
Mathematical Foundation of Computer Sciences VI
Time Complexity

Guoqiang Li
School of Software, Shanghai Jiao Tong University

1/90

Note

Even when a problem is decidable, it might not be solvable in practice, since the optimal Turing
machine which decides this problem could require astronomical time.

2/90

Measuring Time

3/90

A = {0k1k | k ≥ 0}

M1 on w:

1 Scan across the tape and reject if a 0 is found to the right of a 1.
2 Repeat if both 0s and 1s remain on the tape.

• Scan across the tape, crossing off a single 0 and a single 1.

3 If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have
been crossed off, reject.
Otherwise if neither 0s or 1s remain on the tape, accept.

4/90

Time complexity of M1

1 Analyze the running time of M1 on every x ∈ Σ∗,

f1 : Σ∗ → N

2 Analyze the worst-case running time of M1 on inputs of length n ∈ N, f2 : N→ N. In particular

f2(n) = max
x∈Σn

f1(x)

3 Analyze the average-case running time of M1 on inputs of length n ∈ N, f3 : N→ N. In
particular

f3(n) =

∑

x∈Σn

f1(x)

|Σ|n

5/90

Worst-case analysis

Definition

Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity
of M is the function f : N→ N, where f(n) is the maximum number of steps that M uses on any
input of length n.

If f(n) is the running time of M , we say that M runs in time f(n) and that M is an f(n) time Turing
machine.

Customarily we use n to represent the length of the input.

6/90

Big-O Notation

Definition

Let f, g ∈ N→ R+ be two functions. Say that f(n) = O(g(n)) if positive integers c and n0 exist such
that for every integer n ≥ n0

f(n) ≤ c · g(n)
When f(n) = O(g(n)), we say that g(n) is an upper bound for f(n), or more precisely, that g(n) is
an asymptotic upper bound for f(n), to emphasize that we are suppressing constant factors.

7/90

Examples

5n3 + 2n2 + 22n+ 6 = O(n3).

Let b ≥ 2. Then logb n =
log2 n

log2 b
Hence, logb n = O(logn).

3n log2 n+ 5n log2 log2 n+ 2 = O(n logn).

210n
2+7n−6 = 2O(n2).

8/90

Poly. vs. Expo.

nc for c > 0 is a polynomial bound.

2(n
δ) for δ > 0 is an exponential bound.

9/90

Small o-notation

Definition

Let f, g ∈ N→ R+ be two functions. Say that f(n) = o(g(n)) if

lim
n→∞

f(n)

g(n)
= 0

In other words, f(n) = o (g(n)) means that for any real number c > 0, a number n0 exists, where
f(n) < c · g(n) for all n ≥ n0.

10/90

Examples

√
n = o(n).

n = o(n log logn).

n log logn = o(n logn).

n logn = o(n2).

n2 = o(n3).

11/90

A = {0k1k | k ≥ 0}

M1 on w:

1 Scan across the tape and reject if a 0 is found to the right of a 1.
2 Repeat if both 0s and 1s remain on the tape.

• Scan across the tape, crossing off a single 0 and a single 1.

3 If 0s still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have
been crossed off, reject.
Otherwise if neither 0s or 1s remain on the tape, accept.

12/90

Time analysis

The first stage scans the tape to verify the input is of the form 0∗1∗, taking n steps. Then the
machine repositions the head at the left-hand end of the tape, again using n steps. In total
2n = O(n) steps.

In stages 2 and 3, the machine repeatedly scans the tape and crosses off a 0 and 1 on each scan.
Each scan uses O(n) steps. Because each scan crosses off two symbols, at most n = 2 scans can
occur. So the total time taken by stage 2 and 3 is (n = 2)O(n) = O(n2).

In stage 4, the machine makes a single scan to decide whether to accept or reject, hence require
time O(n).

The overall running time
O(n) +O(n2) +O(n) = O(n2)

13/90

Time classes

Definition

Let t : N→ R+ be a function. Define the time complexity class

TIME(t(n))

to be the collection of all languages that are decidable by an O(t(n)) time Turing machine.

Example

{0k1k | k ≥ 0} ∈ TIME(n2).

14/90

A better algorithm

M2 on w:

1 Scan across the tape and reject if a 0 is found to the right of a 1.
2 Repeat as long as some 0s and 1s remain on the tape.

1 Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If it is
odd, then reject.

2 Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off
every other 1 starting with the first 1.

