
Mathematical Foundation of Computer Sciences I
Regular Languages and Finite Automata

Guoqiang Li
School of Software

1/58

Instructor and Textbook

2/58

Instructor

Guoqiang LI

• Homepage: https://basics.sjtu.edu.cn/%7Eliguoqiang
• Course page: https://basics.sjtu.edu.cn/%7Eliguoqiang/teaching/SE2324/
• Email: li.g@outlook.com
• Office: Rm. 1212, Building of Software
• Phone: 3420-4167

3/58

Instructor

Guoqiang LI

• Homepage: https://basics.sjtu.edu.cn/%7Eliguoqiang
• Course page: https://basics.sjtu.edu.cn/%7Eliguoqiang/teaching/SE2324/
• Email: li.g@outlook.com
• Office: Rm. 1212, Building of Software
• Phone: 3420-4167

3/58

Instructor

Guoqiang LI

• Homepage: https://basics.sjtu.edu.cn/%7Eliguoqiang
• Course page: https://basics.sjtu.edu.cn/%7Eliguoqiang/teaching/SE2324/
• Email: li.g@outlook.com
• Office: Rm. 1212, Building of Software
• Phone: 3420-4167

3/58

Textbook

[Sip12] Introduction to the Theory of Computation,
Michael Sipser, 2012

4/58

Regular Languages and DFA

5/58

Deterministic Finite Automata

Definition (DFA)

A deterministic finite automaton (DFA) is a 5-tuple (Q,Σ, δ, q0, F), where

1 Q is a finite set called the states,

2 Σ is a finite set called the alphabet,

3 δ : Q× Σ → Q is the transition function,

4 q0 ∈ Q is the start state, and

5 F ⊆ Q is the set of accept states.

6/58

Formal Definition of Computation

Let M = (Q,Σ, δ, q0, F) be a finite automaton and let w = w1w2 . . . wn be a string with wi ∈ Σ for all
i ∈ [n]. Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists with:

1 r0 = q0,

2 δ(ri, wi+1) = ri+1 for i = 0, . . . , n− 1, and

3 rn ∈ F .

We say that M recognizes A if
A = {w | M accepts w}

7/58

Formal Definition of Computation

Let M = (Q,Σ, δ, q0, F) be a finite automaton and let w = w1w2 . . . wn be a string with wi ∈ Σ for all
i ∈ [n]. Then M accepts w if a sequence of states r0, r1, . . . , rn in Q exists with:

1 r0 = q0,

2 δ(ri, wi+1) = ri+1 for i = 0, . . . , n− 1, and

3 rn ∈ F .

We say that M recognizes A if
A = {w | M accepts w}

7/58

Regular Languages

Definition (Regular languages)

A language is called regular if some finite automaton recognizes it.

8/58

Examples of Regular Languages

{(ab)n | ∀n ≥ 0}

{anbn | ∀n ≥ 0}

{ab, a2b2, . . . anbn}

9/58

Examples of Regular Languages

{(ab)n | ∀n ≥ 0}

{anbn | ∀n ≥ 0}

{ab, a2b2, . . . anbn}

9/58

Examples of Regular Languages

{(ab)n | ∀n ≥ 0}

{anbn | ∀n ≥ 0}

{ab, a2b2, . . . anbn}

9/58

The Regular Operators

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as
follows:

• Union: A ∪B = {x | x ∈ A or x ∈ B}.
• Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.
• Kleene star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

10/58

The Regular Operators

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as
follows:

• Union: A ∪B = {x | x ∈ A or x ∈ B}.

• Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.
• Kleene star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

10/58

The Regular Operators

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as
follows:

• Union: A ∪B = {x | x ∈ A or x ∈ B}.
• Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.

• Kleene star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

10/58

The Regular Operators

Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as
follows:

• Union: A ∪B = {x | x ∈ A or x ∈ B}.
• Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.
• Kleene star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

10/58

Closure under Union

Theorem

The class of regular languages is closed under the union operation.

In other words, if A1 and A2 are regular languages, so is A1 ∪A2.

