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Turing machines

Alan Turing in 1936 proposed Turing machines M :

• M uses an infinite tape as its unlimited memory, with a tape head reading and writing symbols
and moving around on the tape. The tape initially contains only the input string and is blank
everywhere else.

• If M needs to store information, it may write this information on the tape. To read the
information that it has written, M can move its head back over it.

• M continues computing until it decides to produce an output. The outputs accept and reject are
obtained by entering designated accepting and rejecting states.

• If M doesn’t enter an accepting or a rejecting state, it will go on forever, never halting.
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Initially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the
tape. To read the information that it has written, the machine can move its
head back over it. The machine continues computing until it decides to produce
an output. The outputs accept and reject are obtained by entering designated
accepting and rejecting states. If it doesn’t enter an accepting or a rejecting state,
it will go on forever, never halting.

FIGURE 3.1

Schematic of a Turing machine

The following list summarizes the differences between finite automata and
Turing machines.

1. A Turing machine can both write on the tape and read from it.

2. The read–write head can move both to the left and to the right.

3. The tape is infinite.

4. The special states for rejecting and accepting take effect immediately.

Let’s introduce a Turing machineM1 for testing membership in the language
B = {w#w| w ∈ {0,1}∗}. We want M1 to accept if its input is a member of B
and to reject otherwise. To understand M1 better, put yourself in its place by
imagining that you are standing on a mile-long input consisting of millions of
characters. Your goal is to determine whether the input is a member of B—that
is, whether the input comprises two identical strings separated by a # symbol.
The input is too long for you to remember it all, but you are allowed to move
back and forth over the input and make marks on it. The obvious strategy is
to zig-zag to the corresponding places on the two sides of the # and determine
whether they match. Place marks on the tape to keep track of which places
correspond.

We design M1 to work in that way. It makes multiple passes over the input
string with the read–write head. On each pass it matches one of the characters
on each side of the # symbol. To keep track of which symbols have been checked
already, M1 crosses off each symbol as it is examined. If it crosses off all the
symbols, that means that everything matched successfully, and M1 goes into an
accept state. If it discovers a mismatch, it enters a reject state. In summary,M1’s
algorithm is as follows.
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The difference between finite automata and Turing machines

1 A Turing machine can both write on the tape and read from it.

2 The read-write head can move both to the left and to the right.

3 The tape is infinite.

4 The special states for rejecting and accepting take effect immediately.
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B = {w♯w | w ∈ {0, 1}∗}

M1 on input string w:

1 Zig-zag across the tape to corresponding positions on either side of the ♯ symbol to check
whether these positions contain the same symbol. If they do not, or if no ♯ is found, reject.
Cross off symbols as they are checked to keep track of which symbols correspond.

2 When all symbols to the left of the ♯ have been crossed off, check for any remaining symbols to
the right of the ♯. If any symbols remain, reject; otherwise, accept.

6/48



B = {w♯w | w ∈ {0, 1}∗}
B =

{
w#w

∣∣ w ∈ {0, 1}∗
}

(cont’d)

3.1 TURING MACHINES 167

M1 = “On input string w:
1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject .
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject ; otherwise, accept .”

The following figure contains several nonconsecutive snapshots ofM1’s tape
after it is started on input 011000#011000.

FIGURE 3.2

Snapshots of Turing machineM1 computing on input 011000#011000

This description of Turing machineM1 sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and push-
down automata. The formal descriptions specify each of the parts of the formal
definition of the Turing machine model to be presented shortly. In actuality, we
almost never give formal descriptions of Turing machines because they tend to
be very big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function δ be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, δ takes the form: Q×Γ −→ Q×Γ×{L,R}.That is, when the machine
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Formal definition of a Turing machine

Definition

A Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q,Σ,Γ are all finite and
• Q is set of states,
• Σ is the input alphabet not containing the blank symbol ⊔,
• Γ is the tape alphabet, where ⊔ ∈ Γ and Σ ⊆ Γ,
• δ : Q× Γ → Q× Γ× {L,R} is the transition function,
• q0 ∈ Q is the start state,
• qaccept ∈ Q is the accept state, and
• qreject ∈ Q is the reject state, where qreject ̸= qaccept.
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Computation by M

Initially, M receives its input w = w1w2 . . . wn ∈ Σ∗ on the leftmost n squares of the tape, and the
rest of the tape is blank (i.e., filled ⊔).