3 If no 0s and no 1s remain on the tape, then accept. Otherwise, reject.

15/90

Time analysis

Every stage takes O(n) time.

Stage 1 and 3 are executed once, hence total O(n) time.

Stage 2.2 crosses off at least half of the 0s and 1s each time it is executed, hence at most 1 + log2 n

iterations.

Thus the total time of stages 2, 3 and 4 is (1 + log2 n)O(n) = O(n logn).

The overall running time of M2 is

O(n) +O(n logn) = O(n logn)

16/90

Can we do even better than O(n log n)?

Theorem

Every language that can be decided in o(n logn) time on a single-tape Turing machine is regular.

17/90

{0k1k | k ≥ 0} in linear time on a 2-tape TM

M3 on w:

1 Scan across tape 1 and reject if a 0 is found to the right of 1.

2 Scan across the 0s on tape 1 until the first 1. At the same time copy the 0s onto tape 2.

3 Scan across the 1s on tape 1 until the end of the input. For each 1 read on tape 1, cross off a 0
on tape 2. If all 0s are crossed off before all the 1s are read, then reject.

4 If all the 0s have now been crossed off, then accept. If any 0s remain, then reject.

5 If no 0s and no 1s remain on the tape, then accept.
Otherwise, reject.

18/90

Complexity relationships among models

Theorem

Let t(n) be a function with t(n) ≥ n. The every t(n) time multitape Turing machine has an equivalent
O(t2(n)) time single-tape Turing machine.

19/90

Proof (1)

We simulate an M with k tapes by a single-tape S.

• S uses # to separate the contents of the different tapes.
• S keeps track of the locations of the heads by writing a tape symbol with a dot above it to mark

the place where the head on that tape would be.

Proof (1)

We simulate an M with k tapes by a single-tape S.
I S uses # to separate the contents of the different tapes.
I S keeps track of the locations of the heads by writing a

tape symbol with a dot above it to mark the place where
the head on that tape would be.

3.2 VARIANTS OF TURING MACHINES 177

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-
tape TM S. The key idea is to show how to simulateM with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing
their information on its single tape. It uses the new symbol # as a delimiter to
separate the contents of the different tapes. In addition to the contents of these
tapes, S must keep track of the locations of the heads. It does so by writing a tape
symbol with a dot above it to mark the place where the head on that tape would
be. Think of these as “virtual” tapes and heads. As before, the “dotted” tape
symbols are simply new symbols that have been added to the tape alphabet. The
following figure illustrates how one tape can be used to represent three tapes.

FIGURE 3.14

Representing three tapes with one

S = “On input w = w1 · · · wn:
1. First S puts its tape into the format that represents all k tapes

ofM . The formatted tape contains

#
•
w1w2 · · · wn #

• #
• # · · · #.

2. To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way thatM ’s transition function dictates.

3. If at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

20/90

Proof (2)

On input w = w1 . . . wn:

1 First S puts its tape into the format that represents all k tapes of M :

#ẇ1w2 . . . wn#⊔̇#⊔̇ . . .#⊔̇#
Time: O(n) = O(t(n)).

2 To determine the symbols under the virtual heads, S scans its tape from the first #, which
marks the left-hand end, to the (k + 1)st #, which marks the right-hand end.
Time: O(t(n)).

3 Then S makes a second pass to update the tapes according to the way that Ms transition
function dictates. If S makes one of the virtual heads to the right onto a #, then S writes ⊔ on
this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the
right.
Time: O(k · t(n)) = O(t(n)).

4 Go back to 2.

21/90

Nondeterministic machines

Definition

Let N be a nondeterministic Turing machine that is a decider. The running time of N is the function
f : N→ N, where f(n) is the maximum number of steps that N uses on any branch of its
computation on any input of length n.

22/90

Deterministic vs. nondeterministic

7.1 MEASURING COMPLEXITY 283

uses t(n) × O(t(n)) = O(t2(n)) steps. Therefore, the entire simulation of M
uses O(n) +O(t2(n)) steps.

We have assumed that t(n) ≥ n (a reasonable assumption because M could
not even read the entire input in less time). Therefore, the running time of S is
O(t2(n)) and the proof is complete.

Next, we consider the analogous theorem for nondeterministic single-tape
Turing machines. We show that any language that is decidable on such a ma-
chine is decidable on a deterministic single-tape Turing machine that requires
significantly more time. Before doing so, we must define the running time of
a nondeterministic Turing machine. Recall that a nondeterministic Turing ma-
chine is a decider if all its computation branches halt on all inputs.

