claim then again follows from the
induction hypothesis.

35/52

Closure Properties

36/52

Closure Properties

The context-free languages are closed under union, concatenation, and kleene star.

37/52

Closure Properties - Union

Proof.

N1 = (V1,Σ1, R1, S1) recognize A1,
N2 = (V2,Σ2, R2, S2) recognize A2. w.l.o.g. V1 ∩ V2 = ∅.

Union. S is a new symbol. Let N = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R, S), where
R = R1 ∪R2 ∪ {S → S1, S → S2}.

38/52

Closure Properties - Union

Proof.

N1 = (V1,Σ1, R1, S1) recognize A1,
N2 = (V2,Σ2, R2, S2) recognize A2. w.l.o.g. V1 ∩ V2 = ∅.

Union. S is a new symbol. Let N = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R, S), where
R = R1 ∪R2 ∪ {S → S1, S → S2}.

38/52

Closure Properties - Concatenation

Proof.

N1 = (V1,Σ1, R1, S1) recognize A1,
N2 = (V2,Σ2, R2, S2) recognize A2. w.l.o.g. V1 ∩ V2 = ∅.

Concatenation. S is a new symbol. Let N = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R, S), where
R = R1 ∪R2 ∪ {S → S1S2}.

39/52

Closure Properties - Concatenation

Proof.

N1 = (V1,Σ1, R1, S1) recognize A1,
N2 = (V2,Σ2, R2, S2) recognize A2. w.l.o.g. V1 ∩ V2 = ∅.

Concatenation. S is a new symbol. Let N = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R, S), where
R = R1 ∪R2 ∪ {S → S1S2}.

39/52

Closure Properties - Kleene Star

Proof.

N1 = (V1,Σ1, R1, S1) recognize A1.

Kleene Star. S is a new symbol. Let N = (V1 ∪ {S},Σ1, R, S), where R = R1 ∪ {S → ϵ, S → SS1}.

40/52

Closure Properties - Kleene Star

Proof.

N1 = (V1,Σ1, R1, S1) recognize A1.

Kleene Star. S is a new symbol. Let N = (V1 ∪ {S},Σ1, R, S), where R = R1 ∪ {S → ϵ, S → SS1}.

40/52

Pumping Lemma

41/52

The Pumping Lemma

Lemma (Pumping Lemma)

If A is a context-free language, then there is a number p (the pumping length) where, if s is any
string in A of length at least p, then s may be divided as s = uvxyz satisfying the conditions

1 for each i ≥ 0, uvixyiz ∈ A,

2 |vy| > 0,

3 |vxy| < p.

42/52

Proof

Let G be a CFG for CFL A. Let b be the maximum number of symbols in the right-hand side of a
rule.

In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h, the length of the string generated is at most bh.

If a generated string is at least bh + 1 long, each of its parse trees must be at least h+ 1 high.

We choose the pumping length
p = b|V |+1

For any string s ∈ A with |s| ≥ p, any of its parse trees must be at least |V |+ 1 high.

43/52

Proof

Let G be a CFG for CFL A. Let b be the maximum number of symbols in the right-hand side of a
rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h, the length of the string generated is at most bh.

If a generated string is at least bh + 1 long, each of its parse trees must be at least h+ 1 high.

We choose the pumping length
p = b|V |+1

For any string s ∈ A with |s| ≥ p, any of its parse trees must be at least |V |+ 1 high.

43/52

Proof

Let G be a CFG for CFL A. Let b be the maximum number of symbols in the right-hand side of a
rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h, the length of the string generated is at most bh.

If a generated string is at least bh + 1 long, each of its parse trees must be at least h+ 1 high.

We choose the pumping length
p = b|V |+1

For any string s ∈ A with |s| ≥ p, any of its parse trees must be at least |V |+ 1 high.

43/52

Proof

Let G be a CFG for CFL A. Let b be the maximum number of symbols in the right-hand side of a
rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h, the length of the string generated is at most bh.

If a generated string is at least bh + 1 long, each of its parse trees must be at least h+ 1 high.

We choose the pumping length
p = b|V |+1

For any string s ∈ A with |s| ≥ p, any of its parse trees must be at least |V |+ 1 high.

43/52

Proof

Let G be a CFG for CFL A. Let b be the maximum number of symbols in the right-hand side of a
rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h, the length of the string generated is at most bh.

