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Even when a problem is decidable, it might not be solvable in practice, since the optimal Turing
machine which decides this problem could require astronomical time.
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A= {0F1% | k > 0}
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My on w:

@ Scan across the tape and reject if a 0 is found to the right of a 1.
® Repeat if both 0s and 1s remain on the tape.

® Scan across the tape, crossing off a single 0 and a single 1.
been crossed off, reject.

@ If Os still remain after all the 1s have been crossed off, or if 1s still remain after all the 0s have
Otherwise if neither Os or 1s remain on the tape, accept.
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Time complexity of M,
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@ Analyze the running time of M, on every x € ¥*,
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fle*—>N

J2(n) = max fi(x)

® Analyze the worst-case running time of M; on inputs of length n € N, f2 : N — N. In particular
sesn

particular

® Analyze the average-case running time of M; on inputs of lengthn € N, f3 : N — N. In
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Worst-case analysis @) o

Definition

Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity

of M is the function f : N — N, where f(n) is the maximum number of steps that M/ uses on any
input of length n.

If f(n) is the running time of M, we say that M runs in time f(n) and that M is an f(n) time Turing
machine.

Customarily we use n to represent the length of the input.
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Big-O Notation
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Definition

Let f,g € N — R™ be two functions. Say that f(n) = O(g(n)) if positive integers c and no exist such
that for every integer n > ng

f(n) <c-g(n)

When f(n) = O(g(n)), we say that g(n) is an upper bound for f(n), or more precisely, that g(n) is
an asymptotic upper bound for f(n), to emphasize that we are suppressing constant factors.
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Examples
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5n% +2n% +22n + 6 = O(n?)
It
Let b > 2. Then log, n = 12?: Hence, log, n = O(log n).
2

3nlog, n + 5nlog, log, n + 2 = O(nlogn).

210n2+7n76 _ 20(n2)
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Poly. vs. Expo.
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n* for ¢ > 0 is a polynomial bound.

20") for § > 0 is an exponential bound.
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Small o-notation
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Let f,g € N — RT be two functions. Say that f(n) = o(g(n)) if
lim £

s )
f(n) < c-g(n)foralln > ne.

In other words, f(n) = o (g(n)) means that for any real number ¢ > 0, a number n, exists, where

.
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n = o(nloglogn).
nloglogn = o(nlogn).

nlogn = o(n?).
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A= {0F1% | k > 0}
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My on w:

© Scan across the tape and reject if a 0 is found to the right of a 1.
® Repeat if both 0s and 1s remain on the tape.

® Scan across the tape, crossing off a single 0 and a single 1.
been crossed off, reject.

@ If Os still remain after all the 1s have been crossed off, or if 1s still remain after all the Os have
Otherwise if neither Os or 1s remain on the tape, accept.
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The first stage scans the tape to verify the input is of the form 0*1*, taking n steps. Then the
machine repositions the head at the left-hand end of the tape, again using n steps. In total
2n = O(n) steps.

In stages 2 and 3, the machine repeatedly scans the tape and crosses off a 0 and 1 on each scan.
Each scan uses O(n) steps. Because each scan crosses off two symbols, at most n = 2 scans can
occur. So the total time taken by stage 2 and 3 is (n = 2)O(n) = O(n?).

In stage 4, the machine makes a single scan to decide whether to accept or reject, hence require
time O(n).

The overall running time
O(n) + 0(n*) + O(n) = O(n*)
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Time classes

Definition

Lett: N — R™ be a function. Define the time complexity class

TIME(t(n))

to be the collection of all languages that are decidable by an O(¢(n)) time Turing machine.

{0*1*% | k > 0} € TIME(n?).
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A better algorithm
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M on w:

@ Scan across the tape and reject if a 0 is found to the right of a 1.
odd, then reject.

® Repeat as long as some 0s and 1s remain on the tape.

@ Scan across the tape, checking whether the total number of Os and 1s remaining is even or odd. If it is
every other 1 starting with the first 1.

@ Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off

® If no 0s and no 1s remain on the tape, then accept. Otherwise, reject.
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Every stage takes O(n) time.
Stage 1 and 3 are executed once, hence total O(n) time.

Stage 2.2 crosses off at least half of the 0s and 1s each time it is executed, hence at most 1 + log, n
iterations.

Thus the total time of stages 2, 3 and 4 is (1 + log, n)O(n) = O(nlogn).

