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Textbook
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Michael Sipser, 2012
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Regular Languages and DFA
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Deterministic Finite Automata

Definition (DFA)
A deterministic finite automaton (DFA) is a 5-tuple (@, %, 6, qo, F'), where
@ Q is afinite set called the states,
® X is a finite set called the alphabet,
® J: Q x X — Q is the transition function,
O ¢ € Q is the start state, and
@ F C Q is the set of accept states.

1) SHANGHAI JIAO TONG

.

«0O0» «F» « =



Formal Definition of Computation
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Let M = (Q, X, 6, qo, F) be a finite automaton and let w = wiws . . . w, be a string with w; € X for all
i € [n]. Then M accepts w if a sequence of states 7o, 1,
@ 70 = qo,

., T in Q exists with:
(2] 5(r¢,w¢+1) = Ti+1 fOI”L'ZO,...,nfl, and
®@r,ckl.
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Formal Definition of Computation
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Let M = (Q, X, 6, qo, F) be a finite automaton and let w = wiws . . . w, be a string with w; € X for all
i € [n]. Then M accepts w if a sequence of states 7o, 1,
@ 70 = qo,

., in Q exists with
(2] 5(r¢,w¢+1) = Ti+1 fori = 0,...,n—1, and
®@r,ckl.

We say that M recognizes A if

A = {w | M accepts w}
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Regular Languages
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Definition (Regular languages)

A language is called regular if some finite automaton recognizes it.
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Examples of Regular Languages
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{(ab)™ [ Vn > 0}
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Examples of Regular Languages
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{(ab)™ [ Vn > 0}

{a"b" | ¥n > 0}
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Examples of Regular Languages

)
f SHANGHAI JIAO TONG

UNIVERSITY

{(aty" | ¥n > 0}
{a"b" | ¥n > 0}

{ab,a’b?,...a™b"}
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The Regular Operators
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Definition

follows:

Let A and B be languages. We define the regular operations union, concatenation, and star as
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The Regular Operators
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Definition

follows:

® Union: AUB ={z |z € Aorxz € B}.

Let A and B be languages. We define the regular operations union, concatenation, and star as
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The Regular Operators

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Definition

follows:

® Union: AUB ={z |z € Aorxz € B}.

Let A and B be languages. We define the regular operations union, concatenation, and star as

e Concatenation: Ao B={zy |z € Aandy € B}.
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The Regular Operators
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Definition

follows:

Let A and B be languages. We define the regular operations union, concatenation, and star as
® Union: AUB ={z |z € Aorxz € B}.

e Concatenation: Ao B={zy |z € Aandy € B}.

e Kleene star: A* = {z1z2 ...z, | k > 0and each z; € A}.
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Closure under Union
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The class of regular languages is closed under the union operation.

In other words, if A1w and A, are regular languages, so is A1 U As.
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Pre-Proof
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Y= X9

Fori € [2] let M; = (Qs, %4, 03, qo, , Fi) recognize A;. We can assume without loss of generality
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Pre-Proof
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Y= X9

Fori € [2] let M; = (Qs, %4, 03, qo, , Fi) recognize A;. We can assume without loss of generality
® letaec Xy — 2.
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Pre-Proof

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Y= X9

Fori € [2] let M; = (Qs, %4, 03, qo, , Fi) recognize A;. We can assume without loss of generality
® letaec Xy — 2.

® We add 1 (r,a) = Ttrap, Where ry.qp is @ new state with 1 (7¢rap, w) = 7rap fOr every w.
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Proof
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We construct M = (Q, X, 4, qo, F') to recognize A; U As:

QO Q=01 xQ2={(r1,m2) | r1 € Qrand rz € Q2}.
0O X=>% =3.
® Foreach (r1,r2) € @ and a € ¥ we let

0((r1,72),a) = (61(r1,a), d62(r2, a))
0 o = (q1,2)-

O F=(F1 xQ2)U(Q1 X Fo) ={(r1,m2) | 11 € Fi0orry € Fa}.
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A Sample
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R,
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Closure under Concatenation
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The class of regular languages is closed under the concatenation operation.

In other words, if A, and A, are regular languages, so is Ay o As.
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Closure under Concatenation
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The class of regular languages is closed under the concatenation operation

In other words, if A, and A, are regular languages, so is Ay o As.

