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Decidable problems concerning regular languages (1)
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Apra = {(B,w) | B is a DFA that accepts input string w}

That is, for every w € ¥* and DFA B, w € L(B) < (B,w) € Apra
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Apra = {(B,w) | B is a DFA that accepts input string w}

That is, for every w € ¥* and DFA B, w € L(B) < (B,w) € Apra

Apra is a decidable language. I
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Proof (1)
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M on (B,w):
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Proof (1)
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M on (B, w):

@ Simulate B on input w.

reject.

@ If the simulation ends in an accepting state, then accept. If it ends in a nonaccepting state, then
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Proof (2)
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Some implementation details:
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Proof (2)
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Some implementation details:

® The representation of B is a list of Q, 3, 6, qo, and F.
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Proof (2)
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Some implementation details:

® The representation of B is a list of Q, 3, 6, qo, and F.

string w. If not, M rejects.

* When M receives its input, M first determines whether it properly represents a DFA B and a
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Proof (2)
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Some implementation details:

® The representation of B is a list of Q, 3, 6, qo, and F.
[ ]

When M receives its input, M first determines whether it properly represents a DFA B and a
string w. If not, M rejects.

Then M carries out the simulation directly.
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Proof (2)
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Some implementation details:

® The representation of B is a list of Q, 3, 6, qo, and F.
[ ]

string w. If not, M rejects.

When M receives its input, M first determines whether it properly represents a DFA B and a
Then M carries out the simulation directly.

© It keeps track of B’s current state and position in w by writing this information down on its tape.
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Proof (2)
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Some implementation details:
°

® The representation of B is a list of Q, 3, 6, qo, and F.

When M receives its input, M first determines whether it properly represents a DFA B and a
string w. If not, M rejects.
Then M carries out the simulation directly.

© It keeps track of B’s current state and position in w by writing this information down on its tape.
@ Initially, B’s current state is go and current input position is the leftmost symbol of w.
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Proof (2)
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Some implementation details:

® The representation of B is a list of Q, 3, 6, qo, and F.
* When M receives its input, M first determines whether it properly represents a DFA B and a
string w. If not, M rejects.

Then M carries out the simulation directly.

© It keeps track of B’s current state and position in w by writing this information down on its tape.
@ Initially, B’s current state is go and current input position is the leftmost symbol of w.
© The states and position are updated according to the specified transition function §.
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Proof (2)
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Some implementation details:

® The representation of B is a list of Q, 3, 6, qo, and F.

* When M receives its input, M first determines whether it properly represents a DFA B and a
string w. If not, M rejects.
® Then M carries out the simulation directly.

© It keeps track of B’s current state and position in w by writing this information down on its tape.
@ Initially, B’s current state is go and current input position is the leftmost symbol of w.
© The states and position are updated according to the specified transition function §.

O When M finishes processing the last symbol of w, M accepts the input if B is in an accepting state;
M rejects the input if B is in a nonaccepting state.
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Decidable problems concerning regular languages (2)
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Anra = {{B,w) | Bis a NFA that accepts input string w}

That is, for every w € ¥* and NFA B, w € L(B) < (B,w) € Anra
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Decidable problems concerning regular languages (2)
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Anra = {{B,w) | Bis a NFA that accepts input string w}

That is, for every w € ¥* and NFA B, w € L(B) < (B,w) € Anra

Anra is a decidable language. I
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Proof (1)
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Proof (1)
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The simplest proof is to simulate an NFA using nondeterministic Turing machine, as we used the
(deterministic) Turing machine M to simulate a DFA.

Instead we design a (deterministic) Turing machine N which uses M as a subroutine.
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Proof (2)
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N on (B, w):
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Proof (2)
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N on (B,w):

@ Convert NFA B to an equivalent DFA C using the subset construction
® Run TM M from the previous Theorem on input (C, w).
® If M accepts, then accept; otherwise reject.
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Decidable problems concerning regular languages (3)
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Arex = {{R,w) | Ris aregular expression that generates w}

Argx Is a decidable language. I
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Proof
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Pon (R, w):

@ Convert R to an equivalent NFA A.

® Run TM N from the previous theorem on input (A4, w).
® If N accepts, then accept; otherwise reject.
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Testing the emptiness
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Epra = {(A) | AisaDFA and L(A) = 0}
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Testing the emptiness
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Epra = {(A) | AisaDFA and L(A) = 0}

A
Epra is adecidable language. I
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A DFA accepts some string if and only if reaching an accept state from the start state by traveling
along the arrows of the DFA is possible.
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A DFA accepts some string if and only if reaching an accept state from the start state by traveling
along the arrows of the DFA is possible.