The overall running time of M- is

O(n) + O(nlogn) = O(nlogn)
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Can we do even better than O(nlogn)?
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Every language that can be decided in o(nlogn) time on a single-tape Turing machine is regular.
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{0*1% | k > 0} in linear time on a 2-tape TM
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Ms on w:

@ Scan across tape 1 and reject if a 0 is found to the right of 1.

® Scan across the 0s on tape 1 until the first 1. At the same time copy the Os onto tape 2.

® Scan across the 1s on tape 1 until the end of the input. For each 1 read on tape 1, cross off a 0
on tape 2. If all Os are crossed off before all the 1s are read, then reject.

O If all the 0s have now been crossed off, then accept. If any Os remain, then reject.
® If no Os and no 1s remain on the tape, then accept.
Otherwise, reject.
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Complexity relationships among models
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O(t*(n)) time single-tape Turing machine.

Lett(n) be a function with t(n) > n. The every t(n) time multitape Turing machine has an equivalent
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Proof (1)
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We simulate an M with & tapes by a single-tape S
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® S uses # to separate the contents of the different tapes

® S keeps track of the locations of the heads by writing a tape symbol with a dot above it to mark
the place where the head on that tape would be

—
| loft]of1]o]u]...
M.—
[a]a]a]y]

[#]of[t]of1]of#[alala]u|b]al#]u]

«0O0>» «F» «=» « >

DA



Proof (2)
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Oninput w = wy ... wy,:

@ First S puts its tape into the format that represents all & tapes of M:
Hywy . . waFUHL . H#OH#
Time: O(n) = O(t(n)).

® To determine the symbols under the virtual heads, S scans its tape from the first #, which
marks the left-hand end, to the (k + 1)st #, which marks the right-hand end.
Time: O(t(n)).

® Then S makes a second pass to update the tapes according to the way that M's transition
function dictates. If S makes one of the virtual heads to the right onto a #, then S writes LI on
this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the
right.
Time: O(k - t(n)) = O(t(n)).
O Go backto 2.
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Nondeterministic machines
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Definition

Let V be a nondeterministic Turing machine that is a decider. The running time of NV is the function

f: N — N, where f(n) is the maximum number of steps that V uses on any branch of its
computation on any input of length n.
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Deterministic vs. nondeterministic

)

SHANGHAI ]lAO TONG
Deterministic

UNIVERSITY

Nondeterministic

. e
reject

‘ l _accept

_accept/reject

l _ reject l
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Complexity relationships among models (cont’d)
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Lett(n) be a function with t(n) > n. The every t(n) time nondeterministic single-tape Turing
machine has an equivalent 2°“"™) time deterministic single-tape Turing machine.
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Proof (1)
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We simulate a nondeterministic IV by a deterministic D.

e D try all possible branches of N’s nondeterministic computation.

® |f D ever finds the accept state on one of these branches, it accepts.

N nnn ... Input tape
D—

T

[x[#[0]1]=[o]..

simulation tape

[1]2]3]3]2]3]1]2]t]1]3]u]..

address tape
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On an input of length n, every branch of N’s nondeterministic computation tree has a length of at
most t(n).

Every node in the tree can have at most b children, where b is the maximum number of legal choices
given by N'’s transition function. Thus, the total number of leaves in the tree is at most bé(n).

The total number of the nodes in the tree is less than twice the maximum number of leaves, hence
O(b'™). The time it takes to start from the root and travel down to a node is O(t(n)). Hence the
total running time of D is O(t(n)b!(™)) = 20

D has 3 tapes, thus can be simulated by a single-tape TM in time

(20(15(71,)))2 — 90(t(n))
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Definition

Turing machine. In other words:

P=|JTIME®n")
keN

P is the class of languages that are decidable in polynomial time on a deterministic single-tape
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single-tape machine.

P is invariant for all models of computation that are polynomially equivalent to the deterministic

P roughly corresponds to the class of problems that are realistically solvable on a computer.
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Examples of Problems in P
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We continue to use (-) to indicate a reasonable encoding of one or more objects into a string.

Unary encoding of n.as 11... 11 is exponentially larger than the standard binary encoding of n,
N—_——

n times
hence not reasonable.