11/58

Pre-Proof

For i ∈ [2] let Mi = (Qi,Σi, δi, q0i , Fi) recognize Ai. We can assume without loss of generality
Σ1 = Σ2:

• Let a ∈ Σ2 − Σ1.
• We add δ1(r, a) = rtrap, where rtrap is a new state with δ1(rtrap, w) = rtrap for every w.

12/58

Pre-Proof

For i ∈ [2] let Mi = (Qi,Σi, δi, q0i , Fi) recognize Ai. We can assume without loss of generality
Σ1 = Σ2:

• Let a ∈ Σ2 − Σ1.

• We add δ1(r, a) = rtrap, where rtrap is a new state with δ1(rtrap, w) = rtrap for every w.

12/58

Pre-Proof

For i ∈ [2] let Mi = (Qi,Σi, δi, q0i , Fi) recognize Ai. We can assume without loss of generality
Σ1 = Σ2:

• Let a ∈ Σ2 − Σ1.
• We add δ1(r, a) = rtrap, where rtrap is a new state with δ1(rtrap, w) = rtrap for every w.

12/58

Proof

We construct M = (Q,Σ, δ, q0, F) to recognize A1 ∪A2:

1 Q = Q1 ×Q2 = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}.

2 Σ = Σ1 = Σ2.

3 For each (r1, r2) ∈ Q and a ∈ Σ we let

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

4 q0 = (q1, q2).

5 F = (F1 ×Q2) ∪ (Q1 × F2) = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}.

13/58

A Sample

Union of automata (non-deterministic)

For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’),
• automaton that accepts L(A)∪L(B)

(S∪S’∪{q},Σ,δ∪δ’∪{(q,ε,q0),(q,ε,q’0)},
q, F∪F’)

a

ba
q0

q1 q2
c

b
c

q’0 q’1
b

a,bq
ε ε

a

ba
q0

q1 q2
c

b c
q’0 q’1

b

a,b

=∪

14/58

Closure under Concatenation

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A1 and A2 are regular languages, so is A1 ◦A2.

We prove the above theorem by nondeterministic finite automata.

15/58

Closure under Concatenation

Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if A1 and A2 are regular languages, so is A1 ◦A2.

We prove the above theorem by nondeterministic finite automata.

15/58

Nondeterministic Finite Automata

16/58

Nondeterminism

Definition (NFA)

A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Σ, δ, q0, F), where

1 Q is a finite set called the states,

2 Σ is a finite set called the alphabet,

3 δ : Q× Σε → P(Q) is the transition function, where Σε = Σ ∪ {ε}
4 q0 ∈ Q is the start state, and

5 F ⊆ Q is the set of accept states.

17/58

Formal Definition of Computation

Let N = (Q,Σ, δ, q0, F) be a nondeterministic finite automaton and let w = w1w2 . . . wm be a string
with wi ∈ Σε for all i ∈ [m]. Then N accepts w if a sequence of states r0, r1, . . . , rm in Q exists with:

1 r0 = q0,

2 ri+1 ∈ δ(ri, wi+1) for i = 0, . . . ,m− 1, and

3 rm ∈ F .

We say that N recognizes A if
A = {w | M accepts w}

18/58

Formal Definition of Computation

Let N = (Q,Σ, δ, q0, F) be a nondeterministic finite automaton and let w = w1w2 . . . wm be a string
with wi ∈ Σε for all i ∈ [m]. Then N accepts w if a sequence of states r0, r1, . . . , rm in Q exists with:

1 r0 = q0,

2 ri+1 ∈ δ(ri, wi+1) for i = 0, . . . ,m− 1, and

3 rm ∈ F .

We say that N recognizes A if
A = {w | M accepts w}

18/58

Examples of NFA
Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {0∗1∗2∗}

Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {ab+, ac+}

19/58

Examples of NFA
Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {0∗1∗2∗}

Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {ab+, ac+}

19/58

Examples of NFA
Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {0∗1∗2∗}

Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {ab+, ac+}

19/58

Examples of NFA
Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {0∗1∗2∗}

Examples of automata

0 21

ε ε
Accepts {0*1*2*}

q0 q2q1

a a

b c

q0

q1

q3

q2

q4

a

cb

q0

q1

q2 q3

Accepts {ab+,ac+}

b bc c

Accepts {ab+, ac+}

19/58

Equivalence of NFAs and DFAs

Theorem

Every NFA has an equivalent DFA, i.e., they recognize the same language.