T on (A):
® Mark the start state of A.

® Repeat until no new states get marked:
° Mark any state that has a transition coming into it from any state that is already marked.

® |f no accept state is marked, then accept; otherwise, reject.
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Testing equality
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EQpra ={(A,B) | Aare Bare DFAs and L(A) = L(B)}
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Testing equality
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EQpra ={(A,B) | Aare Bare DFAs and L(A) = L(B)}

A
EQpra is a decidable language. I
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Proof (1)
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From A and B we construct a DFA C such that

L(C) =

(L(A) N L(B)) U (L(A) N L(B))
i.e., the symmetric difference between L(A) and L(B). Then

L(A)

L(B) <= L(C) =0
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Proof (2)

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Fon (A, B):

© Construct DFA C from A and B.

® Run TM T from the previous Theorem on input (C').
® If T accepts, then accept; otherwise reject.
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Decidability on Context-Free Languages
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Decidable problems concerning context-free languages
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Acra = {(R,w) | Ris a CFG that generates w}

Acra Is a decidable language. I
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For CFG G and string w, we want to determine whether G generates w.

One idea is to use G to go through all derivations to determine whether any is a derivation of w.

Then if G does not generate w, this algorithm would never halt. It gives a Turing machine that is a
recognizer, but not a decider.
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A context-free grammar is in Chomsky normal form if every rule is of the form

A — BC
A — a

where a is any terminal and A, B and C' are any variables, except that B and C' may be not the start
variable. In addition, we permit the rule S — ¢, where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Theorem

If G is a context-free grammar in Chomsky normal form then any w € L(G) such that w # € can be
derived from the start state in exactly 2|w| — 1 steps.
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Proof
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Son (G,w):

@ Convert G to an equivalent grammar in Chomsky normal form.
rule S — e.

@ List all derivations with 2|w| — 1 steps; except if |w| = 0, then instead check whether there is a

@ If any of these derivations generates w, then accept; otherwise reject.
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Testing the emptiness
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Ecrc = {(G) | Gis a CFG and L(G) = 0}
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Testing the emptiness
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Ecrc = {(G) | Gis a CFG and L(G) = 0}

G
Ecrc is a decidable language. I
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Proof (1)
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To determine whether L(G) = 0, the algorithm might try going through all possible w’s, one by one
But there are infinitely many w’s to try, so this method could end up running forever.

Instead, the algorithm solves a more general problem: determine for each variable whether that
variable is capable of generating a string of terminals.

® First, the algorithm marks all the terminal symbols in the grammar.

e |t scans all the rules of the grammar. If it finds a rule that permits some variable to be replaced
by some string of symbols, all of which are already marked, then it marks this variable.
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Proof (2)
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Ron (G):

® Mark all terminal symbols in R.

® Repeat until no new variables get marked:
[ ]

marked.

Mark any variable A where G contains arule A — U, ... U, and all U;’s have already been
e [f the start variable is not marked, then accept; otherwise, reject.
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Testing equality
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EQcrc ={(G,H) | G are H are CFGs and L(G) = L(H)}
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Testing equality
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EQcrc ={(G,H) | G are H are CFGs and L(G) = L(H)}

G
EQcrc is anot decidable language. I
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Inclusion result
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Every context-free language is decidable.
Recall using Chomsky normal form, we have shown:

is a decidable language.

Acra = {(R,w) | R is a CFG that generates w}
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Testing equality between context-free languages
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EQcrc ={(G,H) | G are Hare CFGs and L(G) = L(H)}
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Testing membership of Turing recognized languages
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Ary = {(M,w) | M isaTM and M accepts w}
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Testing membership of Turing recognized languages
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Ary = {(M,w) | M isaTM and M accepts w}

A7y is not decidable. I
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Turing recognizable
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Arw is Turing-recognizable. I
U on (M,w):

© Simulate M on w.

@ If M enters its accept state, then accept, if it enters its reject state, reject.
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Turing recognizable
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Arw is Turing-recognizable.
U on (M,w):

© Simulate M on w.

U is a universal Turing machine first proposed by Alan Turing in 1936. This machine is called
machine.

@ If M enters its accept state, then accept, if it enters its reject state, reject.
universal because it is capable of simulating any other Turing machine from the description of that
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The Diagonalization Method
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Functions

Definition

Let f: A — B be a function.

e fisone-to-oneif f(a) # f(a’) whenever a # a’.