DEFINITION 7.9

Let N be a nondeterministic Turing machine that is a decider. The
running time of N is the function f : N−→N , where f(n) is the
maximum number of steps that N uses on any branch of its com-
putation on any input of length n, as shown in the following figure.

FIGURE 7.10

Measuring deterministic and nondeterministic time

The definition of the running time of a nondeterministic Turing machine is
not intended to correspond to any real-world computing device. Rather, it is a
useful mathematical definition that assists in characterizing the complexity of an
important class of computational problems, as we demonstrate shortly.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

23/90

Complexity relationships among models (cont’d)

Theorem

Let t(n) be a function with t(n) ≥ n. The every t(n) time nondeterministic single-tape Turing
machine has an equivalent 2O(t(n)) time deterministic single-tape Turing machine.

24/90

Proof (1)

We simulate a nondeterministic N by a deterministic D.

• D try all possible branches of N ’s nondeterministic computation.
• If D ever finds the accept state on one of these branches, it accepts.

Proof (1)

We simulate a nondeterministic N by a deterministic D.
1. D try all possible branches of N ’s nondeterministic

computation.
2. If D ever finds the accept state on one of these branches, it

accepts.

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

25/90

Proof (2)

On an input of length n, every branch of N ’s nondeterministic computation tree has a length of at
most t(n).

Every node in the tree can have at most b children, where b is the maximum number of legal choices
given by N ’s transition function. Thus, the total number of leaves in the tree is at most bt(n).

The total number of the nodes in the tree is less than twice the maximum number of leaves, hence
O(bt(n)). The time it takes to start from the root and travel down to a node is O(t(n)). Hence the
total running time of D is O(t(n)bt(n)) = 2O(t(n)).

D has 3 tapes, thus can be simulated by a single-tape TM in time

(2O(t(n)))2 = 2O(t(n))

26/90

The Class P

27/90

P

Definition

P is the class of languages that are decidable in polynomial time on a deterministic single-tape
Turing machine. In other words:

P =
⋃

k∈N

TIME(nk)

28/90

P

P is invariant for all models of computation that are polynomially equivalent to the deterministic
single-tape machine.

P roughly corresponds to the class of problems that are realistically solvable on a computer.

29/90

Examples of Problems in P

30/90

Reasonable encodings

We continue to use ⟨·⟩ to indicate a reasonable encoding of one or more objects into a string.

Unary encoding of n as 11 . . . 11︸ ︷︷ ︸
n times

is exponentially larger than the standard binary encoding of n,

hence not reasonable.

A graphs can be encoded either by listing its nodes and edges, i.e., its adjacency list, or its
adjacency matrix, where the (i, j)th entry is 1 if there is an edge from node i to node j and 0 if not.

31/90

The path problem

PATH = {⟨G, s, t⟩ | G is a directed graph
that has a directed path from s and t}

Theorem

PATH ∈ P .

32/90

Testing relative prime

RELPRIMIE = {⟨x, y⟩ | x and y are relatively prime}

Theorem

RELPRIMIE ∈ P .

33/90

The Euclidean Algorithm

Recall the greatest common divisor gcd(x, y) is the largest integer that divides both x and y.

E on ⟨x, y⟩
1 Repeat until y = 0:

2 Assign x← x(mod y).

3 Exchange x and y.

4 Output x.

34/90

Testing relative prime

R on ⟨x, y⟩
1 Run E on ⟨x, y⟩.
2 If the result is 1, then accept. Otherwise, reject.

35/90

Time analysis

We show that E runs in polynomial time

• Every execution of stage 2 with y ≤ x cuts the value x at least by half.
• Thus, the maximum number of times that stage 2 and 3 are executed is the lesser of 2 log2 x

and 2 log2 y.

36/90

Testing context-freeness

Theorem

Every context-free language is a member of P .

37/90

Recall (1)

Definition

A context-free grammar is in Chomsky normal form if every rule is of the form

A→ BC and A→ a

where a is any terminal and A, B and C are any variables, except that B and C may be not the start
variable. In addition, we permit the rule S → ϵ, where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Theorem

Let G be CFG in Chomsky normal form, and G generates w with w ̸= ϵ. Then any derivation of w
has 2|w| − 1 steps.

38/90

Recall (2)

S on ⟨G,w⟩
1 Convert G to an equivalent grammar in Chomsky normal form.