The head starts on the leftmost square of the tape.

As Σ does not contain ⊔, so the first blank appearing on the tape marks the end of the input.

Once M has started, the computation proceeds according to the rules described by the transition
function.

If M ever tries to move its head to the left off the left-hand end of the tape, the head stays in the
same place for that move, even though the transition function indicates L.

The computation continues until it enters either the accept or reject states, at which point it halts. If
neither occurs, M goes on forever.
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Configurations

A configuration of a Turing machine consists of

• the current state,
• the current tape contents, and
• the current head location.

By u q v we mean the configuration where

• the current state is q,
• the current tape contents is uv, and
• the current head location is the first symbol of v.
• The tape contains only blanks following the last symbol of v.
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Configurations
Configurations (cont’d)

3.1 TURING MACHINES 169

FIGURE 3.4

A Turing machine with configuration 1011q701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C1 yields configuration C2 if the Turing
machine can legally go from C1 to C2 in a single step. We define this notion
formally as follows.

Suppose that we have a, b, and c in Γ, as well as u and v in Γ∗ and states qi
and qj . In that case, ua qi bv and u qj acv are two configurations. Say that

ua qi bv yields u qj acv

if in the transition function δ(qi, b) = (qj , c,L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

ua qi bv yields uac qj v

if δ(qi, b) = (qj , c,R).
Special cases occur when the head is at one of the ends of the configuration.

For the left-hand end, the configuration qi bv yields qj cv if the transition is left-
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields c qjv for the right-moving transition. For the right-hand end,
the configuration ua qi is equivalent to ua qi  because we assume that blanks
follow the part of the tape represented in the configuration. Thus we can handle
this case as before, with the head no longer at the right-hand end.

The start configuration of M on input w is the configuration q0 w, which
indicates that the machine is in the start state q0 with its head at the leftmost
position on the tape. In an accepting configuration, the state of the configuration
is qaccept. In a rejecting configuration, the state of the configuration is qreject.
Accepting and rejecting configurations are halting configurations and do not
yield further configurations. Because the machine is defined to halt when in the
states qaccept and qreject, we equivalently could have defined the transition function
to have the more complicated form δ : Q′×Γ−→Q×Γ×{L,R}, where Q′ is Q
without qaccept and qreject. A Turing machine M accepts input w if a sequence of
configurations C1, C2, . . . , Ck exists, where

1. C1 is the start configuration ofM on input w,

2. each Ci yields Ci+1, and

3. Ck is an accepting configuration.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

A Turing machine with configuration 1011 q7 01111A Turing machine with configuration 1011 q7 01111

11/48



Formal definition of computation

Let a, b, c ∈ Γ, u, v ∈ Γ∗, and qi, qj ∈ Q.

1 If δ(qi, b) = (qj , c, L), then
ua qi bv yields u qj acv .

2 If δ(qi, b) = (qj , c, R), then
ua qi bv yields uac qj v .

Special cases occur when the head is at one of the ends of the configuration:

1 For the left-hand end, the configuration qi bv yields qj cv if the transition is left moving (because
we prevent the machine from going off the left-hand end of the tape), and it yields c qj v for the
right-moving transition.

2 For the right-hand end, the configuration ua qi is equivalent to ua qi ⊔ because we assume that
blanks follow the part of the tape represented in the configuration.
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Special configurations

The start configuration of M on input w is the configuration q0 w.

In an accepting configuration, the state of the configuration is qaccept.