A graphs can be encoded either by listing its nodes and edges, i.e., its adjacency list, or its
adjacency matrix, where the (4, j)th entry is 1 if there is an edge from node 7 to node j and 0 if not.
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The path problem

PATH = {(G,s,t) | G isadirected graph

that has a directed path from s and ¢}

PATH € P. '
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Testing relative prime
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RELPRIMIE = {(x,y) |  and y are relatively prime}

RELPRIMIE € P. I
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Recall the greatest common divisor gcd(x, y) is the largest integer that divides both = and y.

Eon (z,y)
© Repeat until y = 0:

(2] Assign z < z( mod y).
® Exchange x and y.
O Output x.
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Testing relative prime
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Ron (z,y)

® Run E on (z,y).

@ If the result is 1, then accept. Otherwise, reject.

«0O0>» «F» « =»

i
v

DA



Time analysis
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We show that E runs in polynomial time

e Every execution of stage 2 with y < x cuts the value x at least by half.
and 2 log, y.

® Thus, the maximum number of times that stage 2 and 3 are executed is the lesser of 2log, x
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Testing context-freeness
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Every context-free language is a member of P. I
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Recall (1)
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A context-free grammar is in Chomsky normal form if every rule is of the form

A— BCand A — a

where a is any terminal and A, B and C' are any variables, except that B and C' may be not the start
variable. In addition, we permit the rule S — ¢, where S is the start variable.

Any context-free language is generated by a context-free grammar in Chomsky normal form.

has 2|w| — 1 steps.

Let G be CFG in Chomsky normal form, and G generates w with w # e. Then any derivation of w
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Recall (2)
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Son (G,w)

@ Convert G to an equivalent grammar in Chomsky normal form.
rule S — e.

@ List all derivations with 2|w| — 1 steps; except if jw| = 0, then instead check whether there is a
The running time of S is 20,

® If any of these derivations generates w, then accept; otherwise reject.

«0O0>» «F» « =»

i
v

DA



Dynamic programming
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Let w be an input string and n := |w|.

For every ¢ < j < n we will compute

table(i, j) = the collection of variables that can generate the substring w;wiy1 ... w;
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Dynamic Programming (cont’d) %mmm’ b

Donw=wi...wny:
@ Forw =€, if S — eis arule, then accept; else reject.
® Fori=1ton:

(3] For each variable A:
(4] Test whether A — b is a rule, where b = w;.
(5) If so, place A in table (i, ).

O For/=2ton:
Fori=1ton—/¢+1:
Letj=i+¢-1
Fork=itoj—1:
For each rule A — BC:

If B € table(i, k) and C € table(k, j),
then put A in table(, j).

® If S € table(1,n), then accept; else reject.

96009
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Hamiltonian path
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Definition

once.

HAMPATH =

A Hamiltonian path in a directed graph G is a directed path that goes through each node exactly

{(G, s,t) | G is a directed graph

with a Hamiltonian path from sand ¢}
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Hamiltonian path (cont’d)
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Polynomial verifiability
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Even though we don’t know how to determine fast whether a graph contains Hamiltonian path, if
its existence.

such a path were discovered somehow (perhaps using the exponential time algorithm), we could
easily convince someone else of its existence simply by presenting it.

In other words, verifying the existence of a Hamiltonian path may be much easier than determining
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Testing composite
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Definition

A natural number is composite if it is the product of two integers > 1.

COMPOSITES = {z | x = pq for integers p,q > 1}
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Definition

A verifier for a language A is an algorithm V', where

A = {w | V accepts (w, c) for some string c}

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs
in polynomial time in the length of w. A language A is polynomial verifiable if it has a polynomial time
verifier.

The string ¢ in the above definition is a certificate, or proof, of membership in A. For polynomial
verifiers, the certificate has polynomial length (in the length of w).
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Certificates
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For HAM PATH, a certificate for (G, s,t) € HAMPATH is a Hamiltonian path from s to ¢.
For COMPOSITES, a certificate for x is one of its divisors.
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The class NP
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Definition
NP is the class of languages that have polynomial time verifiers.
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Nondeterministic polynomial Turing machines
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machines.

A language is in NP if and only if it is decided by some nondeterministic polynomial time Turing

«0O>» «F» « >

i
v

DA



Proof (1)
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Assume that the verifier V is a TM that runs in time n”.
N on w with n = |w|

© Nondeterministically select string ¢ of length at most n*
® RunV on (w, ¢).

@ If V accepts, then accept; otherwise, reject.

