

Mathematical Foundation of Computer Sciences II

Context-Free Languages and Pushdown Automata

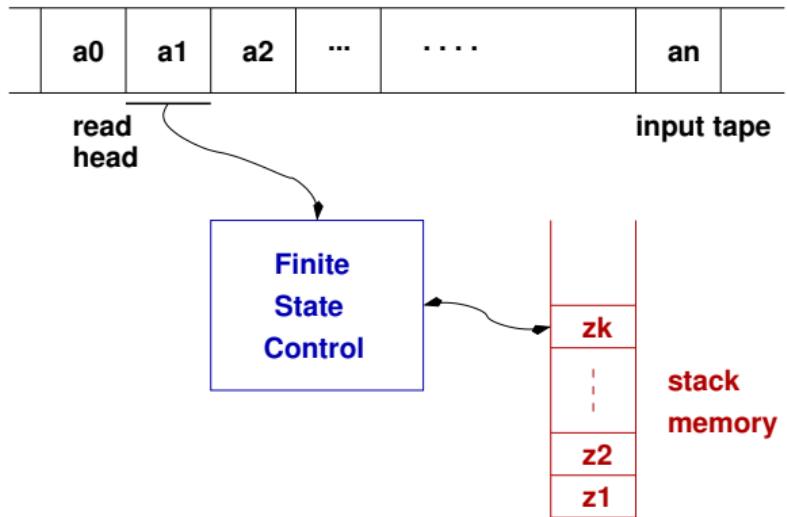
Guoqiang Li
School of Software

SHANGHAI JIAO TONG
UNIVERSITY

A Program Example


```
void m() {  
    if (?) {  
        s(); right();  
        if (?) m();  
    } else {  
        up(); m(); down();  
    }  
}  
  
void s() {  
    if (?) return;  
    up(); m(); down();  
}  
  
main() {  
    s();  
}
```

A Program Example



Context Free Languages

An Example

The grammar

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

An Example

The grammar

$$\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \\ B \rightarrow \# \end{array}$$

A derivation:

$$A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000\#111.$$

An Example

$\langle \text{SENTENCE} \rangle \rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle$
 $\langle \text{NOUN-PHRASE} \rangle \rightarrow \langle \text{CMPLX-NOUN} \rangle \mid \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle$
 $\langle \text{VERB-PHRASE} \rangle \rightarrow \langle \text{CMPLX-VERB} \rangle \mid \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle$
 $\langle \text{PREP-PHRASE} \rangle \rightarrow \langle \text{PREP} \rangle \langle \text{CMPLX-NOUN} \rangle$
 $\langle \text{CMPLX-NOUN} \rangle \rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle$
 $\langle \text{CMPLX-VERB} \rangle \rightarrow \langle \text{VERB} \rangle \mid \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle$
 $\langle \text{ARTICLE} \rangle \rightarrow \text{a} \mid \text{the}$
 $\langle \text{NOUN} \rangle \rightarrow \text{boy} \mid \text{girl} \mid \text{flower}$
 $\langle \text{VERB} \rangle \rightarrow \text{touches} \mid \text{likes} \mid \text{sees}$
 $\langle \text{prep} \rangle \rightarrow \text{with}$

An Example

$\langle \text{SENTENCE} \rangle \Rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle$
 $\Rightarrow \langle \text{CMPLX-NOUN} \rangle \langle \text{VERB-PHRASE} \rangle$
 $\Rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle \langle \text{VERB-PHRASE} \rangle$
 $\Rightarrow \text{a} \langle \text{NOUN} \rangle \langle \text{VERB-PHRASE} \rangle$
 $\Rightarrow \text{a boy} \langle \text{VERB-PHRASE} \rangle$
 $\Rightarrow \text{a boy} \langle \text{CMPLX-VERB} \rangle$
 $\Rightarrow \text{a boy} \langle \text{VERB} \rangle$
 $\Rightarrow \text{a boy sees.}$

Definition

A **context-free grammar (CFG)** is a 4-tuple (V, Σ, R, S) , where

- ① V is a finite set called the **variables**,
- ② Σ is a finite set, disjoint from V , called the **terminals**,
- ③ R is a finite set of **rules**, with each rule being a variable and a string of variables and terminals,
- ④ $S \in V$ is the **start variable**.

Derivations

Let u, v, w be strings of variables and terminals, and

$$A \rightarrow w \in R$$

Derivations

Let u, v, w be strings of variables and terminals, and

$$A \rightarrow w \in R$$

Then uAv yields uvw : $uAv \Rightarrow uwv$.

Let u, v, w be strings of variables and terminals, and

$$A \rightarrow w \in R$$

Then uAv yields uwv : $uAv \Rightarrow uwv$.

u derives v , written $u \xrightarrow{*} v$, if

- $u = v$, or

Let u, v, w be strings of variables and terminals, and

$$A \rightarrow w \in R$$

Then uAv yields uwv : $uAv \Rightarrow uwv$.

u derives v , written $u \xrightarrow{*} v$, if

- $u = v$, or
- there is a sequence u_1, u_2, \dots, u_k for $k \geq 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v.$$

Derivations

Let u, v, w be strings of variables and terminals, and

$$A \rightarrow w \in R$$

Then uAv yields uwv : $uAv \Rightarrow uwv$.

u derives v , written $u \xrightarrow{*} v$, if

- $u = v$, or
- there is a sequence u_1, u_2, \dots, u_k for $k \geq 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v.$$

The language of the grammar is $\{w \in \Sigma^* \mid S \xrightarrow{*} w\}$.