20/58

Proof

Proof.

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A. We construct a DFA
M = (Q′,Σ, δ′, q′0, F

′) recognizing the same A.

First assume N has no “ε” arrows.

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

3 q′0 = {q0}.

4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

21/58

Proof

Proof.

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A. We construct a DFA
M = (Q′,Σ, δ′, q′0, F

′) recognizing the same A.

First assume N has no “ε” arrows.

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

3 q′0 = {q0}.

4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

21/58

Proof

Proof.

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A. We construct a DFA
M = (Q′,Σ, δ′, q′0, F

′) recognizing the same A.

First assume N has no “ε” arrows.

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

3 q′0 = {q0}.

4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

21/58

Proof

Proof.

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A. We construct a DFA
M = (Q′,Σ, δ′, q′0, F

′) recognizing the same A.

First assume N has no “ε” arrows.

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

3 q′0 = {q0}.

4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

21/58

Proof

Proof.

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A. We construct a DFA
M = (Q′,Σ, δ′, q′0, F

′) recognizing the same A.

First assume N has no “ε” arrows.

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

3 q′0 = {q0}.

4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

21/58

Proof

Proof.

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A. We construct a DFA
M = (Q′,Σ, δ′, q′0, F

′) recognizing the same A.

First assume N has no “ε” arrows.

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

3 q′0 = {q0}.

4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

21/58

Proof

Proof.

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A. We construct a DFA
M = (Q′,Σ, δ′, q′0, F

′) recognizing the same A.

First assume N has no “ε” arrows.

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some r ∈ R}

3 q′0 = {q0}.

4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

21/58

Determinization

22/58

Proof (cont’d)

Proof.

Now we allow “ε”arrows.

For every R ∈ Q′, i.e., R ⊆ Q, let

E(R) = {q ∈ Q | q can be reached from R

by traveling along 0 and more ε arrows }

1 Q′ = P(Q).

2 Let R ∈ Q′ and a ∈ Σ. Then we define

δ′(R, a) = {q ∈ Q | q ∈ E(δ(r, a)) for some r ∈ R}

3 q′0 = E({q0}).
4 F ′ = {R ∈ Q′ | R ∩ F ̸= ∅}.

23/58

Example of ε-Transition Removal
Example of ε-transition removal

0 21

ε εq0 q2q1

0 21

1,20,1q0 q2q1

0,1,2

Put a new transition a−→ where ε∗aε∗−−−−→

If q0
ε∗−→ qf for qf ∈ F , add q0 to F

Example of ε-transition removal
0 21

ε εq0 q2q1

0 21

1,20,1q0 q2q1

0,1,2

24/58

Example of ε-Transition Removal
Example of ε-transition removal

0 21

ε εq0 q2q1

0 21

1,20,1q0 q2q1

0,1,2

Put a new transition a−→ where ε∗aε∗−−−−→

If q0
ε∗−→ qf for qf ∈ F , add q0 to F

Example of ε-transition removal
0 21

ε εq0 q2q1

0 21

1,20,1q0 q2q1

0,1,2

24/58

Corollary

Corollary

A language is regular if and on if some nondeterministic finite automaton recognizes it.

25/58

Second Proof of the Closure under Union

For i ∈ [2] let Ni = (Qi,Σ, δi, qi, Fi) recognize Ai. We construct an N = (Q,Σ, δ, q0, F) to recognize
A1 ∪A2:

1 Q = {q0} ∪Q1 ∪Q2.

2 q0 is the start state.