We prove the above theorem by nondeterministic finite automata.
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Nondeterministic Finite Automata
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Nondeterminism

Definition (NFA)

A nondeterministic finite automaton (NFA) is a 5-tuple (Q, %, 4, qo, F'), where
@ Q is afinite set called the states,
® X is a finite set called the alphabet,
O J: Q x 3. — Z(Q) is the transition function, where >. = > U {=}
O ¢ € Q is the start state, and
@ F C Q is the set of accept states.

)
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Formal Definition of Computation
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Let N = (Q, %, 9, qo, F') be a nondeterministic finite automaton and let w = wiws . .. wy, be a string
with w; € 3. forall ¢ € [m]. Then N accepts w if a sequence of states 7o, 1,
@ 70 = qo,

., m in Q exists with:
® i cori,wq)fori=0,...,m—1,and
®@r.ckl.
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Formal Definition of Computation
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Let N = (Q, %, 9, qo, F') be a nondeterministic finite automaton and let w = wiws . .. wy, be a string
with w; € 3. forall ¢ € [m]. Then N accepts w if a sequence of states 7o, 1,
@ 70 = qo,

., m in Q exists with:
® i cori,wq)fori=0,...,m—1,and
®@r.ckl.

We say that N recognizes A if

A = {w | M accepts w}
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Examples of NFA

0 1 2
(Go—=—(0)—=—~)

DA



Examples of NFA

0 1 2
(Go—=—(0)—=—~)

Accepts {07172*}
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Examples of NFA
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Accepts {01%2*}

= hac



Examples of NFA

0 1 2
(8)—=—(0)—=—3)
Accepts {0*1"2*}
Accepts {ab™,ac’}
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Equivalence of NFAs and DFAs
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Every NFA has an equivalent DFA, i.e., they recognize the same language. I
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Proof

Proof.
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Proof

Proof.
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Let N = (Q, %, 4, qo, F') be the NFA recognizing some language A. We construct a DFA
M= (Q',%,¥,q, F') recognizing the same A.
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Proof

Proof.
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Let N = (Q, %, 4, qo, F') be the NFA recognizing some language A. We construct a DFA
M= (Q',%,¥,q, F') recognizing the same A.
First assume N has no “¢”

€ arrows.
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Proof

Proof.
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Let N = (Q, %, 4, qo, F') be the NFA recognizing some language A. We construct a DFA
M= (Q',%,¥,q, F') recognizing the same A.
First assume N has no “¢”

€ arrows.

0 Q' =2(Q).
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Proof

Proof.
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Let N = (Q, %, 4, qo, F') be the NFA recognizing some language A. We construct a DFA
M= (Q',%,¥,q, F') recognizing the same A.
First assume N has no “¢”

€ arrows.

0 Q' =2(Q).

® Let R € Q' and a € X. Then we define

§'(R,a)={q€ Q| q¢€(r,a) for some r € R}
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Proof

Proof.
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Let N = (Q, %, 4, qo, F') be the NFA recognizing some language A. We construct a DFA
M= (Q',%,¥,q, F') recognizing the same A.
First assume N has no “¢”

€ arrows.

0 Q' =2(Q).

® Let R € Q' and a € X. Then we define

§'(R,a)={q€ Q| q¢€(r,a) for some r € R}
© ¢ = {0}
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Proof

Proof.
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Let N = (Q, %, 4, qo, F') be the NFA recognizing some language A. We construct a DFA
M= (Q',%,¥,q, F') recognizing the same A.
First assume N has no “¢”

€ arrows.

0 Q' =2(Q).

® Let R € Q' and a € X. Then we define

® ¢ = {qw}

§'(R,a)={q€ Q| q¢€(r,a) for some r € R}
O F ={RcQ |RNF #(}.
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Determinization
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Proof (cont’d)
Proof.

=
Now we allow “c”arrows.
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Forevery Re Q’,i.e., RC Q, let

E(R)={qe€ Q| qcanbe reached from R

by traveling along 0 and more ¢ arrows }
0Q =2Q).