Derivations

Let u, v, w be strings of variables and terminals, and

$$A \rightarrow w \in R$$

Then uAv yields uwv : $uAv \Rightarrow uwv$.

u derives v , written $u \xrightarrow{*} v$, if

- $u = v$, or
- there is a sequence u_1, u_2, \dots, u_k for $k \geq 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v.$$

The language of the grammar is $\{w \in \Sigma^* \mid S \xrightarrow{*} w\}$.

which is a context-free language(CFL).

Examples

SHANGHAI JIAO TONG
UNIVERSITY

- ① Language $\{0^n 1^n \mid n \geq 0\}$, grammar

Examples

① Language $\{0^n 1^n \mid n \geq 0\}$, grammar

$$S_1 \rightarrow 0S_11 \mid \epsilon.$$

② Language $\{1^n 0^n \mid n \geq 0\}$, grammar

Examples

① Language $\{0^n 1^n \mid n \geq 0\}$, grammar

$$S_1 \rightarrow 0S_11 \mid \epsilon.$$

② Language $\{1^n 0^n \mid n \geq 0\}$, grammar

$$S_2 \rightarrow 1S_20 \mid \epsilon.$$

Examples

① Language $\{0^n 1^n \mid n \geq 0\}$, grammar

$$S_1 \rightarrow 0S_1 1 \mid \epsilon.$$

② Language $\{1^n 0^n \mid n \geq 0\}$, grammar

$$S_2 \rightarrow 1S_2 0 \mid \epsilon.$$

③ Language $\{0^n 1^n \mid n \geq 0\} \cup \{1^n 0^n \mid n \geq 0\}$, grammar

Examples

① Language $\{0^n 1^n \mid n \geq 0\}$, grammar

$$S_1 \rightarrow 0S_1 1 \mid \epsilon.$$

② Language $\{1^n 0^n \mid n \geq 0\}$, grammar

$$S_2 \rightarrow 1S_2 0 \mid \epsilon.$$

③ Language $\{0^n 1^n \mid n \geq 0\} \cup \{1^n 0^n \mid n \geq 0\}$, grammar

$$\begin{array}{lll} S & \rightarrow & S_1 \mid S_2 \\ S_1 & \rightarrow & 0S_1 1 \mid \epsilon \\ S_2 & \rightarrow & 1S_2 0 \mid \epsilon. \end{array}$$

Ambiguity

SHANGHAI JIAO TONG
UNIVERSITY

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \times \langle EXPR \rangle \mid (\langle EXPR \rangle) \mid a$$

Ambiguity

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \times \langle EXPR \rangle \mid (\langle EXPR \rangle) \mid a$$

The string $a + a \times a$ have two different derivations:

Ambiguity

$$\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \times \langle EXPR \rangle \mid (\langle EXPR \rangle) \mid a$$

The string $a + a \times a$ have two different derivations:

- ① $\langle EXPR \rangle \rightarrow \langle EXPR \rangle \times \langle EXPR \rangle \Rightarrow \langle EXPR \rangle + \langle EXPR \rangle \times \langle EXPR \rangle \xrightarrow{*} a + a \times a$
- ② $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \Rightarrow \langle EXPR \rangle + \langle EXPR \rangle \times \langle EXPR \rangle \xrightarrow{*} a + a \times a$

Leftmost derivations

A derivation of a string w in a grammar G is a **leftmost derivation** if at every step the leftmost remaining variable is the one replaced.

Ambiguity

SHANGHAI JIAO TONG
UNIVERSITY

A string w is derived **ambiguously** in a context free grammar G if it has two or more different leftmost derivations.

Ambiguity

A string w is derived **ambiguously** is a context free grammar G if it has two or more different leftmost derivations.

Grammar G is **ambiguous** if it generates some string ambiguously.

A string w is derived **ambiguously** is a context free grammar G if it has two or more different leftmost derivations.

Grammar G is **ambiguous** if it generates some string ambiguously..

$\{a\}$ has two different grammars $S_1 \rightarrow S_2 \mid a; S_2 \rightarrow a$ and $S \rightarrow a$. The first is ambiguous, while the second is not.

A string w is derived **ambiguously** is a context free grammar G if it has two or more different leftmost derivations.

Grammar G is **ambiguous** if it generates some string ambiguously..

$\{a\}$ has two different grammars $S_1 \rightarrow S_2 \mid a; S_2 \rightarrow a$ and $S \rightarrow a$. The first is ambiguous, while the second is not.

$\{a^i b^j c^k \mid i = j \vee j = k\}$ is **inherently ambiguous**,

A string w is derived **ambiguously** is a context free grammar G if it has two or more different leftmost derivations.

Grammar G is **ambiguous** if it generates some string ambiguously..

$\{a\}$ has two different grammars $S_1 \rightarrow S_2 \mid a; S_2 \rightarrow a$ and $S \rightarrow a$. The first is ambiguous, while the second is not.

$\{a^i b^j c^k \mid i = j \vee j = k\}$ is **inherently ambiguous**, i.e., its every grammar is ambiguous.

A context-free grammar is in **Chomsky normal form** if every rule is of the form

$$\begin{array}{l} A \rightarrow BC \\ A \rightarrow a \end{array}$$

where a is any terminal and A, B and C are any variables, except that B and C may be not the start variable.

In addition, we permit the rule $S \rightarrow \epsilon$, where S is the start variable.