2 List all derivations with 2|w| − 1 steps; except if |w| = 0, then instead check whether there is a
rule S → ϵ.

3 If any of these derivations generates w, then accept; otherwise reject.

The running time of S is 2O(n).

39/90

Dynamic programming

Let w be an input string and n := |w|.

For every i ≤ j ≤ n we will compute

table(i, j) = the collection of variables that can generate the substring wiwi+1 . . . wj .

40/90

Dynamic Programming (cont’d)

D on w = w1 . . . wn:

1 For w = ϵ, if S → ϵ is a rule, then accept; else reject.

2 For i = 1 to n:

3 For each variable A:

4 Test whether A→ b is a rule, where b = wi.

5 If so, place A in table (i, i).

6 For ℓ = 2 to n:

7 For i = 1 to n− ℓ+ 1:

8 Let j = i+ ℓ− 1

9 For k = i to j − 1:

10 For each rule A→ BC:

11 If B ∈ table(i, k) and C ∈ table(k, j),
then put A in table(i, j).

12 If S ∈ table(1, n), then accept; else reject.

41/90

The Class NP

42/90

Hamiltonian path

Definition

A Hamiltonian path in a directed graph G is a directed path that goes through each node exactly
once.

HAMPATH = {⟨G, s, t⟩ | G is a directed graph
with a Hamiltonian path from sand t}

43/90

Hamiltonian path (cont’d)

Hamiltonian path (cont’d)

292 CHAPTER 7 / TIME COMPLEXITY

7.3
THE CLASS NP

As we observed in Section 7.2, we can avoid brute-force search in many problems
and obtain polynomial time solutions. However, attempts to avoid brute force
in certain other problems, including many interesting and useful ones, haven’t
been successful, and polynomial time algorithms that solve them aren’t known
to exist.

Why have we been unsuccessful in finding polynomial time algorithms for
these problems? We don’t know the answer to this important question. Perhaps
these problems have as yet undiscovered polynomial time algorithms that rest
on unknown principles. Or possibly some of these problems simply cannot be
solved in polynomial time. They may be intrinsically difficult.

One remarkable discovery concerning this question shows that the complex-
ities of many problems are linked. A polynomial time algorithm for one such
problem can be used to solve an entire class of problems. To understand this
phenomenon, let’s begin with an example.

A Hamiltonian path in a directed graphG is a directed path that goes through
each node exactly once. We consider the problem of testing whether a directed
graph contains a Hamiltonian path connecting two specified nodes, as shown in
the following figure. Let

HAMPATH = {〈G, s, t〉| G is a directed graph

with a Hamiltonian path from s to t}.

FIGURE 7.17

A Hamiltonian path goes through every node exactly once

We can easily obtain an exponential time algorithm for the HAMPATH prob-
lem by modifying the brute-force algorithm for PATH given in Theorem 7.14.
We need only add a check to verify that the potential path is Hamiltonian. No
one knows whether HAMPATH is solvable in polynomial time.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

44/90

Polynomial verifiability

Even though we don’t know how to determine fast whether a graph contains Hamiltonian path, if
such a path were discovered somehow (perhaps using the exponential time algorithm), we could
easily convince someone else of its existence simply by presenting it.

In other words, verifying the existence of a Hamiltonian path may be much easier than determining
its existence.

45/90

Testing composite

Definition

A natural number is composite if it is the product of two integers > 1.

COMPOSITES = {x | x = pq for integers p, q > 1}

46/90

Verifiers

Definition

A verifier for a language A is an algorithm V , where

A = {w | V accepts ⟨w, c⟩ for some string c}

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs
in polynomial time in the length of w. A language A is polynomial verifiable if it has a polynomial time
verifier.

The string c in the above definition is a certificate, or proof, of membership in A. For polynomial
verifiers, the certificate has polynomial length (in the length of w).

47/90

Certificates

For HAMPATH, a certificate for ⟨G, s, t⟩ ∈ HAMPATH is a Hamiltonian path from s to t.

For COMPOSITES, a certificate for x is one of its divisors.

48/90

The class NP

Definition

NP is the class of languages that have polynomial time verifiers.

49/90

Nondeterministic polynomial Turing machines

Theorem

A language is in NP if and only if it is decided by some nondeterministic polynomial time Turing
machines.

50/90

Proof (1)

Assume that the verifier V is a TM that runs in time nk.

N on w with n = |w|
1 Nondeterministically select string c of length at most nk.