If a generated string is at least bh + 1 long, each of its parse trees must be at least h+ 1 high.

We choose the pumping length
p = b|V |+1

For any string s ∈ A with |s| ≥ p, any of its parse trees must be at least |V |+ 1 high.

43/52

Proof

Let G be a CFG for CFL A. Let b be the maximum number of symbols in the right-hand side of a
rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h, the length of the string generated is at most bh.

If a generated string is at least bh + 1 long, each of its parse trees must be at least h+ 1 high.

We choose the pumping length
p = b|V |+1

For any string s ∈ A with |s| ≥ p, any of its parse trees must be at least |V |+ 1 high.

43/52

Proof

Let τ be one parse tree of s with smallest number of nodes, whose height is at least |V |+ 1. So τ

has a path from the root to a leaf of length |V |+ 1 with |V |+ 2 nodes.

One variable R must appear
at least twice in the last |V |+ 1 variable nodes on this path.

We divide s into uvxyz:

• u from the leftmost leaf of τ to the leaf left next to the leftmost leaf of the subtree hanging on the
first R,

• v from the leftmost leaf of the subtree hanging on the first R to the leaf left next to the leftmost
leaf of the subtree hanging on the second R,

• x for all the leaves of the subtree hanging on the second R,
• y from the leaf right next to the rightmost leaf of the subtree hanging on the second R to the

rightmost leaf of the subtree hanging on the first R,
• z from the leaf right next to the rightmost leaf of the subtree hanging on the first R to the

rightmost leaf of τ .

44/52

Proof

Let τ be one parse tree of s with smallest number of nodes, whose height is at least |V |+ 1. So τ

has a path from the root to a leaf of length |V |+ 1 with |V |+ 2 nodes. One variable R must appear
at least twice in the last |V |+ 1 variable nodes on this path.

We divide s into uvxyz:

• u from the leftmost leaf of τ to the leaf left next to the leftmost leaf of the subtree hanging on the
first R,

• v from the leftmost leaf of the subtree hanging on the first R to the leaf left next to the leftmost
leaf of the subtree hanging on the second R,

• x for all the leaves of the subtree hanging on the second R,
• y from the leaf right next to the rightmost leaf of the subtree hanging on the second R to the

rightmost leaf of the subtree hanging on the first R,
• z from the leaf right next to the rightmost leaf of the subtree hanging on the first R to the

rightmost leaf of τ .

44/52

Proof

Let τ be one parse tree of s with smallest number of nodes, whose height is at least |V |+ 1. So τ

has a path from the root to a leaf of length |V |+ 1 with |V |+ 2 nodes. One variable R must appear
at least twice in the last |V |+ 1 variable nodes on this path.

We divide s into uvxyz:

• u from the leftmost leaf of τ to the leaf left next to the leftmost leaf of the subtree hanging on the
first R,

• v from the leftmost leaf of the subtree hanging on the first R to the leaf left next to the leftmost
leaf of the subtree hanging on the second R,

• x for all the leaves of the subtree hanging on the second R,
• y from the leaf right next to the rightmost leaf of the subtree hanging on the second R to the

rightmost leaf of the subtree hanging on the first R,
• z from the leaf right next to the rightmost leaf of the subtree hanging on the first R to the

rightmost leaf of τ .

44/52

Proof

Let τ be one parse tree of s with smallest number of nodes, whose height is at least |V |+ 1. So τ

has a path from the root to a leaf of length |V |+ 1 with |V |+ 2 nodes. One variable R must appear
at least twice in the last |V |+ 1 variable nodes on this path.

We divide s into uvxyz:

• u from the leftmost leaf of τ to the leaf left next to the leftmost leaf of the subtree hanging on the
first R,

• v from the leftmost leaf of the subtree hanging on the first R to the leaf left next to the leftmost
leaf of the subtree hanging on the second R,

• x for all the leaves of the subtree hanging on the second R,
• y from the leaf right next to the rightmost leaf of the subtree hanging on the second R to the

rightmost leaf of the subtree hanging on the first R,
• z from the leaf right next to the rightmost leaf of the subtree hanging on the first R to the

rightmost leaf of τ .