In a rejecting configuration, the state of the configuration is qreject.

Accepting and rejecting configurations are halting configurations and do not yield further
configurations.
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Formal definition of computation

M accepts w if there are sequence of configurations C1, C2, . . . , Ck such that

• C1 the start configuration of M on w.
• Each Ci yields Ci+1, and
• Ck is an accepting configuration.

The collection of strings that M accepts is the language of M , or the language recognized by M ,
denoted L(M).
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Turing-recognizable languages

Definition

A language is Turing-recognizable, if some Turing machine recognizes it.
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Turing-decidable languages

On an input, the machine M may accept, reject, or loop. By loop we mean that the machine simply
does not halt.

If M always halts, then it is a decider. A decider that recognizes some language is said to decide
that language.

Definition

A language is Turing-decidable or simply decidable if some Turing machine decides it.
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Example: A = {02n | n ≥ 0}

On input string w:

1 Sweep left to right across the tape, crossing off every other 0.

2 If in stage 1 the tape contained a single 0, accept.

3 If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject.

4 Return the head to the left-hand end of the tape.

5 Go to stage 1.
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Example: A = {02n | n ≥ 0}

Q = {q1, q2, q3, q4, q5, qaccept, qreject}, where q1 is the start state.

Σ = {0} and Γ = {0, x,⊔}.

The transition function δ:

A =
{

02
n ∣∣ n ≥ 0

}
(cont’d)

I Q =
{
q1, q2, q3, q4, q5, qaccept, qreject

}
, where q1 is the start state.

I Σ = {0} and Γ = {0, x , }.
I The transition function δ:

172 CHAPTER 3 / THE CHURCH---TURING THESIS

FIGURE 3.8

State diagram for Turing machineM2

In this state diagram, the label 0→ ,R appears on the transition from q1 to q2.
This label signifies that when in state q1 with the head reading 0, the machine
goes to state q2, writes  , and moves the head to the right. In other words,
δ(q1,0) = (q2, ,R). For clarity we use the shorthand 0→R in the transition from
q3 to q4, to mean that the machine moves to the right when reading 0 in state q3
but doesn’t alter the tape, so δ(q3,0) = (q4,0,R).

This machine begins by writing a blank symbol over the leftmost 0 on the
tape so that it can find the left-hand end of the tape in stage 4. Whereas we
would normally use a more suggestive symbol such as # for the left-hand end
delimiter, we use a blank here to keep the tape alphabet, and hence the state
diagram, small. Example 3.11 gives another method of finding the left-hand end
of the tape.

Next we give a sample run of this machine on input 0000. The starting con-
figuration is q10000. The sequence of configurations the machine enters appears
as follows; read down the columns and left to right.

q10000  q5x0x  xq5xx 
 q2000 q5 x0x  q5xxx 
 xq300  q2x0x q5 xxx 
 x0q40  xq20x  q2xxx 
 x0xq3  xxq3x  xq2xx 
 x0q5x  xxxq3  xxq2x 
 xq50x  xxq5x  xxxq2 

 xxx qaccept
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Example
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Example: B = {w♯w | w ∈ {0, 1}∗}

Q = {q1, q2, . . . , q8, qaccept, qreject}, where q1 is the start
state.

Σ = {0, 1, ♯} and Γ = {0, 1, ♯, x,⊔}.

The transition function δ:

B =
{
w#w

∣∣ w ∈ {0, 1}∗
}

I Q =
{
q1, . . . , q8, qaccept, qreject

}
, where q1 is the start state.

I Σ = {0, 1,#} and Γ = {0, 1,#, x , }.
I The transition function δ:

3.1 TURING MACHINES 173

EXAMPLE 3.9

The following is a formal description ofM1 = (Q,Σ,Γ, δ, q1, qaccept, qreject), the
Turing machine that we informally described (page 167) for deciding the lan-
guage B = {w#w| w ∈ {0,1}∗}.