2 Run V on ⟨w, c⟩.
3 If V accepts, then accept; otherwise, reject.

51/90

Proof (2)

Assume that A is decided by a polynomial time NTM N .

V on ⟨w, c⟩
1 Simulate N on input w, treating each symbol of c as a description of the nondeterministic

choice to make at each step.

2 If this branch of N ’s computation accepts, then accept; otherwise, reject.

52/90

Nondeterministic time complexity classes

Definition

NTIME(t(n)) = {L | L is a language decided by an O(t(n))

time nondeterministic Turing machine}

Corollary

NP =
⋃

k∈N

NTIME(nk)

53/90

Examples of problems in NP

54/90

The clique problem

Definition

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.
A k-clique is a clique that contains k nodes.

The clique problem

Definition
A clique in an undirected graph is a subgraph, wherein every two nodes are
connected by an edge. A k-clique is a clique that contains k nodes.

296 CHAPTER 7 / TIME COMPLEXITY

FIGURE 7.23

A graph with a 5-clique

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE = {〈G, k〉| G is an undirected graph with a k-clique}.

THEOREM 7.24

CLIQUE is in NP.

PROOF IDEA The clique is the certificate.

PROOF The following is a verifier V for CLIQUE.

V = “On input 〈〈G, k〉, c〉:
1. Test whether c is a subgraph with k nodes in G.
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept ; otherwise, reject .”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nonde-
terministic polynomial time Turing machines, you may prove this theorem by
giving one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input 〈G, k〉, where G is a graph:
1. Nondeterministically select a subset c of k nodes of G.
2. Test whether G contains all edges connecting nodes in c.
3. If yes, accept ; otherwise, reject .”

Next, we consider the SUBSET-SUM problem concerning integer arithmetic.
We are given a collection of numbers x1, . . . , xk and a target number t. We want
to determine whether the collection contains a subcollection that adds up to t.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

A graph with a 5-clique.

55/90

The clique problem (cont’d)

CLIQUE = {⟨G, k⟩ | G is an undirected graph with a k clique}

Theorem

CLIQUE is in NP .

56/90

Proof (1)

V on ⟨⟨G, k⟩, c⟩:
1 Test whether c is a subgraph with k nodes in G.

2 Test whether G contains all edges connecting nodes in c.

3 If both pass, then accept; otherwise reject.

57/90

Proof (2)

N on ⟨G, k⟩:
1 Nondeterministically select a subset c of k nodes in G.

2 Test whether G contains all edges connecting nodes in c.

3 If yes, then accept; otherwise reject.

58/90

The subset-sum problem

SUBSET -SUM = {⟨S, t⟩ | S = {x1, . . . xk} and for some
{y1 . . . , yℓ} ⊆ S,wehave

∑
i∈[ℓ] yi = t}

Theorem

SUBSET -SUM is in NP .

59/90

The P versus NP question

P = the class of languages for which membership can be decided quickly

NP = the class of languages for which membership can be verified quickly

60/90

A remark

P versus NP, a gift to mathematics from computer science.

– S. Smale.

61/90

The NP-Completeness

62/90

Remark

In 1970s, Stephen Cook and Leonid Levin discovered certain problems in NP whose individual
complexity is related to that of the entire class.

If a polynomial time algorithm exists for any of these problems, all problems in NP would be
polynomial time solvable.

These problems are called NP-complete.

63/90

Satisfiability Problem

Boolean variables are assigned to TRUE(1) or FALSE(0).

Boolean operations are AND, OR, and NOT .

A Boolean formula is an expression involving Boolean variables and operations.

A Boolean formula is satisfiable if some assignment makes the formula evaluate to 1.

The satisfiability problem is to test whether a Boolean formula is satisfiable, i.e.,

SAT = {⟨φ⟩ | φ is a satisfiable Boolean formula}

64/90

Satisfiability Problem

Theorem

SAT ∈ P if and only if P = NP .

65/90

Polynomial time reduction

Definition

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some polynomial time Turing
machine exists that halts with just f(w) on its tape, when started on any input w.

Definition

Let A,B ⊆ Σ∗. Then A is polynomial time mapping reducible, or simply polynomial time reducible, to
B, written A ≤P B, if a polynomial time computable function f : Σ∗ → Σ∗ exists, where for every w

x ∈ A⇔ f(w) ∈ B

The function f is called the polynomial time reduction of A to B.

66/90

Polynomial time reduction

Theorem

If A ≤P B and B ∈ P , then A ∈ P .