«0O0>» «F» « =»

i
v

DA



Proof (2)
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Assume that A is decided by a polynomial time NTM N.
Voon (w,c)

@ Simulate N on input w, treating each symbol of ¢ as a description of the nondeterministic
choice to make at each step.

@ If this branch of N’s computation accepts, then accept; otherwise, reject.
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Nondeterministic time complexity classes

e
Definition

@) ussworone
NTIME(t(n)) ={L | L isalanguage decided by an O(¢(n))
time nondeterministic Turing machine}
V.
NP = | NTIME(n")
keN
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Examples of problems in NP
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The clique problem
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A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.
A k-clique is a clique that contains & nodes.
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The clique problem (cont’d)
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CLIQUE = {(G, k) | G is an undirected graph with a k clique}

CLIQUE isin NP. I
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Proof (1)
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Von ((G,k),c):

© Test whether cis a subgraph with £ nodes in G.

® Test whether G contains all edges connecting nodes in c.
® If both pass, then accept; otherwise reject.
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Proof (2)
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N on (G, k):

© Nondeterministically select a subset ¢ of k£ nodes in G.

® Test whether G contains all edges connecting nodes in c.
© If yes, then accept; otherwise reject.
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The subset-sum problem
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SUBSET-SUM = {(S, 1) |

S ={z1,...z,} and for some

{y1...,y¢} C S, wehave Zie[e] yi =t}
SUBSET-SUM isin NP. I
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The P versus NP question
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P = the class of languages for which membership can be decided quickly

NP = the class of languages for which membership can be verified quickly
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A remark
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P versus NP, a gift to mathematics from computer science.

— S. Smale.
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The NP-Completeness
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In 1970s, Stephen Cook and Leonid Levin discovered certain problems in NP whose individual
complexity is related to that of the entire class.

If a polynomial time algorithm exists for any of these problems, all problems in NP would be
polynomial time solvable.

These problems are called NP-complete.
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Satisfiability Problem @) o

Boolean variables are assigned to TRU E(1) or FALSE(0).

Boolean operations are AN D, OR, and NOT.

A Boolean formula is an expression involving Boolean variables and operations.

A Boolean formula is satisfiable if some assignment makes the formula evaluate to 1.

The satisfiability problem is to test whether a Boolean formula is satisfiable, i.e.,

SAT = {(y) | ¢ is a satisfiable Boolean formula}
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Satisfiability Problem
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SAT € P ifandonly if P= NP . I
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Definition

A function f : ¥* — ¥ is a polynomial time computable function if some polynomial time Turing
machine exists that halts with just f(w) on its tape, when started on any input w.

Definition

Let A, B C X*. Then A is polynomial time mapping reducible, or simply polynomial time reducible, to
B, written A <p B, if a polynomial time computable function f : ¥* — X* exists, where for every w

r€As f(w)eB

The function f is called the polynomial time reduction of A to B.
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Polynomial time reduction
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IfA<p BandB € P, then A € P. I
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A literal is a Boolean variable or a negated Boolean variable.

A clause is several literals connected with Vvs.

A Boolean formula is in conjunctive normal form, called a cnf-formula, if it comprises several clauses
connected with As.

A Boolean formula is a 3SCNF-formula if all the clauses have three literals.

3SAT = {{¢) | ¢ is a satisfiable 3CNF-formula}
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Result (1)
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3S AT is polynomial time reducible to CLIQUE. I
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Proof (1)
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(p(al\/b1Vcl)A(a2\/b2V62)A.../\(akvbk\/ck)

The reduction generates a string (G, k).
© The nodes in G are organized into k groups of three nodes ¢4,

® No edge is present between nodes in the same triple.

..., tr. Each triple corresponds to
one of the clauses, and each node in a triple corresponds to a literal in the associated clauses.
® The edges of G connect all but two types of pairs of nodes in G.

® No edge is present between two nodes with contradictory labels, e.g., z2 and z3.
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NP-complete

P

\ SHANGHAI JIAO TONG
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Definition

A language B is NP-complete if it satisfies two conditions:
©® Bisin NP, and

® every Ain NP is polynomial time reducible to B.

«0O0>» «F» « >

i
v

DA



Relative Results

P~

SHANGHAI JIAO TONG
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If B is NP-complete and B € P, then P = NP.