® Let R € Q' and a € 3. Then we define

8 (R,a) ={q€ Q| qe E((r,a)) for some r € R}
© 9 = E({q0})-
O F ={RcQ |RNF #(}.
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Example of c-Transition Removal
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O
G —=—(—=—(%)

Put a new transition < where —2

If go < gy for q; € F, add go to F°
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Example of c-Transition Removal

SHANGHAI JIAO TONG
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Put a new transition < where —2

If go < gy for q; € F, add go to F°

0 1 2
—~(q 0,1 @ 1.2 a,
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Corollary
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A language is regular if and on if some nondeterministic finite automaton recognizes it.
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Fori € [2] let N; = (Qi, %, ds, qi, F) recognize A;. We construct an N = (Q, X, 4, qo, F) to recognize
A U As:

QO Q={p}UuQi1UQa.
® (o is the start state.

® F=FULF;.
O Foranyge Qandanya € X,

di(q,a) qe @

_ ) d2q,a) qEQe
o) = {@1,¢2} g=qoanda=¢
0 g=qoanda # ¢
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Closure under Concatenation
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The class of regular languages is closed under the concatenation operation. I
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Fori € [2] let N; = (Q:, 34, ds, ¢i, F) recognize A;. We constructan N = (Q, %, 4, 1, F>) to
recognize A; o As:

QO Q=Q1UQa.

® The start state ¢; is the same as the start state of V;.

© The accept states F; are the same as the accept states of N,.
O Foranyge Qandanya € X,

d1(g, a) e — I
5(g, a) = 01(q, a) ge Franda #¢
’ 51(q,a)U{q2} g€ Franda=¢
d2(q, a) q€ Q2

«0O0>» «F» «=)» <
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Closure under Kleene Star
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The class of regular languages is closed under the star operation. I
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Let N1 = (Q1,%, 01, q1, F1) recognize A;. We construct an N = (Q, X, §, qo, F') to recognize Aj:

0 Q={0}UQ1

® The start state qo is the new start state.
© F={q}UTr.

O Foranyge Qandanya € X,

d1(g, a) e — I
01(q, a) g€ Franda #e¢
0(q,a) = 01(qg,a) U{q1} gqeFianda=¢
{a1} g=qanda=¢
0 g=qoanda #¢
COr «Fr 2> (2> E HAE
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Regular Expression

Definition

We say that R is a regular expression if R is
© aforsomea € Y,
(2 I
e 0,
O (R1 U R3), where R; and R, are regular expressions,
O (Ri1 0 R»), where R; and R; are regular expressions,
® R}, where R; is a regular expression.
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Regular Expression

Definition

We say that R is a regular expression if R is
© aforsomea € Y,
(2 I
e 0,
O (R1 U R3), where R; and R, are regular expressions,
O (Ri1 0 R»), where R; and R; are regular expressions,
® R}, where R; is a regular expression.

5
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We often write R1 R instead of (R: o R) if no confusion arises.
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Language Defined by Regular Expressions

P

regular expression R | language L(R)
a {a}
€ {e}
0 0
Ri1 URs L(R1) U L(R2)
Ri o R» L(R1)0L(R2)
R L(Rl)*
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Equivalence with Finite Automata
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A language is regular if and only if some regular expression describes it. I
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The Languages Defined by Regular Expressions Are Regular
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b # a.

O R=aLetN={aq1,9},%,6,q1,{q2}), where 6(q1,a) = {g=} and 6(r,b) = 0, for all r # g1 or

«0O0>» «F» « >
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The Languages Defined by Regular Expressions Are Regular

O R=aLetN={aq1,9},%,6,q1,{q2}), where 6(q1,a) = {g=} and 6(r,b) = 0, for all r # g1 or
b # a.

® R=c:LetN =({q1},%,6,q1,{q:}), where §(r,b) = (), for all  and b.

® R=0:Let N = ({a:1},%,6,q1,0), where §(r,b) = 0, for all r and b.

© R =R, URy: L(R) = L(R1) U L(R).

© R=Ri0oRy: L(R) = L(R1) o L(R2).

O R=R;: L(R) = L(R:)".

«0O0>» «F» «=» « =>»
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Regular languages can be defined by regular expressions

=
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We need generalized nondeterministic finite automata (GNFA)- nondeterministic finite automata
where in the transition arrows may have any regular expressions as labels.

@ The start state has transition arrows going to every other state but no arrows coming in from
any other state.

® There is only a single accept state, and it has arrows coming in from every other state but no

arrows going to any other state. Furthermore, the accept state is not the same as the start state
also from each state to itself.