A context-free grammar is in **Chomsky normal form** if every rule is of the form

$$\begin{array}{l} A \rightarrow BC \\ A \rightarrow a \end{array}$$

where a is any terminal and A, B and C are any variables, except that B and C may be not the start variable.

In addition, we permit the rule $S \rightarrow \epsilon$, where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof of the Theorem

- ① Add a new start variable S_0 with the rule $S_0 \rightarrow S$, where S is the original start variable.

Proof of the Theorem

- ① Add a new start variable S_0 with the rule $S_0 \rightarrow S$, where S is the original start variable.
- ② Remove every $A \rightarrow \epsilon$, where $A \neq S_0$.

For each occurrence of A on the right-hand side of a rule, we add a new rule with that occurrence deleted.

- a $R \rightarrow uAv$ will be replace by $R \rightarrow uv$;

- ① Add a new start variable S_0 with the rule $S_0 \rightarrow S$, where S is the original start variable.
- ② Remove every $A \rightarrow \epsilon$, where $A \neq S_0$.

For each occurrence of A on the right-hand side of a rule, we add a new rule with that occurrence deleted.

- a $R \rightarrow uAv$ will be replace by $R \rightarrow uv$;
- b Do the above operation for each occurrence of A : e.g. $R \rightarrow uAvAw$,

- ① Add a new start variable S_0 with the rule $S_0 \rightarrow S$, where S is the original start variable.
- ② Remove every $A \rightarrow \epsilon$, where $A \neq S_0$.

For each occurrence of A on the right-hand side of a rule, we add a new rule with that occurrence deleted.

- a $R \rightarrow uAv$ will be replaced by $R \rightarrow uv$;
- b Do the above operation for each occurrence of A : e.g. $R \rightarrow uAvAw$, will be replaced by $R \rightarrow uvAw \mid uAvw \mid uwv$.

- ① Add a new start variable S_0 with the rule $S_0 \rightarrow S$, where S is the original start variable.
- ② Remove every $A \rightarrow \epsilon$, where $A \neq S_0$.
For each occurrence of A on the right-hand side of a rule, we add a new rule with that occurrence deleted.
 - a $R \rightarrow uAv$ will be replaced by $R \rightarrow uv$;
 - b Do the above operation for each occurrence of A : e.g. $R \rightarrow uAvAw$, will be replaced by $R \rightarrow uvAw \mid uAvw \mid uvw$.
 - c For $R \rightarrow A$, we add $R \rightarrow \epsilon$ unless we had previously removed $R \rightarrow \epsilon$.

① Add a new start variable S_0 with the rule $S_0 \rightarrow S$, where S is the original start variable.

② Remove every $A \rightarrow \epsilon$, where $A \neq S_0$.

For each occurrence of A on the right-hand side of a rule, we add a new rule with that occurrence deleted.

a $R \rightarrow uAv$ will be replaced by $R \rightarrow uv$;

b Do the above operation for each occurrence of A : e.g. $R \rightarrow uAvAw$, will be replaced by $R \rightarrow uvAw \mid uAvw \mid uvw$.

c For $R \rightarrow A$, we add $R \rightarrow \epsilon$ unless we had previously removed $R \rightarrow \epsilon$.

③ Remove every $A \rightarrow B$.

Whenever a rule $B \rightarrow u$ appears, where u is a string of variables and terminals, we add the rule $A \rightarrow u$ unless this was previously removed.

Proof of the Theorem (cont.)

- ① New start variable S_0 .
- ② Remove every $A \rightarrow \epsilon$.
- ③ Remove every $A \rightarrow B$.

Proof of the Theorem (cont.)

- ① New start variable S_0 .
- ② Remove every $A \rightarrow \epsilon$.
- ③ Remove every $A \rightarrow B$.
- ④ Replace each rule $A \rightarrow u_1u_2 \cdots u_k$ with $k \geq 3$ and each u_i is a variable or terminal with the rules

$$A \rightarrow u_1A_1, A_1 \rightarrow u_2A_2, A_2 \rightarrow u_2A_3, \dots, \text{ and } A_{k-2} \rightarrow u_{k-1}u_k.$$

The A_i s are new variables. We replace any terminal u_i with the new variable U_i and add $U_i \rightarrow u_i$.

An Example

Applying the first step to make a new start variable appears on the right.

$$S \rightarrow ASA \mid aB$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b \mid \varepsilon$$

An Example

Applying the first step to make a new start variable appears on the right.

$$\begin{array}{l} S \rightarrow ASA \mid aB \\ A \rightarrow B \mid S \\ B \rightarrow b \mid \varepsilon \end{array}$$

$$\begin{array}{l} S_0 \rightarrow S \\ S \rightarrow ASA \mid aB \\ A \rightarrow B \mid S \\ B \rightarrow b \mid \varepsilon \end{array}$$

An Example

Remove ε -rules $B \rightarrow \varepsilon$ on the left, and $A \rightarrow \varepsilon$ on the right.

$$\begin{array}{lll} S_0 & \rightarrow & S \\ S & \rightarrow & ASA \mid aB \mid a \\ A & \rightarrow & B \mid S \mid \varepsilon \\ B & \rightarrow & b \mid \varepsilon \end{array}$$

An Example

Remove ε -rules $B \rightarrow \varepsilon$ on the left, and $A \rightarrow \varepsilon$ on the right.