® fisontoif for every b € B thereis an a € A with f(a) =b

A and B are the same size if there is a one-to-one, onto functiond : A — B.

A function that is both one-to-one and onto is a correspondence

injective one-to-one
surjective  onto
bijective

one-to-one and onto
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Cantor’s Theorem
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Definition

A is countable if it is either finite or has the same size as N.
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Cantor’s Theorem
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Definition

A is countable if it is either finite or has the same size as N.

R is not countable. I
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Cantor’s Theorem
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Some languages are not Turing-recognizable. I
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Proof
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We fix an alphabet X.
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Proof
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We fix an alphabet X.

® >* is countable.

® The set of all TMs is countable, as every M can be identified with a string (

M).
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Proof
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We fix an alphabet X.

® >* is countable.
® The set of all TMs is countable, as every M can be identified with a string (
® The set of all languages over X is uncountable.

M).
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An undecidable language
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Ary = {(M,w) | M isaTM and M accepts w}
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An undecidable language
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Ary = {(M,w) | M isaTM and M accepts w}

A7 IS undecidable. I
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Proof (1)
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Assume H is a decider for Ary,. That is

H((M, w)) = { accept

if M accepts w
reject

if M does not accept
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Proof (2)

D on (M), where M is a TM:
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Proof (2)

D on (M), where M is a TM:
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© Run H on input (M, (M))
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Proof (2)
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@ Run H oninput (M, (M))
accept.

® Output the opposite of what H outputs. That is, if H accepts, then reject; and if H rejects, then
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Proof (2)
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D on (M), where M is a TM:
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@ Run H oninput (M, (M))
accept.

® Output the opposite of what H outputs. That is, if H accepts, then reject; and if H rejects, then

D((M)) = { accept

if M does not accept (M)
reject

if M accepts (M)
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Proof (2)

D on (M), where M is a TM:
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@ Run H oninput (M, (M))
accept.

® Output the opposite of what H outputs. That is, if H accepts, then reject; and if H rejects, then

D((M)) = { accept

if M does not accept (M)
reject

if M accepts (M)

D((DY) = { accept

if D does not accept (D)
reject

if D accepts (D)
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(M) (Mz)  (Ms)  (My)

M, accept accept
M, accept accept accept accept
M3

M, accept accept

Entry 4, j is accept if M; accepts (M;).

(My)  (Ma)  (Ms) (M)
M, accept reject accept reject
M, accept accept accept accept
Ms reject reject reject  reject
M, accept accept reject reject

Entry i, j is the value of H on input M;, (M;)
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(M) (M)  (Ms)  (Ma) ... (D)
M, accept reject accept reject accept
M, accept accept accept accept ... accept
Ms  reject reject reject reject reject
M,y accept accept reject reject accept
D reject reject accept accept ?

If D is in the figure, then a contradiction occurs at ?
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co-Turing-recognizable

)
f SHANGHAI JIAO TONG

UNIVERSITY

Definition

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.
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co-Turing-recognizable
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Definition

A language is co-Turing-recognizable if it is the complement of a Turing-recognizable language.

A language is decidable if and only if it is Turing recognizable and co-Turing-cognizable.
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Proof
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If Ais decidable, then both A and A are Turing-recognizable: Any decidable language is
Turing-recognizable, and the complement of a decidable language also is decidable.
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Proof
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If Ais decidable, then both A and A are Turing-recognizable: Any decidable language is
Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M; and M- respectively.
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If Ais decidable, then both A and A are Turing-recognizable: Any decidable language is
Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M; and M- respectively.

The TM M on input w:
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If Ais decidable, then both A and A are Turing-recognizable: Any decidable language is
Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M; and M- respectively.

The TM M on input w:

© Run M, and M- on input w in parallel.
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If Ais decidable, then both A and A are Turing-recognizable: Any decidable language is
Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M; and M- respectively.

The TM M on input w:

© Run M, and M- on input w in parallel.

@ If M, accepts, then accept; and if M» accepts, then reject.
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If Ais decidable, then both A and A are Turing-recognizable: Any decidable language is
Turing-recognizable, and the complement of a decidable language also is decidable.

Assume both A and A are Turing recognizable by M; and M- respectively.

The TM M on input w:

© Run M, and M- on input w in parallel.
@ If M, accepts, then accept; and if M» accepts, then reject.

Clearly, M decides A.
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Corollary
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At is not Turing-recognizable.
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Corollary
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At is not Turing-recognizable.

Proof.

Ar is Turing-recognizable but not decidable.
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