3 F = F1 ∪ F2.

4 For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε

∅ q = q0 and a ̸= ε

26/58

Union

Union of automata (non-deterministic)

For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’),
• automaton that accepts L(A)∪L(B)

(S∪S’∪{q},Σ,δ∪δ’∪{(q,ε,q0),(q,ε,q’0)},
q, F∪F’)

a

ba
q0

q1 q2
c

b
c

q’0 q’1
b

a,bq
ε ε

a

ba
q0

q1 q2
c

b c
q’0 q’1

b

a,b

=∪

Union of automata (non-deterministic)

For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’),
• automaton that accepts L(A)∪L(B)

(S∪S’∪{q},Σ,δ∪δ’∪{(q,ε,q0),(q,ε,q’0)},
q, F∪F’)

a

ba
q0

q1 q2
c

b
c

q’0 q’1
b

a,bq
ε ε

a

ba
q0

q1 q2
c

b c
q’0 q’1

b

a,b

=∪

27/58

Closure under Concatenation

Theorem

The class of regular languages is closed under the concatenation operation.

28/58

Proof

For i ∈ [2] let Ni = (Qi,Σi, δi, qi, Fi) recognize Ai. We construct an N = (Q,Σ, δ, q1, F2) to
recognize A1 ◦A2:

1 Q = Q1 ∪Q2.

2 The start state q1 is the same as the start state of N1.

3 The accept states F2 are the same as the accept states of N2.

4 For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1 − F1

δ1(q, a) q ∈ F1 and a ̸= ε

δ1(q, a) ∪ {q2} q ∈ F1 and a = ε

δ2(q, a) q ∈ Q2

29/58

Closure under Kleene Star

Theorem

The class of regular languages is closed under the star operation.

30/58

Proof

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1. We construct an N = (Q,Σ, δ, q0, F) to recognize A∗
1:

1 Q = {q0} ∪Q1.

2 The start state q0 is the new start state.

3 F = {q0} ∪ F1.

4 For any q ∈ Q and any a ∈ Σε

δ(q, a) =



δ1(q, a) q ∈ Q1 − F1

δ1(q, a) q ∈ F1 and a ̸= ε

δ1(q, a) ∪ {q1} q ∈ F1 and a = ε

{q1} q = q0 and a = ε

∅ q = q0 and a ̸= ε

31/58

Regular Expression

32/58

Regular Expression

Definition

We say that R is a regular expression if R is

1 a for some a ∈ Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions,

6 R∗
1, where R1 is a regular expression.

We often write R1R2 instead of (R1 ◦R2) if no confusion arises.

33/58

Regular Expression

Definition

We say that R is a regular expression if R is

1 a for some a ∈ Σ,

2 ε,

3 ∅,

4 (R1 ∪R2), where R1 and R2 are regular expressions,

5 (R1 ◦R2), where R1 and R2 are regular expressions,

6 R∗
1, where R1 is a regular expression.

We often write R1R2 instead of (R1 ◦R2) if no confusion arises.

33/58

Language Defined by Regular Expressions

regular expression R language L(R)

a {a}
ε {ε}
∅ ∅

R1 ∪R2 L(R1) ∪ L(R2)

R1 ◦R2 L(R1) ◦ L(R2)

R∗
1 L(R1)

∗

34/58

Equivalence with Finite Automata

Theorem

A language is regular if and only if some regular expression describes it.

35/58

The Languages Defined by Regular Expressions Are Regular

1 R = a: Let N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅, for all r ̸= q1 or
b ̸= a.

2 R = ε: Let N = ({q1},Σ, δ, q1, {q1}), where δ(r, b) = ∅, for all r and b.

3 R = ∅: Let N = ({q1},Σ, δ, q1, ∅), where δ(r, b) = ∅, for all r and b.

4 R = R1 ∪R2: L(R) = L(R1) ∪ L(R2).

5 R = R1 ◦R2: L(R) = L(R1) ◦ L(R2).

6 R = R∗
1: L(R) = L(R1)

∗.

36/58

The Languages Defined by Regular Expressions Are Regular

1 R = a: Let N = ({q1, q2},Σ, δ, q1, {q2}), where δ(q1, a) = {q2} and δ(r, b) = ∅, for all r ̸= q1 or
b ̸= a.

2 R = ε: Let N = ({q1},Σ, δ, q1, {q1}), where δ(r, b) = ∅, for all r and b.

3 R = ∅: Let N = ({q1},Σ, δ, q1, ∅), where δ(r, b) = ∅, for all r and b.

4 R = R1 ∪R2: L(R) = L(R1) ∪ L(R2).

5 R = R1 ◦R2: L(R) = L(R1) ◦ L(R2).

6 R = R∗
1: L(R) = L(R1)

∗.