® Except for the start and accept states, one arrow goes from every state to every other state and

«0O0>» «F» « =»
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Generalized nondeterministic finite automata

Definition

A GNFA is a 5-tuple (Q, X, 9, gstart, Gaccept), Where
® (is afinite set of states,

® Y is a finite alphabet,

expressions,

® §:(Q — {qaccept}) X (Q — {gstart}) — R is the transition function, where R is the set of regular
® gstart iS the start state, and
® gaccept IS the accept state.
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i
v

DA



Formal definition of computation
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qo,q1, - - ., qr €xists such that

A GNFA accepts a string w € ¥ if w = wiw2 ... wy, Where each w; € ¥* and a sequence of states
® g0 = ¢start IS the start state,
® g1 = qaccept iS the accept state, and

e for each i € [k], we have w; € L(R;), where R; = 6(gi—1,¢i)-

«0O0>» «F» « =»
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Regular languages can be defined by regular expressions

5
\‘ SHANGHAI JIAO TONG
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Let M be the DFA for language A.

® We convert M to a GNFA G by adding a new start state and a new accept state and additional
transition arrows as necessary.
@ The start state has transition arrows going to every other state but no arrows coming in from any other
state.
@ There is only a single accept state, and it has arrows coming in from every other state but no arrows
going to any other state. Furthermore, the accept state is not the same as the start state.
from each state to itself.

© Except for the start and accept states, one arrow goes from every state to every other state and also

® Then we use a procedure convert on G to return an equivalent regular expression.
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convert(G)

o
®
© Let k be the number of states of G.

1) SHANGHAI JIAO TONG
UNIVERSITY

® If k£ = 2, then return the regular expression R labelling the arrow from gs¢art 10 Gaceept-
the GNFA, where

© If k > 2, we select any state g, € Q — {gstart; Gaceept} ANA let G' = (Q', 32,8, @starts Gaceept) b€

Q/ =Q —{qrip}
and for any qi € Q/ - {QQccept} and q; € Ql - {QSta'rt}v Iet

&' (i, q5) = (R1)(R2)"(R3) U (Ra)
for Ry = 5(%7 q’l‘ip)s Ry = 5(qrip7 QTip)s Rz = 5(qrip7 q]‘), and Ry = 5(%‘7 Qj)
O compute convert(G’) and return this value.
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An Example
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Non-Regular Languages
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Languages need counting
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C = {w € {0, 1} | w has an equal number of Os and 1s}
D= {w € {0,1}

w has an equal number of occurrences
of 01 and 10 as substrings

Quiz: D is regular.
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Languages need counting
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C = {w € {0, 1} | w has an equal number of Os and 1s}
D= {w € {0,1}

w has an equal number of occurrences
of 01 and 10 as substrings

Quiz: D is regular.

D= O+(1+O+)+ U 1+(0+1+)+

«0O0>» «F» « =>»
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Pumping Lemma

)
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Lemma (Pumping Lemma)

If A is a regular language, then there is a number p (i.e., the pumping length) where if s is any string

in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following
conditions:

© foreachi > 0, we have zy'z € A,
® |yl >0, and
O |zy| < p.

.

Any string zyz in A can be pumped along y.
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Proof

(\i‘ HANGHAI JIAO TONG
E‘, %NIVERSITY] B
Let M = (Q, X%, 6, qo, F') be a DFA recognizing A, and p := |Q).
Let s = s182...s, be astringin A withn > p. Letrq,
enters while processing s, i.e.,

,rn+1 be the sequence of states that A
riv1 = 0(ri, 8i)
fori € [n].

Among the first p + 1 states in the sequence, two must be the same, say r; and r, with
j < f<p+ 1. We define

T=81...8-1,Y=8j...50—1, and z = s¢...5n
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The language L =| {0"1" | n > 0} is not regular.

Proof.

If it is regular, consider s = 0¥1% and |s| > p, where p is pumping length. By the Pumping lemma,
s = xyz with zy'z € L for all i > 0.

«0>» «F» «=)» <

i
v
it

DA



Example

(\ “\ SHANGHAI JIAO TONG

s UNIVERSITY

The language L =| {0"1" | n > 0} is not regular.

Proof.

If it is regular, consider s = 0¥1% and |s| > p, where p is pumping length. By the Pumping lemma,
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The language L =| {0"1" | n > 0} is not regular.

