

Mathematical Foundation of Computer Sciences IV

Decidability and Undecidability

Guoqiang Li
School of Software

SHANGHAI JIAO TONG
UNIVERSITY

Decidability on Regular Languages

Decidable problems concerning regular languages (1)

$$A_{DFA} = \{\langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w\}$$

That is, for every $w \in \Sigma^*$ and DFA B , $w \in L(B) \iff \langle B, w \rangle \in A_{DFA}$

$$A_{DFA} = \{\langle B, w \rangle \mid B \text{ is a DFA that accepts input string } w\}$$

That is, for every $w \in \Sigma^*$ and DFA B , $w \in L(B) \iff \langle B, w \rangle \in A_{DFA}$

Theorem

A_{DFA} is a decidable language.

Proof (1)

SHANGHAI JIAO TONG
UNIVERSITY

M on $\langle B, w \rangle$:

Proof (1)

M on $\langle B, w \rangle$:

- ① Simulate B on input w .
- ② If the simulation ends in an accepting state, then accept. If it ends in a nonaccepting state, then reject.

Proof (2)

SHANGHAI JIAO TONG
UNIVERSITY

Some implementation details:

Proof (2)

Some implementation details:

- The representation of B is a list of Q , Σ , δ , q_0 , and F .

Some implementation details:

- The representation of B is a list of Q , Σ , δ , q_0 , and F .
- When M receives its input, M first determines whether it properly represents a DFA B and a string w . If not, M rejects.

Some implementation details:

- The representation of B is a list of Q , Σ , δ , q_0 , and F .
- When M receives its input, M first determines whether it properly represents a DFA B and a string w . If not, M rejects.
- Then M carries out the simulation directly.

Some implementation details:

- The representation of B is a list of Q , Σ , δ , q_0 , and F .
- When M receives its input, M first determines whether it properly represents a DFA B and a string w . If not, M rejects.
- Then M carries out the simulation directly.
 - ① It keeps track of B 's current state and position in w by writing this information down on its tape.

Some implementation details:

- The representation of B is a list of Q , Σ , δ , q_0 , and F .
- When M receives its input, M first determines whether it properly represents a DFA B and a string w . If not, M rejects.
- Then M carries out the simulation directly.
 - ① It keeps track of B 's current state and position in w by writing this information down on its tape.
 - ② Initially, B 's current state is q_0 and current input position is the leftmost symbol of w .

Some implementation details:

- The representation of B is a list of Q , Σ , δ , q_0 , and F .
- When M receives its input, M first determines whether it properly represents a DFA B and a string w . If not, M rejects.
- Then M carries out the simulation directly.
 - ① It keeps track of B 's current state and position in w by writing this information down on its tape.
 - ② Initially, B 's current state is q_0 and current input position is the leftmost symbol of w .
 - ③ The states and position are updated according to the specified transition function δ .

Some implementation details:

- The representation of B is a list of Q , Σ , δ , q_0 , and F .
- When M receives its input, M first determines whether it properly represents a DFA B and a string w . If not, M rejects.
- Then M carries out the simulation directly.
 - ① It keeps track of B 's current state and position in w by writing this information down on its tape.
 - ② Initially, B 's current state is q_0 and current input position is the leftmost symbol of w .
 - ③ The states and position are updated according to the specified transition function δ .
 - ④ When M finishes processing the last symbol of w , M accepts the input if B is in an accepting state; M rejects the input if B is in a nonaccepting state.

Decidable problems concerning regular languages (2)

$$A_{NFA} = \{\langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w\}$$

That is, for every $w \in \Sigma^*$ and NFA B , $w \in L(B) \iff \langle B, w \rangle \in A_{NFA}$

$$A_{NFA} = \{\langle B, w \rangle \mid B \text{ is a NFA that accepts input string } w\}$$

That is, for every $w \in \Sigma^*$ and NFA B , $w \in L(B) \iff \langle B, w \rangle \in A_{NFA}$

Theorem

A_{NFA} is a decidable language.

Proof (1)

SHANGHAI JIAO TONG
UNIVERSITY

Proof (1)

The simplest proof is to simulate an NFA using nondeterministic Turing machine, as we used the (deterministic) Turing machine M to simulate a DFA.

Instead we design a (deterministic) Turing machine N which uses M as a subroutine.

Proof (2)

SHANGHAI JIAO TONG
UNIVERSITY

N on $\langle B, w \rangle$:

Proof (2)

N on $\langle B, w \rangle$:

- ① Convert NFA B to an equivalent DFA C using the subset construction.
- ② Run TM M from the previous Theorem on input $\langle C, w \rangle$.
- ③ If M accepts, then accept; otherwise reject.

$$A_{REX} = \{\langle R, w \rangle \mid R \text{ is a regular expression that generates } w\}$$

Theorem

A_{REX} is a decidable language.

P on $\langle R, w \rangle$:

- ① Convert R to an equivalent NFA A .
- ② Run TM N from the previous theorem on input $\langle A, w \rangle$.
- ③ If N accepts, then accept; otherwise reject.

