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Decidable problems concerning regular languages (1)

ADFA = {⟨B,w⟩ | B is a DFA that accepts input string w}

That is, for every w ∈ Σ∗ and DFA B, w ∈ L(B) ⇐⇒ ⟨B,w⟩ ∈ ADFA

Theorem

ADFA is a decidable language.
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Proof (1)

M on ⟨B,w⟩:

1 Simulate B on input w.

2 If the simulation ends in an accepting state, then accept. If it ends in a nonaccepting state, then
reject.
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Proof (2)

Some implementation details:

• The representation of B is a list of Q, Σ, δ, q0, and F .
• When M receives its input, M first determines whether it properly represents a DFA B and a

string w. If not, M rejects.
• Then M carries out the simulation directly.

1 It keeps track of B’s current state and position in w by writing this information down on its tape.
2 Initially, B’s current state is q0 and current input position is the leftmost symbol of w.
3 The states and position are updated according to the specified transition function δ.
4 When M finishes processing the last symbol of w, M accepts the input if B is in an accepting state;

M rejects the input if B is in a nonaccepting state.
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Decidable problems concerning regular languages (2)

ANFA = {⟨B,w⟩ | B is a NFA that accepts input string w}

That is, for every w ∈ Σ∗ and NFA B, w ∈ L(B) ⇐⇒ ⟨B,w⟩ ∈ ANFA

Theorem

ANFA is a decidable language.
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Proof (1)

The simplest proof is to simulate an NFA using nondeterministic Turing machine, as we used the
(deterministic) Turing machine M to simulate a DFA.

Instead we design a (deterministic) Turing machine N which uses M as a subroutine.
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Proof (2)

N on ⟨B,w⟩:

1 Convert NFA B to an equivalent DFA C using the subset construction.

2 Run TM M from the previous Theorem on input ⟨C,w⟩.
3 If M accepts, then accept; otherwise reject.
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Decidable problems concerning regular languages (3)

AREX = {⟨R,w⟩ | R is a regular expression that generates w}

Theorem

AREX is a decidable language.
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Proof

P on ⟨R,w⟩:

1 Convert R to an equivalent NFA A.

2 Run TM N from the previous theorem on input ⟨A,w⟩.
3 If N accepts, then accept; otherwise reject.

10/42



Testing the emptiness

EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}

Theorem

EDFA is a decidable language.
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Proof

A DFA accepts some string if and only if reaching an accept state from the start state by traveling
along the arrows of the DFA is possible.

T on ⟨A⟩:

• Mark the start state of A.
• Repeat until no new states get marked:
• Mark any state that has a transition coming into it from any state that is already marked.
• If no accept state is marked, then accept; otherwise, reject.
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Testing equality

EQDFA = {⟨A,B⟩ | A are B are DFAs and L(A) = L(B)}

Theorem

EQDFA is a decidable language.
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Proof (1)

From A and B we construct a DFA C such that

L(C) = (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

i.e., the symmetric difference between L(A) and L(B). Then

L(A) = L(B) ⇐⇒ L(C) = ∅
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Proof (2)

F on ⟨A,B⟩:

1 Construct DFA C from A and B.

2 Run TM T from the previous Theorem on input ⟨C⟩.
3 If T accepts, then accept; otherwise reject.
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Decidability on Context-Free Languages
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Decidable problems concerning context-free languages

ACFG = {⟨R,w⟩ | R is a CFG that generates w}

Theorem

ACFG is a decidable language.
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Proof

For CFG G and string w, we want to determine whether G generates w.

One idea is to use G to go through all derivations to determine whether any is a derivation of w.
Then if G does not generate w, this algorithm would never halt. It gives a Turing machine that is a
recognizer, but not a decider.
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Recall: Chomsky Normal Form

A context-free grammar is in Chomsky normal form if every rule is of the form

A → BC

A → a

where a is any terminal and A, B and C are any variables, except that B and C may be not the start
variable. In addition, we permit the rule S → ϵ, where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Theorem

If G is a context-free grammar in Chomsky normal form then any w ∈ L(G) such that w ̸= ε can be
derived from the start state in exactly 2|w| − 1 steps.
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Proof

S on ⟨G,w⟩:

1 Convert G to an equivalent grammar in Chomsky normal form.

2 List all derivations with 2|w| − 1 steps; except if |w| = 0, then instead check whether there is a
rule S → ϵ.

3 If any of these derivations generates w, then accept; otherwise reject.
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Testing the emptiness

ECFG = {⟨G⟩ | G is a CFG and L(G) = ∅}

Theorem

ECFG is a decidable language.
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Proof (1)

To determine whether L(G) = ∅, the algorithm might try going through all possible w’s, one by one.
But there are infinitely many w’s to try, so this method could end up running forever.