36/58

Regular languages can be defined by regular expressions

We need generalized nondeterministic finite automata (GNFA)- nondeterministic finite automata
where in the transition arrows may have any regular expressions as labels.

1 The start state has transition arrows going to every other state but no arrows coming in from
any other state.

2 There is only a single accept state, and it has arrows coming in from every other state but no
arrows going to any other state. Furthermore, the accept state is not the same as the start state.

3 Except for the start and accept states, one arrow goes from every state to every other state and
also from each state to itself.

37/58

Generalized nondeterministic finite automata

Definition

A GNFA is a 5-tuple (Q,Σ, δ, qstart, qaccept), where
• Q is a finite set of states,
• Σ is a finite alphabet,
• δ : (Q− {qaccept})× (Q− {qstart}) → R is the transition function, where R is the set of regular

expressions,
• qstart is the start state, and
• qaccept is the accept state.

38/58

Formal definition of computation

A GNFA accepts a string w ∈ Σ∗ if w = w1w2 . . . wk, where each wi ∈ Σ∗ and a sequence of states
q0, q1, . . . , qk exists such that

• q0 = qstart is the start state,
• qk = qaccept is the accept state, and
• for each i ∈ [k], we have wi ∈ L(Ri), where Ri = δ(qi−1, qi).

39/58

Regular languages can be defined by regular expressions

Let M be the DFA for language A.
• We convert M to a GNFA G by adding a new start state and a new accept state and additional

transition arrows as necessary.
1 The start state has transition arrows going to every other state but no arrows coming in from any other

state.
2 There is only a single accept state, and it has arrows coming in from every other state but no arrows

going to any other state. Furthermore, the accept state is not the same as the start state.
3 Except for the start and accept states, one arrow goes from every state to every other state and also

from each state to itself.

• Then we use a procedure convert on G to return an equivalent regular expression.

40/58

convert(G)

1 Let k be the number of states of G.

2 If k = 2, then return the regular expression R labelling the arrow from qstart to qaccept.

3 If k > 2, we select any state qrip ∈ Q− {qstart, qaccept} and let G′ = (Q′,Σ, δ′, qstart, qaccept) be
the GNFA, where

Q′ = Q− {qrip}

and for any qi ∈ Q′ − {qaccept} and qj ∈ Q′ − {qstart}, let

δ′(qi, qj) = (R1)(R2)
∗(R3) ∪ (R4)

for R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj).

4 compute convert(G′) and return this value.

41/58

An ExampleAn exmaple

1.3 REGULAR EXPRESSIONS 75

labeled ∅, even though they are present. Note that we replace the label a, b on
the self-loop at state 2 on the DFA with the label a∪b at the corresponding point
on the GNFA. We do so because the DFA’s label represents two transitions, one
for a and the other for b, whereas the GNFA may have only a single transition
going from 2 to itself.

In Figure 1.67(c), we remove state 2 and update the remaining arrow labels.
In this case, the only label that changes is the one from 1 to a. In part (b) it was
∅, but in part (c) it is b(a ∪ b)∗. We obtain this result by following step 3 of the
CONVERT procedure. State qi is state 1, state qj is a, and qrip is 2, so R1 = b,
R2 = a ∪ b, R3 = ε, and R4 = ∅. Therefore, the new label on the arrow from 1
to a is (b)(a ∪ b)∗(ε) ∪ ∅. We simplify this regular expression to b(a ∪ b)∗.

In Figure 1.67(d), we remove state 1 from part (c) and follow the same pro-
cedure. Because only the start and accept states remain, the label on the arrow
joining them is the regular expression that is equivalent to the original DFA.

FIGURE 1.67

Converting a two-state DFA to an equivalent regular expression

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

42/58

Non-Regular Languages

43/58

Languages need counting

C = {w ∈ {0, 1} | w has an equal number of 0s and 1s}

D =

{
w ∈ {0, 1}

∣∣∣∣∣ w has an equal number of occurrences
of 01 and 10 as substrings

}

Quiz: D is regular.