67/90

3SAT

A literal is a Boolean variable or a negated Boolean variable.

A clause is several literals connected with ∨s.

A Boolean formula is in conjunctive normal form, called a cnf-formula, if it comprises several clauses
connected with ∧s.

A Boolean formula is a 3CNF-formula if all the clauses have three literals.

3SAT = {⟨φ⟩ | φ is a satisfiable 3CNF-formula}

68/90

Result (1)

Theorem

3SAT is polynomial time reducible to CLIQUE.

69/90

Proof (1)

Let φ be a formula with k clauses such as

φ(a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck)

The reduction generates a string ⟨G, k⟩.

1 The nodes in G are organized into k groups of three nodes t1, . . . , tk. Each triple corresponds to
one of the clauses, and each node in a triple corresponds to a literal in the associated clauses.

2 The edges of G connect all but two types of pairs of nodes in G.
• No edge is present between nodes in the same triple.
• No edge is present between two nodes with contradictory labels, e.g., x2 and x2.

70/90

Proof (2)

Proof (2)

7.4 NP-COMPLETENESS 303

FIGURE 7.33

The graph that the reduction produces from
φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

Now we demonstrate why this construction works. We show that φ is satisfi-
able iff G has a k-clique.

Suppose that φ has a satisfying assignment. In that satisfying assignment, at
least one literal is true in every clause. In each triple of G, we select one node
corresponding to a true literal in the satisfying assignment. If more than one
literal is true in a particular clause, we choose one of the true literals arbitrarily.
The nodes just selected form a k-clique. The number of nodes selected is k
because we chose one for each of the k triples. Each pair of selected nodes is
joined by an edge because no pair fits one of the exceptions described previously.
They could not be from the same triple because we selected only one node per
triple. They could not have contradictory labels because the associated literals
were both true in the satisfying assignment. Therefore, G contains a k-clique.

Suppose thatG has a k-clique. No two of the clique’s nodes occur in the same
triple because nodes in the same triple aren’t connected by edges. Therefore,
each of the k triples contains exactly one of the k clique nodes. We assign truth
values to the variables of φ so that each literal labeling a clique node is made
true. Doing so is always possible because two nodes labeled in a contradictory
way are not connected by an edge and hence both can’t be in the clique. This
assignment to the variables satisfies φ because each triple contains a clique node
and hence each clause contains a literal that is assigned TRUE. Therefore, φ is
satisfiable.

Theorems 7.31 and 7.32 tell us that if CLIQUE is solvable in polynomial time,
so is 3SAT . At first glance, this connection between these two problems appears
quite remarkable because, superficially, they are rather different. But polynomial
time reducibility allows us to link their complexities. Now we turn to a definition
that will allow us similarly to link the complexities of an entire class of problems.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

ϕ =
(
x1 ∨ x1 ∨ x2

)
∧
(
x̄1 ∨ x̄2 ∨ x̄2

)
∧ . . . ∧

(
x̄1 ∨ x2 ∨ x2

)
.φ = (x1 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x2) ∧ (x1 ∨ x2 ∨ x2)

71/90

NP-complete

Definition

A language B is NP-complete if it satisfies two conditions:

1 B is in NP , and

2 every A in NP is polynomial time reducible to B.

72/90

Relative Results

Theorem

If B is NP-complete and B ∈ P , then P = NP.

Theorem

If B is NP-complete and B ≤P C for C in NP , then C is NP-complete.

73/90

The first NPC problem

Theorem

SAT is NP-complete.

74/90

Proof (1)

SAT is in NP, since a nondeterministic polynomial time Turing machine can

1 guess an assignment to a given formula φ,

2 accept if the assignment satisfies φ.

75/90

Proof (2)

Let N be an NTM that decides a language A in time nk for some k ∈ N. We show A ≤P SAT .

A tableau for N on w is an nk × nk table whose rows are the configurations of the branch of the
computation of N on input w.

Proof (2)

Let N be an NTM that decides a language A in time nk for some k ∈ N. We
show A ≤P SAT.

A tableau for N on w is an nk × nk table whose rows are the configurations of
the branch of the computation of N on input w .

7.4 NP-COMPLETENESS 305

PROOF IDEA Showing that SAT is in NP is easy, and we do so shortly. The
hard part of the proof is showing that any language in NP is polynomial time
reducible to SAT .