$$\begin{array}{lcl} S_0 & \rightarrow & S \\ S & \rightarrow & ASA \mid aB \mid a \\ A & \rightarrow & B \mid S \mid \varepsilon \\ B & \rightarrow & b \mid \varepsilon \end{array}$$

$$\begin{array}{lcl} S_0 & \rightarrow & S \\ S & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \mid S \\ A & \rightarrow & B \mid S \mid \varepsilon \\ B & \rightarrow & b \end{array}$$

An Example

Remove unit rules $S \rightarrow S$ on the left, and $S_0 \rightarrow S$ on the right.

$$S_0 \rightarrow S$$

$$S \rightarrow ASA \mid aB \mid a \mid AS \mid SA$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

An Example

Remove unit rules $S \rightarrow S$ on the left, and $S_0 \rightarrow S$ on the right.

$$\begin{array}{lcl} S_0 & \rightarrow & S \\ S & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ A & \rightarrow & B \mid S \\ B & \rightarrow & b \end{array}$$

$$\begin{array}{lcl} S_0 & \rightarrow & S \mid ASA \mid aB \mid a \mid AS \mid SA \\ S & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ A & \rightarrow & B \mid S \\ B & \rightarrow & b \end{array}$$

An Example

Remove unit rules $A \rightarrow B$ on the left, and $A \rightarrow S$ on the right.

$$\begin{array}{lcl} S_0 & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ S & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ A & \rightarrow & B \mid S \mid b \\ B & \rightarrow & b \end{array}$$

An Example

Remove unit rules $A \rightarrow B$ on the left, and $A \rightarrow S$ on the right.

$$\begin{array}{lcl} S_0 & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ S & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ A & \rightarrow & B \mid S \mid b \\ B & \rightarrow & b \end{array}$$

$$\begin{array}{lcl} S_0 & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ S & \rightarrow & ASA \mid aB \mid a \mid AS \mid SA \\ A & \rightarrow & S \mid b \mid ASA \mid aB \mid a \mid AS \mid SA \\ B & \rightarrow & b \end{array}$$

An Example

Convert the remaining rules into the proper form by adding additional variables and rules.

$$\begin{array}{lcl} S_0 & \rightarrow & AA_1 \mid UB \mid a \mid SA \mid AS \\ S & \rightarrow & AA_1 \mid UB \mid a \mid SA \mid AS \\ A & \rightarrow & b \mid AA_1 \mid UB \mid a \mid SA \mid AS \\ A_1 & \rightarrow & SA \\ U & \rightarrow & a \\ B & \rightarrow & b \end{array}$$

Theorem

If G is a context-free grammar in Chomsky normal form then any $w \in L(G)$ such that $w \neq \varepsilon$ can be derived from the start state in exactly $2|w| - 1$ steps.

Pushdown automata

Definition

A pushdown automata (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- ① Q is a finite set of states,
- ② Σ is a finite set of input alphabet,
- ③ Γ is a finite set of stack alphabet,
- ④ $\delta : Q \times \Sigma_\epsilon \times \Gamma_\epsilon \rightarrow \mathcal{P}(Q \times \Gamma_\epsilon)$ is the transition function,
- ⑤ $q_0 \in Q$ is the start state,
- ⑥ $F \subseteq Q$ is the set of accept states.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a pushdown automaton. M accepts input w if w can be written as $w = w_1 \dots w_m$, and sequences of states $r_0, r_1, \dots, r_m \in Q$ and strings $s_0, s_1, \dots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a pushdown automaton. M accepts input w if w can be written as $w = w_1 \dots w_m$, and sequences of states $r_0, r_1, \dots, r_m \in Q$ and strings $s_0, s_1, \dots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.

- ① $r_0 = q_0$ and $s_0 = \epsilon$.
- ② For $i = 0, \dots, m - 1$, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_\epsilon$ and $t \in \Gamma^*$.
- ③ $r_m \in F$.

PDA for $\{0^n 1^n \mid n \geq 0\}$

$$Q = \{q_1, q_2, q_3, q_4\},$$

$$\Sigma = \{0, 1\},$$

$$\Gamma = \{0, \$\},$$

q_1 is the start state

$$F = \{q_1, q_4\}$$

The transition function is defined by the following table, wherein blank entries signify \emptyset

Input: Stack:	0			1			ϵ		
	0	\$	ϵ	0	\$	ϵ	0	\$	ϵ
q_1							$\{(q_2, \$)\}$		
q_2	$\{(q_2, 0)\}$			$\{(q_3, \epsilon)\}$					
q_3				$\{(q_3, \epsilon)\}$			$\{(q_4, \epsilon)\}$		
q_4									

Theorem

A language is context free if and only if some pushdown automaton recognizes it.

Every Context-Free Language Can Be Recognized by a PDA

SHANGHAI JIAO TONG
UNIVERSITY

- ① Place the marker symbol $\$$ and the start variable on the stack.

Every Context-Free Language Can Be Recognized by a PDA

- ① Place the marker symbol $\$$ and the start variable on the stack.
- ② Repeat the following steps forever.

Every Context-Free Language Can Be Recognized by a PDA

- ① Place the marker symbol $\$$ and the start variable on the stack.
- ② Repeat the following steps forever.
 - ① If the top of stack is a variable symbol A , nondeterministically select one of the rules for A and substitute A by the string on the right-hand side of the rule.

Every Context-Free Language Can Be Recognized by a PDA

- ① Place the marker symbol $\$$ and the start variable on the stack.
- ② Repeat the following steps forever.
 - ① If the top of stack is a variable symbol A , nondeterministically select one of the rules for A and substitute A by the string on the right-hand side of the rule.
 - ② If the top of stack is a terminal symbol a , read the next symbol from the input and compare it to a .