D = 0+(1+0+)+ ∪ 1+(0+1+)+

44/58

Languages need counting

C = {w ∈ {0, 1} | w has an equal number of 0s and 1s}

D =

{
w ∈ {0, 1}

∣∣∣∣∣ w has an equal number of occurrences
of 01 and 10 as substrings

}

Quiz: D is regular.

D = 0+(1+0+)+ ∪ 1+(0+1+)+

44/58

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p (i.e., the pumping length) where if s is any string
in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following
conditions:

1 for each i ≥ 0, we have xyiz ∈ A,

2 |y| > 0, and

3 |xy| ≤ p.

Any string xyz in A can be pumped along y.

45/58

Proof

Let M = (Q,Σ, δ, q0, F) be a DFA recognizing A, and p := |Q|.

Let s = s1s2 . . . sn be a string in A with n ≥ p. Let r1, . . . , rn+1 be the sequence of states that A
enters while processing s, i.e.,

ri+1 = δ(ri, si)

for i ∈ [n].

Among the first p+ 1 states in the sequence, two must be the same, say rj and rℓ with
j < ℓ ≤ p+ 1. We define

x = s1 . . . sj−1, y = sj . . . sℓ−1, and z = sℓ . . . sn

46/58

Example

The language L =| {0n1n | n ≥ 0} is not regular.

Proof.

If it is regular, consider s = 0k1k and |s| ≥ p, where p is pumping length. By the Pumping lemma,
s = xyz with xyiz ∈ L for all i ≥ 0.

• y ∈ 0+, then xyyz has more 0s than 1s, a contradiction.
• y ∈ 1+, then xyyz has more 1s than 0s, again a contradiction.
• y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0p1p.

47/58

Example

The language L =| {0n1n | n ≥ 0} is not regular.

Proof.

If it is regular, consider s = 0k1k and |s| ≥ p, where p is pumping length. By the Pumping lemma,
s = xyz with xyiz ∈ L for all i ≥ 0.

• y ∈ 0+, then xyyz has more 0s than 1s, a contradiction.
• y ∈ 1+, then xyyz has more 1s than 0s, again a contradiction.
• y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0p1p.

47/58

Example

The language L =| {0n1n | n ≥ 0} is not regular.

Proof.

If it is regular, consider s = 0k1k and |s| ≥ p, where p is pumping length. By the Pumping lemma,
s = xyz with xyiz ∈ L for all i ≥ 0.

• y ∈ 0+, then xyyz has more 0s than 1s, a contradiction.
• y ∈ 1+, then xyyz has more 1s than 0s, again a contradiction.
• y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0p1p.

47/58

Example

The language L =| {0n1n | n ≥ 0} is not regular.

Proof.

If it is regular, consider s = 0k1k and |s| ≥ p, where p is pumping length. By the Pumping lemma,
s = xyz with xyiz ∈ L for all i ≥ 0.

• y ∈ 0+, then xyyz has more 0s than 1s, a contradiction.

• y ∈ 1+, then xyyz has more 1s than 0s, again a contradiction.
• y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0p1p.

47/58

Example

The language L =| {0n1n | n ≥ 0} is not regular.

Proof.

If it is regular, consider s = 0k1k and |s| ≥ p, where p is pumping length. By the Pumping lemma,
s = xyz with xyiz ∈ L for all i ≥ 0.

• y ∈ 0+, then xyyz has more 0s than 1s, a contradiction.
• y ∈ 1+, then xyyz has more 1s than 0s, again a contradiction.

• y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0p1p.

47/58

Example

The language L =| {0n1n | n ≥ 0} is not regular.

Proof.

If it is regular, consider s = 0k1k and |s| ≥ p, where p is pumping length. By the Pumping lemma,
s = xyz with xyiz ∈ L for all i ≥ 0.

• y ∈ 0+, then xyyz has more 0s than 1s, a contradiction.
• y ∈ 1+, then xyyz has more 1s than 0s, again a contradiction.
• y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0p1p.

47/58

Example

The language L =| {0n1n | n ≥ 0} is not regular.

Proof.