To do so, we construct a polynomial time reduction for each languageA inNP
to SAT . The reduction for A takes a string w and produces a Boolean formula φ
that simulates the NP machine for A on input w. If the machine accepts, φ has
a satisfying assignment that corresponds to the accepting computation. If the
machine doesn’t accept, no assignment satisfies φ. Therefore, w is in A if and
only if φ is satisfiable.

Actually constructing the reduction to work in this way is a conceptually
simple task, though we must cope with many details. A Boolean formula may
contain the Boolean operations AND, OR, and NOT, and these operations form
the basis for the circuitry used in electronic computers. Hence the fact that we
can design a Boolean formula to simulate a Turing machine isn’t surprising. The
details are in the implementation of this idea.

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula φ and accept if the
assignment satisfies φ.

Next, we take any language A in NP and show that A is polynomial time
reducible to SAT . Let N be a nondeterministic Turing machine that decides A
in nk time for some constant k. (For convenience, we actually assume that N
runs in time nk − 3; but only those readers interested in details should worry
about this minor point.) The following notion helps to describe the reduction.

A tableau forN on w is an nk×nk table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.

FIGURE 7.38

A tableau is an nk × nk table of configurations

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

76/90

Proof (3)

We assume that each configuration starts and ends with a # symbol. Therefore, the first and last
columns of a tableau are all #s.

The first row of the tableau is the starting configuration of N on w, and each row follows the previous
one according to N ’s transition function.

A tableau is accepting if any row of the tableau is an accepting configuration.

Every accepting tableau for N on w corresponds to an accepting computation branch of N on w.
Thus, the problem of determining whether N accepts w is equivalent to the problem of determining
whether an accepting tableau for N on w exists.

77/90

Proof (4)

On input w, the reduction produces a formula φ.

1 Let Q and Γ be the state set and tape alphabet of N . We set

C = Q ∪ Γ ∪ {#}

2 For each i, j ∈ [nk] and for each s ∈ C, we have a variable xi,j,s.

3 Each of the (nk)2 entries of a tableau is called a cell.

4 If xi,j,s takes on the value 1, it means that the cell in row i and column j contains an s.

We represent the contents of the cells with the variables of φ.

78/90

Proof (5)

We design φ so that a satisfying assignment to the variables does correspond to an accepting
tableau for N for w

φcell ∧ φstart ∧ φmove ∧ φaccept

79/90

Proof (6)

φcell =
∧

i,j∈[nk]



(∨

s∈C

xi,j,s

)

∧

s,t∈C,
s ̸=t

(xi,j,s ∨ xi,j,t)







80/90

Proof (7)

φstart = x1,1,# ∧ x1,2,q0∧
x1,3,w1 ∧ x1,4,w1 ∧ . . . ∧ x1,n+2,wn∧
x1,n+3,⊔ ∧ . . . ∧ x1,nk−1,⊔ ∧ x1,nk,#

81/90

Proof (8)

φaccept =
∨

i,j∈[nk]

xi,j,qaccept

82/90

Proof (9)

Finally, formula φmove guarantees that each row of the tableau corresponds to a configuration that
legally follows the preceding row’s configuration according to N ’s rules.

It does so by ensuring that each 2× 3 window of cells is legal.

We say that a 2× 3 window is legal if that window does not violate the actions specified by N ’s
transition function.

83/90

Proof (10)

Assume that:

• When in state q1 with the head reading an a, N writes a b, stays in state q1, and moves right.
• When in state q1 with the head reading a b, N nondeterministically either

• writes a c, enters q2, and moves to the left, or
• writes an a, enters q2, and moves to the right.

Proof (10)

Assume that:

I When in state q1 with the head reading an a, N writes a b, stays in state
q1, and moves right.

I When in state q1 with the head reading a b, N nondeterministically either

1. writes a c, enters q2, and moves to the left, or

2. writes an a, enters q2, and moves to the right.
308 CHAPTER 7 / TIME COMPLEXITY

(a)
a q1 b

q2 a c
(b)

a q1 b

a a q2
(c)

a a q1

a a b

(d)
b a

b a
(e)

a b a

a b q2
(f)

b b b

c b b

FIGURE 7.39

Examples of legal windows

In Figure 7.39, windows (a) and (b) are legal because the transition function
allows N to move in the indicated way. Window (c) is legal because, with q1
appearing on the right side of the top row, we don’t know what symbol the head
is over. That symbol could be an a, and q1 might change it to a b and move to the
right. That possibility would give rise to this window, so it doesn’t violate N ’s
rules. Window (d) is obviously legal because the top and bottom are identical,
which would occur if the head weren’t adjacent to the location of the window.
Note that # may appear on the left or right of both the top and bottom rows
in a legal window. Window (e) is legal because state q1 reading a b might have
been immediately to the right of the top row, and it would then have moved to
the left in state q2 to appear on the right-hand end of the bottom row. Finally,
window (f) is legal because state q1 might have been immediately to the left of
the top row, and it might have changed the b to a c and moved to the left.