Proof.

If it is regular, consider s = 0¥1% and |s| > p, where p is pumping length. By the Pumping lemma,
s = xyz with zy'z € L for all i > 0.

e 4 € 07", then zyyz has more 0s than 1s, a contradiction.
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The language L =| {0"1" | n > 0} is not regular.

Proof.
If it is regular, consider s = 0¥1% and |s| > p, where p is pumping length. By the Pumping lemma,
s = xyz with zy'z € L for all i > 0.

e 4 € 07", then zyyz has more 0s than 1s, a contradiction.
e y c 17, then zyyz has more 1s than 0s, again a contradiction.

® y consists of both Os and 1s, then zyyz have 0 and 1 interleaved
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The language L =| {0"1" | n > 0} is not regular.

Proof.

If it is regular, consider s = 0¥1% and |s| > p, where p is pumping length. By the Pumping lemma,
s = xyz with zy'z € L for all i > 0.

e 4 € 07", then zyyz has more 0s than 1s, a contradiction.
e y c 17, then zyyz has more 1s than 0s, again a contradiction.

® y consists of both Os and 1s, then zyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0P17.
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The language L = {w | w has an equal number of Os and 1s } is not regular.
Proof.

Choose p be the pumping length and consider s = 0717. By the Pumping Lemma, s = zyz with
lzy| < pand xy’z € L.
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The language L = {w | w has an equal number of Os and 1s } is not regular.

Proof.

Choose p be the pumping length and consider s = 0717. By the Pumping Lemma, s = zyz with
lzy| < pand xy’z € L.

for alli > 0. Thus zy € 0" and the contradiction follows easily.

«0O0>» «F» «=)» <

i
v
it

DA



Quiz

(@

SHANGHAI JIAO TONG
&

e

) UNIVERSITY

The language L = {ww | w € {0,1}"} is not regular.
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The language L = {ww | w € {0,1}"} is not regular.

The language L = {0™1" | m # n} is not regular.
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The language L = {0™1" | m # n} is not regular.

Proof.

Choose p be the pumping length and consider s = 0P17"*?. By the Pumping Lemma, s = zyz with
lzy| < pand zy'z € L.

Assume y = 0" where k < p, then
v 1
Then opT(G—VE1P+P ¢ [ Contradiction when i = % + 1.

. . |
(p! is needed since £~ is a natural number.)
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Models and Specifications
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A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program.
Thus regarded it as a model M.
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A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program.
Thus regarded it as a model M.

A finite automaton can also be used to describe regulations of a system or an (intra-procedure)
program. Thus regarded it as a specification .

Usually, we should guarantee

M
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Models and Specifications
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Thus regarded it as a model M.

@) ssanrorone
A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program.

program. Thus regarded it as a specification .

A finite automaton can also be used to describe regulations of a system or an (intra-procedure)
Usually, we should guarantee

M
In the automata terminology, we should guarantee

L(M) C L(p)
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Two approaches:

L(M) N L(N°)
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An Algorithmic Problem of FA

e
Given two automata M and N,

\ SHANGHAI JIAO TONG

UNIVERSITY

Two approaches:

L(M)NL(N°)
and,

L(M®)UL(N) = %*
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intersection
complement
emptiness

universality
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Intersection of Automata

A= (57276 qo,
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! !’ / !/
(S 7275 7q07F)

An Automaton that accepts L(A) N L(B)

(8 x58,%,6 x8,(q,4), F x F')

i, S
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Intersection of Automata

A = (S7 E? 67 q07

F),B =

5
@
(8,58, ab, F')
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An Automaton that accepts L(A) N L(B)

(Sx8,%,8x8, (q,q), F x F")

iy, R
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A= (572767q07F)
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e if A is deterministic, A¢

(S,x,é,qo,S—F).
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’
A= (572767q07F)
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e if A is deterministic, A¢

(572763q07‘5‘ - F)
® if A is non-deterministic,
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A:(S7Z:67qO7F)

e if A is deterministic, A¢

(S, 2,6, qo,S — F)
e if Ais non-deterministic, make A deterministic first

Assume that A is without e-transition. Then

(P(S),E,{(X,a,{y|xi>yforxeX})},{q0},{X ‘ XﬂFZQ})
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Example of Complement
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deterministic
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