If it is regular, consider s = 0k1k and |s| ≥ p, where p is pumping length. By the Pumping lemma,
s = xyz with xyiz ∈ L for all i ≥ 0.

• y ∈ 0+, then xyyz has more 0s than 1s, a contradiction.
• y ∈ 1+, then xyyz has more 1s than 0s, again a contradiction.
• y consists of both 0s and 1s, then xyyz have 0 and 1 interleaved.

Remark: A simpler proof that only considering s = 0p1p.

47/58

Example

The language L = {w | w has an equal number of 0s and 1s } is not regular.

Proof.

Choose p be the pumping length and consider s = 0p1p. By the Pumping Lemma, s = xyz with
|xy| < p and xyiz ∈ L.

for all i ≥ 0. Thus xy ∈ 0+ and the contradiction follows easily.

48/58

Example

The language L = {w | w has an equal number of 0s and 1s } is not regular.

Proof.

Choose p be the pumping length and consider s = 0p1p. By the Pumping Lemma, s = xyz with
|xy| < p and xyiz ∈ L.

for all i ≥ 0. Thus xy ∈ 0+ and the contradiction follows easily.

48/58

Example

The language L = {w | w has an equal number of 0s and 1s } is not regular.

Proof.

Choose p be the pumping length and consider s = 0p1p. By the Pumping Lemma, s = xyz with
|xy| < p and xyiz ∈ L.

for all i ≥ 0. Thus xy ∈ 0+ and the contradiction follows easily.

48/58

Example

The language L = {w | w has an equal number of 0s and 1s } is not regular.

Proof.

Choose p be the pumping length and consider s = 0p1p. By the Pumping Lemma, s = xyz with
|xy| < p and xyiz ∈ L.

for all i ≥ 0. Thus xy ∈ 0+ and the contradiction follows easily.

48/58

Quiz

The language L = {ww | w ∈ {0, 1}∗} is not regular.

The language L = {0m1n | m ̸= n} is not regular.

49/58

Quiz

The language L = {ww | w ∈ {0, 1}∗} is not regular.

The language L = {0m1n | m ̸= n} is not regular.

49/58

Quiz

The language L = {0m1n | m ̸= n} is not regular.

Proof.

Choose p be the pumping length and consider s = 0p1p!+p. By the Pumping Lemma, s = xyz with
|xy| < p and xyiz ∈ L.

Assume y = 0k where k < p, then

Then 0p+(i−1)k1p!+p ∈ L. Contradiction when i =
p!

k
+ 1.

(p! is needed since p!
k

is a natural number.)

50/58

Other Computations

51/58

Models and Specifications

A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program.
Thus regarded it as a model M.

A finite automaton can also be used to describe regulations of a system or an (intra-procedure)
program. Thus regarded it as a specification φ.

Usually, we should guarantee

M |= φ

In the automata terminology, we should guarantee

L(M) ⊆ L(φ)

52/58

Models and Specifications

A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program.
Thus regarded it as a model M.

A finite automaton can also be used to describe regulations of a system or an (intra-procedure)
program. Thus regarded it as a specification φ.

Usually, we should guarantee

M |= φ

In the automata terminology, we should guarantee

L(M) ⊆ L(φ)

52/58

Models and Specifications

A finite automaton can be used to describe behaviours of a system or an (intra-procedure) program.
Thus regarded it as a model M.

A finite automaton can also be used to describe regulations of a system or an (intra-procedure)
program. Thus regarded it as a specification φ.

Usually, we should guarantee

M |= φ

In the automata terminology, we should guarantee

L(M) ⊆ L(φ)

52/58

An Algorithmic Problem of FA

Given two automata M and N ,
L(M) ⊆ L(N)

Two approaches:

L(M) ∩ L(Nc) = ∅

and,
L(Mc) ∪ L(N) = Σ∗

53/58

An Algorithmic Problem of FA

Given two automata M and N ,
L(M) ⊆ L(N)

Two approaches:

L(M) ∩ L(Nc) = ∅

and,
L(Mc) ∪ L(N) = Σ∗

53/58

An Algorithmic Problem of FA

Given two automata M and N ,
L(M) ⊆ L(N)