If B is NP-complete and B <p C for C in NP, then C is NP-complete. I
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The first NPC problem
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SAT is NP-complete. I
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Proof (1)

P
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SAT is in NP, since a nondeterministic polynomial time Turing machine can
@ guess an assignment to a given formula ¢,
@ accept if the assignment satisfies .
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Proof (2)

(\ i\ SHANGHAI JIAO TONG

<7 UNIVERSITY

Let N be an NTM that decides a language A in time n* for some k € N. We show A <p SAT.

A tableau for N on w is an n* x n* table whose rows are the configurations of the branch of the
computation of N on input w.

# Qo |w| wz‘ - ‘w”‘ u ‘ - ‘ U | # | start configuration
# # | second configuration
# #
window
L—1
nk /
# # | nkth configuration

nk
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We assume that each configuration starts and ends with a # symbol. Therefore, the first and last
columns of a tableau are all #s.

The first row of the tableau is the starting configuration of N on w, and each row follows the previous
one according to N’s transition function.

A tableau is accepting if any row of the tableau is an accepting configuration.
Every accepting tableau for N on w corresponds to an accepting computation branch of N on w.

Thus, the problem of determining whether N accepts w is equivalent to the problem of determining
whether an accepting tableau for N on w exists.
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Proof (4)
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On input w, the reduction produces a formula ¢.
@ Let Q and I be the state set and tape alphabet of N. We set

C=QUTU{#}

@® For each i, j € [n*] and for each s € C, we have a variable z; ..
@ Each of the (n*)? entries of a tableau is called a cell.

O If z; ; s takes on the value 1, it means that the cell in row ¢ and column j contains an s
We represent the contents of the cells with the variables of ¢.
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Proof (5)

SHANGHAI JIAO TONG

UNIVERSITY

tableau for IV for w

We design ¢ so that a satisfying assignment to the variables does correspond to an accepting

Peell N\ Pstart \ Pmove N\ Paccept
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Proof (6)
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Peell = /\ \/ l'i,j,s)
i,5€[n*]

N\ @5 v
seC s,teC,
s#t
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Proof (7)

gy N
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Pstart =

T1,1,# N X120\

13,01 AT 4w Ao A Tnt 2,0, A

Tin43,u N o ATy ok G ATy ok 4
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Proof (8)

gy N

f- SHANGHALI JIAO TONG
\ 7,

3

J UNIVERSITY

Paccept = \/ Ti,5,qaccept

i,5€[nk]
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Proof (9) @

’{‘ SHANGHAI JIAO TONG
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Finally, formula ¢,,... guarantees that each row of the tableau corresponds to a configuration that
legally follows the preceding row’s configuration according to N’s rules.

It does so by ensuring that each 2 x 3 window of cells is legal.

We say that a 2 x 3 window is legal if that window does not violate the actions specified by N’s
transition function.
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Proof (10)
Assume that:

R
@) ussworone
® When in state ¢; with the head reading a b, N nondeterministically either
® writes a ¢, enters g2, and moves to the left, or

® writes an a, enters g2, and moves to the right.

® When in state ¢; with the head reading an a, N writes a b, stays in state ¢1, and moves right.

alqi|b a|lqi| b ala|q
(a) (b (©
g2 | ajc a|lalj|g alal|b
# | b|a a a b
(d (e) ®
# a a q2 c
Legal moves
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Proof (11)
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Assume that:

®

SHANGHAI JIAO TONG
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® When in state ¢; with the head reading an a, N writes a b, stays in state ¢:, and moves right
® When in state ¢; with the head reading a b, N nondeterministically either
® writes a ¢, enters ¢2, and moves to the left, or

® writes an a, enters g2, and moves to the right.

a|b|a alq|b blqa|b
@ (b) ©
alala g2 | aja G2 | b g
lllegal moves
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Proof (12)
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If the top row of the tableau is the start configuration and every window in the tableau is legal, each
row of the tableau is a configuration that legally follows the preceding one.
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Proof (13)

)
f SHANGHAI JIAO TONG

= UNIVERSITY

Pmove =

A

the (7, j)-window is legal
1<i,j<nk
We replace the (i, j)-window is legal by

soag
is a legal window

Tij—1,a1 N\ Tijas N Tij+1,a3 N Tit1,j—1,a0 N Titl,j,as N Titl,541,a6
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Corollary
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3SAT is NP-complete. 5
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Additional NP-complete problems
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Corollary

P

, SHANGHAI JIAO TONG
& =) UNIVERSITY

CLIQUE is NP-complete. \
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