The windows shown in the following figure aren’t legal for machine N .

(a)
a b a

a a a
(b)

a q1 b

q2 a a
(c)

b q1 b

q2 b q2

FIGURE 7.40

Examples of illegal windows

In window (a), the central symbol in the top row can’t change because a state
wasn’t adjacent to it. Window (b) isn’t legal because the transition function spec-
ifies that the b gets changed to a c but not to an a. Window (c) isn’t legal because
two states appear in the bottom row.

CLAIM 7.41

If the top row of the tableau is the start configuration and every window in the
tableau is legal, each row of the tableau is a configuration that legally follows the
preceding one.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Legal moves
Legal moves

84/90

Proof (11)

Assume that:

• When in state q1 with the head reading an a, N writes a b, stays in state q1, and moves right.
• When in state q1 with the head reading a b, N nondeterministically either

• writes a c, enters q2, and moves to the left, or
• writes an a, enters q2, and moves to the right.

Proof (11)

Assume that:

I When in state q1 with the head reading an a, N writes a b, stays in state
q1, and moves right.

I When in state q1 with the head reading a b, N nondeterministically either

1. writes a c, enters q2, and moves to the left, or

2. writes an a, enters q2, and moves to the right.

308 CHAPTER 7 / TIME COMPLEXITY

(a)
a q1 b

q2 a c
(b)

a q1 b

a a q2
(c)

a a q1

a a b

(d)
b a

b a
(e)

a b a

a b q2
(f)

b b b

c b b

FIGURE 7.39

Examples of legal windows

In Figure 7.39, windows (a) and (b) are legal because the transition function
allows N to move in the indicated way. Window (c) is legal because, with q1
appearing on the right side of the top row, we don’t know what symbol the head
is over. That symbol could be an a, and q1 might change it to a b and move to the
right. That possibility would give rise to this window, so it doesn’t violate N ’s
rules. Window (d) is obviously legal because the top and bottom are identical,
which would occur if the head weren’t adjacent to the location of the window.
Note that # may appear on the left or right of both the top and bottom rows
in a legal window. Window (e) is legal because state q1 reading a b might have
been immediately to the right of the top row, and it would then have moved to
the left in state q2 to appear on the right-hand end of the bottom row. Finally,
window (f) is legal because state q1 might have been immediately to the left of
the top row, and it might have changed the b to a c and moved to the left.

The windows shown in the following figure aren’t legal for machine N .

(a)
a b a

a a a
(b)

a q1 b

q2 a a
(c)

b q1 b

q2 b q2

FIGURE 7.40

Examples of illegal windows

In window (a), the central symbol in the top row can’t change because a state
wasn’t adjacent to it. Window (b) isn’t legal because the transition function spec-
ifies that the b gets changed to a c but not to an a. Window (c) isn’t legal because
two states appear in the bottom row.

CLAIM 7.41

If the top row of the tableau is the start configuration and every window in the
tableau is legal, each row of the tableau is a configuration that legally follows the
preceding one.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional

content at any time if subsequent rights restrictions require it.

Illegal moves
Illegal moves

85/90

Proof (12)

If the top row of the tableau is the start configuration and every window in the tableau is legal, each
row of the tableau is a configuration that legally follows the preceding one.

86/90

Proof (13)

φmove =
∧

1≤i,j<nk

the (i, j)-window is legal

We replace the (i, j)-window is legal by

∨
a1,...,a6

is a legal window

xi,j−1,a1 ∧ xi,j,a2 ∧ xi,j+1,a3 ∧ xi+1,j−1,a4 ∧ xi+1,j,a5 ∧ xi+1,j+1,a6

87/90

Corollary

Corollary

3SAT is NP-complete.

88/90

Additional NP-complete problems

89/90

Corollary

Corollary

CLIQUE is NP-complete.

90/90

	Measuring Time
	The Class P
	Examples of Problems in P
	The Class NP
	Examples of problems in NP
	The NP-Completeness
	Additional NP-complete problems