Instead, the algorithm solves a more general problem: determine for each variable whether that
variable is capable of generating a string of terminals.

• First, the algorithm marks all the terminal symbols in the grammar.
• It scans all the rules of the grammar. If it finds a rule that permits some variable to be replaced

by some string of symbols, all of which are already marked, then it marks this variable.
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Proof (2)

R on ⟨G⟩:

• Mark all terminal symbols in R.
• Repeat until no new variables get marked:
• Mark any variable A where G contains a rule A → U1 . . . Uk and all Ui’s have already been

marked.
• If the start variable is not marked, then accept; otherwise, reject.
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Testing equality

EQCFG = {⟨G,H⟩ | G are H are CFGs and L(G) = L(H)}

Theorem

EQCFG is a not decidable language.
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Inclusion result

Theorem

Every context-free language is decidable.

Recall using Chomsky normal form, we have shown:

Theorem

ACFG = {⟨R,w⟩ | R is a CFG that generates w}

is a decidable language.

25/42



Undecidability
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Testing equality between context-free languages

EQCFG = {⟨G,H⟩ | G are Hare CFGs and L(G) = L(H)}

Theorem

EQCFG is a not decidable language.

27/42



Testing membership of Turing recognized languages

ATM = {⟨M,w⟩ | M is a TM and M accepts w}

Theorem

ATM is not decidable.
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Turing recognizable

Theorem

ATM is Turing-recognizable.

U on ⟨M,w⟩:

1 Simulate M on w.

2 If M enters its accept state, then accept, if it enters its reject state, reject.

U is a universal Turing machine first proposed by Alan Turing in 1936. This machine is called
universal because it is capable of simulating any other Turing machine from the description of that
machine.
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The Diagonalization Method
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Functions

Definition

Let f : A → B be a function.
• f is one-to-one if f(a) ̸= f(a′) whenever a ̸= a′.
• f is onto if for every b ∈ B there is an a ∈ A with f(a) = b.

A and B are the same size if there is a one-to-one, onto function d : A → B.

A function that is both one-to-one and onto is a correspondence.

injective one-to-one
surjective onto
bijective one-to-one and onto
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Cantor’s Theorem

Definition

A is countable if it is either finite or has the same size as N.

Theorem

R is not countable.
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Cantor’s Theorem

Corollary

Some languages are not Turing-recognizable.
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Proof

We fix an alphabet Σ.

• Σ∗ is countable.
• The set of all TMs is countable, as every M can be identified with a string ⟨M⟩.
• The set of all languages over Σ is uncountable.
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An undecidable language

ATM = {⟨M,w⟩ | M is a TM and M accepts w}

Theorem

ATM is undecidable.
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Proof (1)

Assume H is a decider for ATM . That is

H(⟨M,w⟩) =

{
accept if M accepts w

reject if M does not accept

36/42



Proof (2)

D on ⟨M⟩, where M is a TM:

1 Run H on input ⟨M, ⟨M⟩⟩.
2 Output the opposite of what H outputs. That is, if H accepts, then reject; and if H rejects, then

accept.

D(⟨M⟩) =

{
accept if M does not accept ⟨M⟩
reject if M accepts ⟨M⟩

D(⟨D⟩) =

{
accept if D does not accept ⟨D⟩
reject if D accepts ⟨D⟩
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Proof (3)

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ . . .
M1 accept accept
M2 accept accept accept accept
M3 . . .
M4 accept accept

...
...

Entry i, j is accept if Mi accepts ⟨Mj⟩.

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ . . .
M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject . . .
M4 accept accept reject reject

...
...

Entry i, j is the value of H on input Mi, ⟨Mj⟩
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Proof (4)

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ . . . ⟨D⟩ . . .
M1 accept reject accept reject accept
M2 accept accept accept accept . . . accept
M3 reject reject reject reject reject . . .
M4 accept accept reject reject accept

...
...

...
D reject reject accept accept ?
...

...

If D is in the figure, then a contradiction occurs at ?
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co-Turing-recognizable

Definition

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

Theorem

A language is decidable if and only if it is Turing recognizable and co-Turing-cognizable.
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Proof

If A is decidable, then both A and A are Turing-recognizable: Any decidable language is
Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M1 and M2 respectively.

The TM M on input w:

1 Run M1 and M2 on input w in parallel.

2 If M1 accepts, then accept; and if M2 accepts, then reject.

Clearly, M decides A.
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Corollary

Corollary

ATM is not Turing-recognizable.

Proof.

ATM is Turing-recognizable but not decidable.
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