Every Context-Free Language Can Be Recognized by a PDA

- ① Place the marker symbol $\$$ and the start variable on the stack.
- ② Repeat the following steps forever.
 - ① If the top of stack is a variable symbol A , nondeterministically select one of the rules for A and substitute A by the string on the right-hand side of the rule.
 - ② If the top of stack is a terminal symbol a , read the next symbol from the input and compare it to a . If they match, repeat.

Every Context-Free Language Can Be Recognized by a PDA

- ① Place the marker symbol $\$$ and the start variable on the stack.
- ② Repeat the following steps forever.
 - ① If the top of stack is a variable symbol A , nondeterministically select one of the rules for A and substitute A by the string on the right-hand side of the rule.
 - ② If the top of stack is a terminal symbol a , read the next symbol from the input and compare it to a . If they match, repeat. If they do not match, reject on this branch of the nondeterminism.

Every Context-Free Language Can Be Recognized by a PDA

- ① Place the marker symbol $\$$ and the start variable on the stack.
- ② Repeat the following steps forever.
 - ① If the top of stack is a variable symbol A , nondeterministically select one of the rules for A and substitute A by the string on the right-hand side of the rule.
 - ② If the top of stack is a terminal symbol a , read the next symbol from the input and compare it to a . If they match, repeat. If they do not match, reject on this branch of the nondeterminism.
 - ③ If the top of stack is the symbol $\$$, enter the accept state. Doing so accepts the input if it has all been read.

Push a long string in “one step”

Let q and r be states of the PDA and let $a \in \Sigma_\varepsilon$ and $s \in \Gamma_\varepsilon$.

We want the PDA to go from q to r when it reads a and pops s . Furthermore, we want it to push the entire string $u = u_1 \dots u_l$ on the stack at the same time.

$$\begin{aligned}(q_1, u_l) &\in \delta(q, a, s) \\ \delta(q_1, \varepsilon, \varepsilon) &= \{(q_2, u_{l-1})\} \\ \delta(q_2, \varepsilon, \varepsilon) &= \{(q_3, u_{l-2})\} \\ &\vdots \\ \delta(q_{l-1}, \varepsilon, \varepsilon) &= \{(r, u_1)\}\end{aligned}$$

We use the abbreviation

$$(r, u) \in \delta(q, a, s)$$

We construct a pushdown automaton P as follows.

The states of P are

$$Q = \{q_{start}, q_{loop}, q_{accept}\} \cup E$$

where E is the set of states we need for the construction in the previous slide.

We construct a pushdown automaton P as follows.

The states of P are

$$Q = \{q_{start}, q_{loop}, q_{accept}\} \cup E$$

where E is the set of states we need for the construction in the previous slide.

For the transition function,

- $\delta(q_{start}, \varepsilon, \varepsilon) = \{(q_{loop}, S\$)\}$
- $\delta(q_{loop}, \varepsilon, A) = \{(q_{loop}, w) \mid A \rightarrow w \text{ is a rule in the given grammar}\}$
- $\delta(q_{loop}, a, a) = \{(q_{loop}, \varepsilon)\}$
- $\delta(q_{loop}, \varepsilon, \$) = \{(q_{accept}, \varepsilon)\}$

Every Language Recognized by a PDA is Context Free

Let P be a PDA. For each pair of states p and q , the grammar has a variable A_{pq} which generates all strings taking P from p with an empty stack to q with an empty stack.

Every Language Recognized by a PDA is Context Free

Let P be a PDA. For each pair of states p and q , the grammar has a variable A_{pq} which generates all strings taking P from p with an empty stack to q with an empty stack.

We modify P such that:

- ① It has a single accept state q_{accept} .
- ② It empties its stack before accepting.
- ③ Each transition either pushes a symbol onto the stack or pops one off the stack, but it does not do both at the same time.

Inductive Definition of A_{pq}

Two possibilities occur during P 's computation on an input string x .

- ① The symbol popped at the end is the symbol that was pushed at the beginning. Then, we have a rule $A_{pq} \rightarrow aA_{rs}b$.
- ② Otherwise, we have a rule $A_{pq} \rightarrow A_{pr}A_{rq}$.

Proof (1)

Assume $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$.

The variables of the desired context-free grammar G are

$$\{A_{pq} \mid p, q \in Q\}$$

in which the start variable is $A_{q_0, q_{accept}}$.

Proof (1)

Assume $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$.

The variables of the desired context-free grammar G are

$$\{A_{pq} \mid p, q \in Q\}$$

in which the start variable is $A_{q_0, q_{accept}}$.

For the rules:

R1 For each $p, q, r, s \in Q$, $u \in \Gamma$, and $a, b \in \Sigma_\varepsilon$, if $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$, then G has the rule

$$A_{pq} \rightarrow aA_{rs}b$$

Proof (1)

Assume $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$.

The variables of the desired context-free grammar G are

$$\{A_{pq} \mid p, q \in Q\}$$

in which the start variable is $A_{q_0, q_{accept}}$.

For the rules:

R1 For each $p, q, r, s \in Q$, $u \in \Gamma$, and $a, b \in \Sigma_\varepsilon$, if $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$, then G has the rule

$$A_{pq} \rightarrow aA_{rs}b$$

R2 For each $p, q, r \in Q$, G has the rule

$$A_{pq} \rightarrow A_{pr}A_{rq}$$

Proof (1)

Assume $P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{accept}\})$.