44/52

Pumping LemmaSurgery

126 CHAPTER 2 / CONTEXT-FREE LANGUAGES

states that the pieces v, x, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

PROOF IDEA Let A be a CFL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A.
The idea behind this approach is simple.

Let s be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in A, it is derivable from G and so has a parse tree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path, some variable symbolR
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence ofR and still get a legal parse tree.
Therefore, we may cut s into five pieces uvxyz as the figure indicates, and we
may repeat the second and fourth pieces and obtain a string still in the language.
In other words, uvixyiz is in A for any i ≥ 0.

FIGURE 2.35

Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

45/52

Proof

Condition 1. Replace the subtree of the second R by the subtree of the first R would validate that
for each i ≥ 0, uvixyiz ∈ A.

Condition 2. If |vy| = 0, i.e., v = y = ϵ, then τ cannot have the smallest number of nodes.

Condition 3. To see |vxy| ≤ p = b|V |+1, note that vxy is generated by the first R. We can always
choose R so that its last two occurrences fall within the bottom |V |+ 1 high. A tree of this height can
generate a string of length at most b|V |+1 = p.

46/52

Proof

Condition 1. Replace the subtree of the second R by the subtree of the first R would validate that
for each i ≥ 0, uvixyiz ∈ A.

Condition 2. If |vy| = 0, i.e., v = y = ϵ, then τ cannot have the smallest number of nodes.

Condition 3. To see |vxy| ≤ p = b|V |+1, note that vxy is generated by the first R. We can always
choose R so that its last two occurrences fall within the bottom |V |+ 1 high. A tree of this height can
generate a string of length at most b|V |+1 = p.

46/52

Proof

Condition 1. Replace the subtree of the second R by the subtree of the first R would validate that
for each i ≥ 0, uvixyiz ∈ A.

Condition 2. If |vy| = 0, i.e., v = y = ϵ, then τ cannot have the smallest number of nodes.

Condition 3. To see |vxy| ≤ p = b|V |+1, note that vxy is generated by the first R. We can always
choose R so that its last two occurrences fall within the bottom |V |+ 1 high. A tree of this height can
generate a string of length at most b|V |+1 = p.

46/52

Example

{anbncn | n ≥ 0} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = apbpcp and divide it to uvxyz

according to the Pumping Lemma.

• When both v and y contain only one type of symbols, i.e., one of a, b, c, then uv2xy2z cannot
contain equal number of a’s, b’s, and c’s.

• If either v or y contains more than one type of symbols, then uv2xy2z would have symbols
interleaved.

47/52

Example

{anbncn | n ≥ 0} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = apbpcp and divide it to uvxyz

according to the Pumping Lemma.

• When both v and y contain only one type of symbols, i.e., one of a, b, c, then uv2xy2z cannot
contain equal number of a’s, b’s, and c’s.

• If either v or y contains more than one type of symbols, then uv2xy2z would have symbols
interleaved.

47/52

Example

{anbncn | n ≥ 0} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = apbpcp and divide it to uvxyz

according to the Pumping Lemma.

• When both v and y contain only one type of symbols, i.e., one of a, b, c, then uv2xy2z cannot
contain equal number of a’s, b’s, and c’s.

• If either v or y contains more than one type of symbols, then uv2xy2z would have symbols
interleaved.

47/52

Example

{anbncn | n ≥ 0} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = apbpcp and divide it to uvxyz

according to the Pumping Lemma.

• When both v and y contain only one type of symbols, i.e., one of a, b, c, then uv2xy2z cannot
contain equal number of a’s, b’s, and c’s.

• If either v or y contains more than one type of symbols, then uv2xy2z would have symbols
interleaved.

47/52

Example

{ww | w ∈ {0, 1}∗} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = 0p1p0p1p and divide it to uvxyz

with |vxy| ≤ p.

• If vxy occurs only in the first half of s, then the second half of yv2xy2z must start with an 1. This
is impossible.

• Similarly vxy cannot occur only in the second half of s.
• If vxy straddles the midpoint of s, then pumping s to the form 0p1i0j1p cannot ensure i = j = p.

48/52

Example

{ww | w ∈ {0, 1}∗} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = 0p1p0p1p and divide it to uvxyz

with |vxy| ≤ p.

• If vxy occurs only in the first half of s, then the second half of yv2xy2z must start with an 1. This
is impossible.