Two approaches:

L(M) ∩ L(Nc) = ∅

and,
L(Mc) ∪ L(N) = Σ∗

53/58

New Operations

intersection

complement

emptiness

universality

54/58

Intersection of Automata

A = (S,Σ, δ, q0, F), B = (S′,Σ, δ′, q′0, F
′)

An Automaton that accepts L(A) ∩ L(B)

(S × S′,Σ, δ × δ′, (q0, q
′
0), F × F ′)

Intersection of automata
For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’),
• automaton that accepts L(A)∩L(B)

(S×S’, Σ, δ×δ’, (q0, q’0), F×F’)

q0,q’0

q1,q’1 q2,q’0

q2,q’1

b b

q0,q’1
b

q1,q’0b

a

a

ca

ba
q0

q1 q2
c

b c
q’0 q’1

b

a,b
=∩

55/58

Intersection of Automata

A = (S,Σ, δ, q0, F), B = (S′,Σ, δ′, q′0, F
′)

An Automaton that accepts L(A) ∩ L(B)

(S × S′,Σ, δ × δ′, (q0, q
′
0), F × F ′)

Intersection of automata
For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’),
• automaton that accepts L(A)∩L(B)

(S×S’, Σ, δ×δ’, (q0, q’0), F×F’)

q0,q’0

q1,q’1 q2,q’0

q2,q’1

b b

q0,q’1
b

q1,q’0b

a

a

ca

ba
q0

q1 q2
c

b c
q’0 q’1

b

a,b
=∩

Intersection of automata
For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’),
• automaton that accepts L(A)∩L(B)

(S×S’, Σ, δ×δ’, (q0, q’0), F×F’)

q0,q’0

q1,q’1 q2,q’0

q2,q’1

b b

q0,q’1
b

q1,q’0b

a

a

ca

ba
q0

q1 q2
c

b c
q’0 q’1

b

a,b
=∩

55/58

Complement of Automata

A = (S,Σ, δ, q0, F)

• if A is deterministic, Ac = (S,Σ, δ, q0, S − F).
• if A is non-deterministic, make A deterministic first

Assume that A is without ε-transition. Then

(P (S),Σ, {(X, a, {y | x a−→ y for x ∈ X})}, {q0}, {X | X ∩ F = ∅})

56/58

Complement of Automata

A = (S,Σ, δ, q0, F)

• if A is deterministic, Ac = (S,Σ, δ, q0, S − F).

• if A is non-deterministic, make A deterministic first

Assume that A is without ε-transition. Then

(P (S),Σ, {(X, a, {y | x a−→ y for x ∈ X})}, {q0}, {X | X ∩ F = ∅})

56/58

Complement of Automata

A = (S,Σ, δ, q0, F)

• if A is deterministic, Ac = (S,Σ, δ, q0, S − F).
• if A is non-deterministic,

make A deterministic first

Assume that A is without ε-transition. Then

(P (S),Σ, {(X, a, {y | x a−→ y for x ∈ X})}, {q0}, {X | X ∩ F = ∅})

56/58

Complement of Automata

A = (S,Σ, δ, q0, F)

• if A is deterministic, Ac = (S,Σ, δ, q0, S − F).
• if A is non-deterministic, make A deterministic first

Assume that A is without ε-transition. Then

(P (S),Σ, {(X, a, {y | x a−→ y for x ∈ X})}, {q0}, {X | X ∩ F = ∅})

56/58

Example of Complement

Example of complement

a a

b c

q0

q1

q3

q2

q4

b c

a

cb

{q0}

b c

{q1,q2}

{q4}{q3} φ

a,c

a,b

a

b,c

a

cb

{q0}

b c

{q1,q2}

{q4}{q3} φ

a,c

a,b

a

b,c

make it
deterministic

invert
final states

a,b,ca,b,c

For Buchi automata, deterministic ⊂ non-deterministic;
Thus, this technique does not work.

57/58

Quiz

Emptiness?

58/58

	Instructor and Textbook
	Regular Languages and DFA
	Nondeterministic Finite Automata
	Regular Expression
	Non-Regular Languages
	Other Computations