The variables of the desired context-free grammar G are

$$\{A_{pq} \mid p, q \in Q\}$$

in which the start variable is $A_{q_0, q_{accept}}$.

For the rules:

R1 For each $p, q, r, s \in Q$, $u \in \Gamma$, and $a, b \in \Sigma_\varepsilon$, if $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$, then G has the rule

$$A_{pq} \rightarrow aA_{rs}b$$

R2 For each $p, q, r \in Q$, G has the rule

$$A_{pq} \rightarrow A_{pr}A_{rq}$$

R3 For each $p \in Q$, G has the rule

$$A_{pp} \rightarrow \varepsilon$$

Claim

If A_{pq} generates x , the x can bring P from p with empty stack to q with empty stack.

Claim

If A_{pq} generates x , the x can bring P from p with empty stack to q with empty stack.

Basis: The derivation has 1 step. A derivation with a single step must use a rule whose right-hand side contains no variables. The only rules in G where no variables occur on the right-hand side are $A_{pp} \rightarrow \varepsilon$.

Claim

If A_{pq} generates x , the x can bring P from p with empty stack to q with empty stack.

Basis: The derivation has 1 step. A derivation with a single step must use a rule whose right-hand side contains no variables. The only rules in G where no variables occur on the right-hand side are $A_{pp} \rightarrow \varepsilon$.

Induction step: The derivation has $k + 1$ step with $A_{pq} \Rightarrow^* x$. Thus, either $A_{pq} \Rightarrow aA_{rs}b$ or $A_{pq} \Rightarrow A_{pr}A_{rq}$.

In case $A_{pq} \Rightarrow aA_{rs}b$ the claim follows from (R1) and the induction hypothesis.

Claim

If A_{pq} generates x , the x can bring P from p with empty stack to q with empty stack.

Basis: The derivation has 1 step. A derivation with a single step must use a rule whose right-hand side contains no variables. The only rules in G where no variables occur on the right-hand side are $A_{pp} \rightarrow \varepsilon$.

Induction step: The derivation has $k + 1$ step with $A_{pq} \Rightarrow^* x$. Thus, either $A_{pq} \Rightarrow aA_{rs}b$ or $A_{pq} \Rightarrow A_{pr}A_{rq}$.

In case $A_{pq} \Rightarrow aA_{rs}b$ the claim follows from (R1) and the induction hypothesis.

For $A_{pq} \Rightarrow A_{pr}A_{rq}$, there exist y and z with $x = yz$ such that $A_{pr} \Rightarrow^* y$ and $A_{qr} \Rightarrow^* z$ both in at most k steps. The claim then again follows from the induction hypothesis.

Proof (3)

Claim

If x can bring P from p with empty stack to q with empty stack, then A_{pq} generates x .

Proof (3)

Claim

If x can bring P from p with empty stack to q with empty stack, then A_{pq} generates x .

Basis: The computation has 0 steps.

$x = \varepsilon$ and we have $A_{pp} \rightarrow \varepsilon$.

Proof (3)

Claim

If x can bring P from p with empty stack to q with empty stack, then A_{pq} generates x .

Basis: The computation has 0 steps.

$x = \varepsilon$ and we have $A_{pp} \rightarrow \varepsilon$.

Induction step:

If the stack is always non-empty in the middle of the computation, then:

- There is a u which is pushed in the first move and popped in the last move.
- In the first move, let a be the input and r be the state after; in the last move let b be the input and s be the state before.
- We deduce $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$. Hence, G has the rule $A_{pq} \rightarrow aA_{rs}b$.

Claim

If x can bring P from p with empty stack to q with empty stack, then A_{pq} generates x .

Basis: The computation has 0 steps.

$x = \varepsilon$ and we have $A_{pp} \rightarrow \varepsilon$.

Induction step:

If the stack is always non-empty in the middle of the computation, then:

- There is a u which is pushed in the first move and popped in the last move.
- In the first move, let a be the input and r be the state after; in the last move let b be the input and s be the state before.
- We deduce $(r, u) \in \delta(p, a, \varepsilon)$ and $(q, \varepsilon) \in \delta(s, b, u)$. Hence, G has the rule $A_{pq} \rightarrow aA_{rs}b$.

We can conclude by the induction hypothesis.

If the stack becomes empty in the middle of the computation, the claim then again follows from the induction hypothesis.

Closure Properties

Closure Properties

SHANGHAI JIAO TONG
UNIVERSITY

The context-free languages are closed under **union**, **concatenation**, and **kleene star**.

Closure Properties - Union

Proof.

$N_1 = (V_1, \Sigma_1, R_1, S_1)$ recognize A_1 ,

$N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

Closure Properties - Union

Proof.

$N_1 = (V_1, \Sigma_1, R_1, S_1)$ recognize A_1 ,

$N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

Union. S is a new symbol. Let $N = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, where
 $R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$.

Closure Properties - Concatenation

Proof.

$N_1 = (V_1, \Sigma_1, R_1, S_1)$ recognize A_1 ,

$N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

Proof.

$N_1 = (V_1, \Sigma_1, R_1, S_1)$ recognize A_1 ,

$N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

Concatenation. S is a new symbol. Let $N = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, where $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}$.

Closure Properties - Kleene Star

SHANGHAI JIAO TONG
UNIVERSITY

Proof.

$N_1 = (V_1, \Sigma_1, R_1, S_1)$ recognize A_1 .

Proof.

$N_1 = (V_1, \Sigma_1, R_1, S_1)$ recognize A_1 .