• Similarly vxy cannot occur only in the second half of s.
• If vxy straddles the midpoint of s, then pumping s to the form 0p1i0j1p cannot ensure i = j = p.

48/52

Example

{ww | w ∈ {0, 1}∗} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = 0p1p0p1p and divide it to uvxyz

with |vxy| ≤ p.

• If vxy occurs only in the first half of s, then the second half of yv2xy2z must start with an 1. This
is impossible.

• Similarly vxy cannot occur only in the second half of s.
• If vxy straddles the midpoint of s, then pumping s to the form 0p1i0j1p cannot ensure i = j = p.

48/52

Example

{ww | w ∈ {0, 1}∗} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = 0p1p0p1p and divide it to uvxyz

with |vxy| ≤ p.

• If vxy occurs only in the first half of s, then the second half of yv2xy2z must start with an 1. This
is impossible.

• Similarly vxy cannot occur only in the second half of s.

• If vxy straddles the midpoint of s, then pumping s to the form 0p1i0j1p cannot ensure i = j = p.

48/52

Example

{ww | w ∈ {0, 1}∗} is not context free.

Assume otherwise, and let p be the pumping length. Consider s = 0p1p0p1p and divide it to uvxyz

with |vxy| ≤ p.

• If vxy occurs only in the first half of s, then the second half of yv2xy2z must start with an 1. This
is impossible.

• Similarly vxy cannot occur only in the second half of s.
• If vxy straddles the midpoint of s, then pumping s to the form 0p1i0j1p cannot ensure i = j = p.

48/52

Other Computations

49/52

Intersection of a CFL and a RL

Theorem

The intersection of a context-free language with a regular language is a context-free language.

50/52

Intersection of a CFL and a RL

Theorem

The intersection of a context-free language with a regular language is a context-free language.

50/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;
• s = (s1, s2);
• F = (F1, F2), and
• ∆ is defined as follows

1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;
• s = (s1, s2);
• F = (F1, F2), and
• ∆ is defined as follows

1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;

• s = (s1, s2);
• F = (F1, F2), and
• ∆ is defined as follows

1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;
• s = (s1, s2);

• F = (F1, F2), and
• ∆ is defined as follows

1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;
• s = (s1, s2);
• F = (F1, F2), and

• ∆ is defined as follows
1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;
• s = (s1, s2);
• F = (F1, F2), and
• ∆ is defined as follows

1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;
• s = (s1, s2);
• F = (F1, F2), and
• ∆ is defined as follows

1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Proof

PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and DFA M2 = (Q2,Σ, δ2, s2, F2).

Build M = (Q,Σ,Γ1,∆, s, F), where

• Q = Q1×Q2;
• s = (s1, s2);
• F = (F1, F2), and
• ∆ is defined as follows

1 for each PDA rule (q1, a, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), a, β) → ((p1, δ2(q2, a)), r)

2 for each PDA rule (q1, ϵ, β) → (p1, r) and each q2 ∈ Q2 add the following rule to ∆

((q1, q2), ϵ, β) → ((p1, q2), r)

51/52

Negative Results

The context free language are not closed under intersection or complementation.

Proof.

Clearly {anbncm | m,n ≥ 0} and {ambncn | m,n ≥ 0} are both CFL. However their intersection,
{anbncn | n ≥ 0}, is not.

To the second part of the statement,

L1 ∩ L2 = L1 ∪ L2

rules out the closure under complementation.

52/52

Negative Results

The context free language are not closed under intersection or complementation.

Proof.

Clearly {anbncm | m,n ≥ 0} and {ambncn | m,n ≥ 0} are both CFL. However their intersection,
{anbncn | n ≥ 0}, is not.

To the second part of the statement,

L1 ∩ L2 = L1 ∪ L2

rules out the closure under complementation.

52/52

Negative Results

The context free language are not closed under intersection or complementation.

Proof.

Clearly {anbncm | m,n ≥ 0} and {ambncn | m,n ≥ 0} are both CFL. However their intersection,
{anbncn | n ≥ 0}, is not.

To the second part of the statement,

L1 ∩ L2 = L1 ∪ L2

rules out the closure under complementation.

52/52

	Context Free Languages
	Pushdown automata
	Closure Properties
	Pumping Lemma
	Other Computations