Testing the emptiness

SHANGHAI JIAO TONG
UNIVERSITY

$$E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$$

$$E_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$$

Theorem

E_{DFA} is a decidable language.

Proof

A DFA accepts some string if and only if **reaching an accept state from the start state by traveling along the arrows of the DFA** is possible.

A DFA accepts some string if and only if **reaching an accept state from the start state by traveling along the arrows of the DFA** is possible.

T on $\langle A \rangle$:

- Mark the start state of A .
- Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.
- If no accept state is marked, then accept; otherwise, reject.

Testing equality

SHANGHAI JIAO TONG
UNIVERSITY

$$EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$$

$$EQ_{DFA} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$$

Theorem

EQ_{DFA} is a decidable language.

Proof (1)

From A and B we construct a DFA C such that

$$L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$$

i.e., the **symmetric difference** between $L(A)$ and $L(B)$. Then

$$L(A) = L(B) \iff L(C) = \emptyset$$

Proof (2)

F on $\langle A, B \rangle$:

- ① Construct DFA C from A and B .
- ② Run TM T from the previous Theorem on input $\langle C \rangle$.
- ③ If T accepts, then accept; otherwise reject.

Decidability on Context-Free Languages

$$A_{CFG} = \{\langle R, w \rangle \mid R \text{ is a CFG that generates } w\}$$

Theorem

A_{CFG} is a decidable language.

For CFG G and string w , we want to determine whether G generates w .

One idea is to use G to go through all derivations to determine whether any is a derivation of w . Then if G does not generate w , this algorithm would never halt. It gives a Turing machine that is a **recognizer**, but not a **decider**.

Recall: Chomsky Normal Form

A context-free grammar is in **Chomsky normal form** if every rule is of the form

$$\begin{array}{l} A \rightarrow BC \\ A \rightarrow a \end{array}$$

where a is any terminal and A , B and C are any variables, except that B and C may be not the start variable. In addition, we permit the rule $S \rightarrow \epsilon$, where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Theorem

If G is a context-free grammar in Chomsky normal form then any $w \in L(G)$ such that $w \neq \epsilon$ can be derived from the start state in exactly $2|w| - 1$ steps.

S on $\langle G, w \rangle$:

- ① Convert G to an equivalent grammar in Chomsky normal form.
- ② List all derivations with $2|w| - 1$ steps; except if $|w| = 0$, then instead check whether there is a rule $S \rightarrow \epsilon$.
- ③ If any of these derivations generates w , then accept; otherwise reject.

Testing the emptiness

SHANGHAI JIAO TONG
UNIVERSITY

$$E_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

$$E_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset\}$$

Theorem

E_{CFG} is a decidable language.

Proof (1)

To determine whether $L(G) = \emptyset$, the algorithm might try going through all possible w 's, one by one. But there are infinitely many w 's to try, so this method could end up running forever.

Instead, the algorithm solves a more general problem: **determine for each variable whether that variable is capable of generating a string of terminals.**

- First, the algorithm marks all the terminal symbols in the grammar.
- It scans all the rules of the grammar. If it finds a rule that permits some variable to be replaced by some string of symbols, all of which are already marked, then it marks this variable.

Proof (2)

R on $\langle G \rangle$:

- Mark all terminal symbols in R .
- Repeat until no new variables get marked:
 - Mark any variable A where G contains a rule $A \rightarrow U_1 \dots U_k$ and all U_i 's have already been marked.
 - If the start variable is not marked, then accept; otherwise, reject.

Testing equality

SHANGHAI JIAO TONG
UNIVERSITY

$$EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ are } H \text{ are CFGs and } L(G) = L(H)\}$$

$$EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ are } H \text{ are CFGs and } L(G) = L(H)\}$$

Theorem

EQ_{CFG} is a **not** decidable language.

Theorem

Every context-free language is decidable.

Recall using Chomsky normal form, we have shown:

Theorem

$A_{CFG} = \{\langle R, w \rangle \mid R \text{ is a CFG that generates } w\}$

is a decidable language.

Undecidability

$$EQ_{CFG} = \{\langle G, H \rangle \mid G \text{ are } H \text{ are CFGs and } L(G) = L(H)\}$$

Theorem

EQ_{CFG} is a **not** decidable language.

Testing membership of Turing recognized languages

SHANGHAI JIAO TONG
UNIVERSITY

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$

Theorem

A_{TM} is **not** decidable.

Theorem

A_{TM} is Turing-recognizable.

U on $\langle M, w \rangle$:

- 1 Simulate M on w .
- 2 If M enters its accept state, then accept, if it enters its reject state, reject.

Theorem

A_{TM} is Turing-recognizable.

U on $\langle M, w \rangle$:

- 1 Simulate M on w .
- 2 If M enters its accept state, then accept, if it enters its reject state, reject.

U is a **universal Turing machine** first proposed by Alan Turing in 1936. This machine is called **universal** because it is capable of simulating any other Turing machine from the description of that machine.

The Diagonalization Method

Definition

Let $f : A \rightarrow B$ be a function.