Kleene Star. S is a new symbol. Let $N = (V_1 \cup \{S\}, \Sigma_1, R, S)$, where $R = R_1 \cup \{S \rightarrow \epsilon, S \rightarrow SS_1\}$.

Pumping Lemma

Lemma (Pumping Lemma)

If A is a context-free language, then there is a number p (the *pumping length*) where, if s is any string in A of length at least p , then s may be divided as $s = uvxyz$ satisfying the conditions

- ① for each $i \geq 0$, $uv^i xy^i z \in A$,
- ② $|vy| > 0$,
- ③ $|vxy| < p$.

Let G be a CFG for CFL A . Let b be the maximum number of symbols in the right-hand side of a rule.

Let G be a CFG for CFL A . Let b be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than b children.

Let G be a CFG for CFL A . Let b be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h , the length of the string generated is at most b^h .

Let G be a CFG for CFL A . Let b be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h , the length of the string generated is at most b^h .

If a generated string is at least $b^h + 1$ long, each of its parse trees must be at least $h + 1$ high.

Let G be a CFG for CFL A . Let b be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h , the length of the string generated is at most b^h .

If a generated string is at least $b^h + 1$ long, each of its parse trees must be at least $h + 1$ high.

We choose the pumping length

$$p = b^{|V|+1}$$

Let G be a CFG for CFL A . Let b be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than b children.

If the height of the parse tree is at most h , the length of the string generated is at most b^h .

If a generated string is at least $b^h + 1$ long, each of its parse trees must be at least $h + 1$ high.

We choose the pumping length

$$p = b^{|V|+1}$$

For any string $s \in A$ with $|s| \geq p$, any of its parse trees must be at least $|V| + 1$ high.

Let τ be one parse tree of s with smallest number of nodes, whose height is at least $|V| + 1$. So τ has a path from the root to a leaf of length $|V| + 1$ with $|V| + 2$ nodes.

Proof

Let τ be one parse tree of s with smallest number of nodes, whose height is at least $|V| + 1$. So τ has a path from the root to a leaf of length $|V| + 1$ with $|V| + 2$ nodes. One variable R must appear at least twice in the last $|V| + 1$ variable nodes on this path.

Proof

Let τ be one parse tree of s with smallest number of nodes, whose height is at least $|V| + 1$. So τ has a path from the root to a leaf of length $|V| + 1$ with $|V| + 2$ nodes. One variable R must appear at least twice in the last $|V| + 1$ variable nodes on this path.

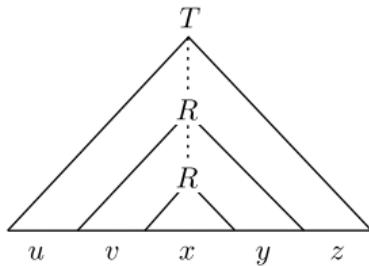
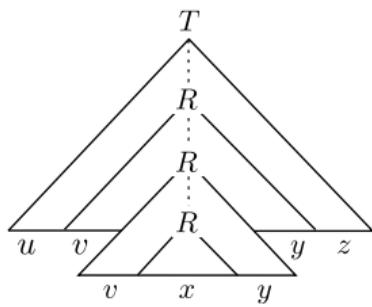
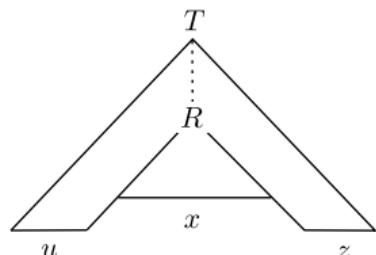
We divide s into $uvxyz$:

Let τ be one parse tree of s with smallest number of nodes, whose height is at least $|V| + 1$. So τ has a path from the root to a leaf of length $|V| + 1$ with $|V| + 2$ nodes. One variable R must appear at least twice in the last $|V| + 1$ variable nodes on this path.

We divide s into $uvxyz$:

- u from the leftmost leaf of τ to the leaf left next to the leftmost leaf of the subtree hanging on the first R ,
- v from the leftmost leaf of the subtree hanging on the first R to the leaf left next to the leftmost leaf of the subtree hanging on the second R ,
- x for all the leaves of the subtree hanging on the second R ,
- y from the leaf right next to the rightmost leaf of the subtree hanging on the second R to the rightmost leaf of the subtree hanging on the first R ,
- z from the leaf right next to the rightmost leaf of the subtree hanging on the first R to the rightmost leaf of τ .

Pumping Lemma



Proof

Condition 1. Replace the subtree of the second R by the subtree of the first R would validate that for each $i \geq 0$, $uv^i xy^i z \in A$.

Condition 1. Replace the subtree of the second R by the subtree of the first R would validate that for each $i \geq 0$, $uv^i xy^i z \in A$.

Condition 2. If $|vy| = 0$, i.e., $v = y = \epsilon$, then τ cannot have the smallest number of nodes.

Condition 1. Replace the subtree of the second R by the subtree of the first R would validate that for each $i \geq 0$, $uv^i xy^i z \in A$.

Condition 2. If $|vy| = 0$, i.e., $v = y = \epsilon$, then τ cannot have the smallest number of nodes.

Condition 3. To see $|vxy| \leq p = b^{|V|+1}$, note that vxy is generated by the first R . We can always choose R so that its last two occurrences fall within the bottom $|V| + 1$ high. A tree of this height can generate a string of length at most $b^{|V|+1} = p$.

Example

SHANGHAI JIAO TONG
UNIVERSITY

$\{a^n b^n c^n \mid n \geq 0\}$ is not context free.

Example

$\{a^n b^n c^n \mid n \geq 0\}$ is not context free.

Assume otherwise, and let p be the pumping length. Consider $s = a^p b^p c^p$ and divide it to $uvxyz$ according to the Pumping Lemma.

Example

$\{a^n b^n c^n \mid n \geq 0\}$ is not context free.

Assume otherwise, and let p be the pumping length. Consider $s = a^p b^p c^p$ and divide it to $uvxyz$ according to the Pumping Lemma.

- When both v and y contain only one type of symbols, i.e., one of a, b, c , then uv^2xy^2z cannot contain equal number of a 's, b 's, and c 's.

Example

$\{a^n b^n c^n \mid n \geq 0\}$ is not context free.

Assume otherwise, and let p be the pumping length. Consider $s = a^p b^p c^p$ and divide it to $uvxyz$ according to the Pumping Lemma.

- When both v and y contain only one type of symbols, i.e., one of a, b, c , then uv^2xy^2z cannot contain equal number of a 's, b 's, and c 's.
- If either v or y contains more than one type of symbols, then uv^2xy^2z would have symbols interleaved.

Example

$\{ww \mid w \in \{0,1\}^*\}$ is not context free.

Example

$\{ww \mid w \in \{0,1\}^*\}$ is not context free.

Assume otherwise, and let p be the pumping length. Consider $s = 0^p 1^p 0^p 1^p$ and divide it to $uvxyz$ with $|vxy| \leq p$.

Example

$\{ww \mid w \in \{0,1\}^*\}$ is not context free.

Assume otherwise, and let p be the pumping length. Consider $s = 0^p 1^p 0^p 1^p$ and divide it to $uvxyz$ with $|vxy| \leq p$.

- If vxy occurs only in the first half of s , then the second half of yv^2xy^2z must start with an 1. This is impossible.

Example

$\{ww \mid w \in \{0,1\}^*\}$ is not context free.

Assume otherwise, and let p be the pumping length. Consider $s = 0^p 1^p 0^p 1^p$ and divide it to $uvxyz$ with $|vxy| \leq p$.

- If vxy occurs only in the first half of s , then the second half of yv^2xy^2z must start with an 1. This is impossible.
- Similarly vxy cannot occur only in the second half of s .

Example

$\{ww \mid w \in \{0,1\}^*\}$ is not context free.

Assume otherwise, and let p be the pumping length. Consider $s = 0^p 1^p 0^p 1^p$ and divide it to $uvxyz$ with $|vxy| \leq p$.

- If vxy occurs only in the first half of s , then the second half of yv^2xy^2z must start with an 1. This is impossible.
- Similarly vxy cannot occur only in the second half of s .
- If vxy straddles the midpoint of s , then pumping s to the form $0^p 1^i 0^j 1^p$ cannot ensure $i = j = p$.

Other Computations

Theorem

The intersection of a context-free language with a regular language is a context-free language.

Theorem

The intersection of a context-free language with a regular language is a context-free language.

Proof

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Proof

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

Proof

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

- $Q = Q_1 \times Q_2$;

Proof

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

- $Q = Q_1 \times Q_2$;
- $s = (s_1, s_2)$;

Proof

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

- $Q = Q_1 \times Q_2$;
- $s = (s_1, s_2)$;
- $F = (F_1, F_2)$, and

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

- $Q = Q_1 \times Q_2$;
- $s = (s_1, s_2)$;
- $F = (F_1, F_2)$, and
- Δ is defined as follows

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

- $Q = Q_1 \times Q_2$;
- $s = (s_1, s_2)$;
- $F = (F_1, F_2)$, and
- Δ is defined as follows

- ① for each PDA rule $(q_1, a, \beta) \rightarrow (p_1, r)$ and each $q_2 \in Q_2$ add the following rule to Δ

$$((q_1, q_2), a, \beta) \rightarrow ((p_1, \delta_2(q_2, a)), r)$$

Proof

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$.

Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

- $Q = Q_1 \times Q_2$;
- $s = (s_1, s_2)$;
- $F = (F_1, F_2)$, and
- Δ is defined as follows

- ① for each PDA rule $(q_1, a, \beta) \rightarrow (p_1, r)$ and each $q_2 \in Q_2$ add the following rule to Δ

$$((q_1, q_2), a, \beta) \rightarrow ((p_1, \delta_2(q_2, a)), r)$$

- ② for each PDA rule $(q_1, \epsilon, \beta) \rightarrow (p_1, r)$ and each $q_2 \in Q_2$ add the following rule to Δ

$$((q_1, q_2), \epsilon, \beta) \rightarrow ((p_1, q_2), r)$$

Negative Results

SHANGHAI JIAO TONG
UNIVERSITY

The context free language are not closed under intersection or complementation.

Negative Results

The context free language are not closed under intersection or complementation.

Proof.

Clearly $\{a^n b^n c^m \mid m, n \geq 0\}$ and $\{a^m b^n c^n \mid m, n \geq 0\}$ are both CFL. However their intersection, $\{a^n b^n c^n \mid n \geq 0\}$, is not.

Negative Results

The context free language are not closed under intersection or complementation.

Proof.

Clearly $\{a^n b^n c^m \mid m, n \geq 0\}$ and $\{a^m b^n c^n \mid m, n \geq 0\}$ are both CFL. However their intersection, $\{a^n b^n c^n \mid n \geq 0\}$, is not.

To the second part of the statement,

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

rules out the closure under complementation.