- f is **one-to-one** if $f(a) \neq f(a')$ whenever $a \neq a'$.
- f is **onto** if for every $b \in B$ there is an $a \in A$ with $f(a) = b$.

A and B are the same size if there is a one-to-one, onto function $d : A \rightarrow B$.

A function that is both one-to-one and onto is a **correspondence**.

injective	one-to-one
surjective	onto
bijective	one-to-one and onto

Definition

A is **countable** if it is either finite or has the same size as \mathbb{N} .

Definition

A is **countable** if it is either finite or has the same size as \mathbb{N} .

Theorem

\mathbb{R} is not countable.

Corollary

Some languages are not Turing-recognizable.

Proof

SHANGHAI JIAO TONG
UNIVERSITY

We fix an alphabet Σ .

We fix an alphabet Σ .

- Σ^* is countable.

We fix an alphabet Σ .

- Σ^* is countable.
- The set of all TMs is countable, as every M can be identified with a string $\langle M \rangle$.

We fix an alphabet Σ .

- Σ^* is countable.
- The set of all TMs is countable, as every M can be identified with a string $\langle M \rangle$.
- The set of all languages over Σ is uncountable.

An undecidable language

SHANGHAI JIAO TONG
UNIVERSITY

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$

Theorem

A_{TM} is undecidable.

Proof (1)

Assume H is a decider for A_{TM} . That is

$$H(\langle M, w \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ accepts } w \\ \text{reject} & \text{if } M \text{ does not accept} \end{cases}$$

Proof (2)

SHANGHAI JIAO TONG
UNIVERSITY

D on $\langle M \rangle$, where M is a TM:

Proof (2)

D on $\langle M \rangle$, where M is a TM:

- ① Run H on input $\langle M, \langle M \rangle \rangle$.

Proof (2)

D on $\langle M \rangle$, where M is a TM:

- ① Run H on input $\langle M, \langle M \rangle \rangle$.
- ② Output the opposite of what H outputs. That is, if H accepts, then reject; and if H rejects, then accept.

Proof (2)

D on $\langle M \rangle$, where M is a TM:

- ① Run H on input $\langle M, \langle M \rangle \rangle$.
- ② Output the opposite of what H outputs. That is, if H accepts, then reject; and if H rejects, then accept.

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

Proof (2)

D on $\langle M \rangle$, where M is a TM:

- ① Run H on input $\langle M, \langle M \rangle \rangle$.
- ② Output the opposite of what H outputs. That is, if H accepts, then reject; and if H rejects, then accept.

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

$$D(\langle D \rangle) = \begin{cases} \text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \text{reject} & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

Proof (3)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$...
M_1	accept		accept		
M_2	accept	accept	accept	accept	
M_3					...
M_4	accept	accept			
	⋮		⋮		

Entry i, j is accept if M_i accepts $\langle M_j \rangle$.

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$...
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	...
M_4	accept	accept	reject	reject	
	⋮		⋮		

Entry i, j is the value of H on input $M_i, \langle M_j \rangle$

Proof (4)

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$...	$\langle D \rangle$...
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept	...	accept	
M_3	reject	reject	reject	reject		reject	...
M_4	accept	accept	reject	reject		accept	
⋮			⋮			⋮	
D	reject	reject	accept	accept		?	
⋮			⋮				

If D is in the figure, then a contradiction occurs at ?

co-Turing-recognizable

Definition

A language is **co-Turing-recognizable** if it is the complement of a Turing-recognizable language.

Definition

A language is **co-Turing-recognizable** if it is the complement of a Turing-recognizable language.

Theorem

A language is decidable if and only if it is Turing recognizable and co-Turing-cognizable.

If A is decidable, then both A and \overline{A} are Turing-recognizable: Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

If A is decidable, then both A and \overline{A} are Turing-recognizable: Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and \overline{A} are Turing recognizable by M_1 and M_2 respectively.

If A is decidable, then both A and \overline{A} are Turing-recognizable: Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and \overline{A} are Turing recognizable by M_1 and M_2 respectively.

The TM M on input w :

If A is decidable, then both A and \overline{A} are Turing-recognizable: Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and \overline{A} are Turing recognizable by M_1 and M_2 respectively.

The TM M on input w :

- ① Run M_1 and M_2 on input w in parallel.

If A is decidable, then both A and \overline{A} are Turing-recognizable: Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and \overline{A} are Turing recognizable by M_1 and M_2 respectively.

The TM M on input w :

- ① Run M_1 and M_2 on input w in parallel.
- ② If M_1 accepts, then accept; and if M_2 accepts, then reject.

If A is decidable, then both A and \overline{A} are Turing-recognizable: Any decidable language is Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and \overline{A} are Turing recognizable by M_1 and M_2 respectively.

The TM M on input w :

- ① Run M_1 and M_2 on input w in parallel.
- ② If M_1 accepts, then accept; and if M_2 accepts, then reject.

Clearly, M decides A .

Corollary

$\overline{A_{TM}}$ is not Turing-recognizable.

Corollary

$\overline{A_{TM}}$ is not Turing-recognizable.

Proof.

A_{TM} is Turing-recognizable but not decidable.