• Q = {q1, . . . , q8, qaccept, qreject},
• Σ = {0,1,#}, and Γ = {0,1,#,x, }.
• We describe δ with a state diagram (see the following figure).

• The start, accept, and reject states are q1, qaccept, and qreject, respectively.

FIGURE 3.10

State diagram for Turing machineM1

In Figure 3.10, which depicts the state diagram of TM M1, you will find the
label 0,1→R on the transition going from q3 to itself. That label means that the
machine stays in q3 and moves to the right when it reads a 0 or a 1 in state q3. It
doesn’t change the symbol on the tape.

Stage 1 is implemented by states q1 through q7, and stage 2 by the remaining
states. To simplify the figure, we don’t show the reject state or the transitions
going to the reject state. Those transitions occur implicitly whenever a state
lacks an outgoing transition for a particular symbol. Thus because in state q5
no outgoing arrow with a # is present, if a # occurs under the head when the
machine is in state q5, it goes to state qreject. For completeness, we say that the
head moves right in each of these transitions to the reject state.
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B = {w♯w | w ∈ {0, 1}∗}
B =

{
w#w

∣∣ w ∈ {0, 1}∗
}

(cont’d)

3.1 TURING MACHINES 167

M1 = “On input string w:
1. Zig-zag across the tape to corresponding positions on either

side of the # symbol to check whether these positions contain
the same symbol. If they do not, or if no # is found, reject .
Cross off symbols as they are checked to keep track of which
symbols correspond.

2. When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject ; otherwise, accept .”

The following figure contains several nonconsecutive snapshots ofM1’s tape
after it is started on input 011000#011000.

FIGURE 3.2

Snapshots of Turing machineM1 computing on input 011000#011000

This description of Turing machineM1 sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and push-
down automata. The formal descriptions specify each of the parts of the formal
definition of the Turing machine model to be presented shortly. In actuality, we
almost never give formal descriptions of Turing machines because they tend to
be very big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function δ be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, δ takes the form: Q×Γ −→ Q×Γ×{L,R}.That is, when the machine
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Example: C = {aibjck | i, j, k ≥ 1 and i× j = k}

On input string w:

1 Scan the input from left to right to determine whether it is a member of a+b+c+ and reject if it is
not.

2 Return the head to the left-hand end of the tape.

3 Cross off an a and scan to the right until a b occurs. Shuttle between the b’s and the c’s, crossing
off one of each until all b’s are gone. If all c’s have been crossed off and some b’s remain, reject.

4 Restore the crossed off b’s and repeat stage 3 if there is another a to cross off. If all a’s have
been crossed off, determine whether all c’s also have been crossed off. If yes, accept;
otherwise, reject.
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otherwise, reject.
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Example: C = {aibjck | i, j, k ≥ 1 and i× j = k}

On input string w:

1 Scan the input from left to right to determine whether it is a member of a+b+c+ and reject if it is
not.

2 Return the head to the left-hand end of the tape.

3 Cross off an a and scan to the right until a b occurs. Shuttle between the b’s and the c’s, crossing
off one of each until all b’s are gone. If all c’s have been crossed off and some b’s remain, reject.

4 Restore the crossed off b’s and repeat stage 3 if there is another a to cross off. If all a’s have
been crossed off, determine whether all c’s also have been crossed off. If yes, accept;
otherwise, reject.

22/48



Example: E = {♯x1♯ . . . ♯xℓ | each xi ∈ {0, 1}∗ and xi ̸= xj for each i ̸= j}

On input string w:

1 Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that
symbol was a ♯, continue with the next stage. Otherwise, reject.

2 Scan right to the next ♯ and place a second mark on top of it. If no ♯ is encountered before a
blank symbol, only x1 was present, so accept.

3 By zig-zagging, compare the two strings to the right of the marked ♯s. If they are equal, reject.

4 Move the rightmost of the two marks to the next ♯ symbol to the right. If no ♯ symbol is
encountered before a blank symbol, move the leftmost mark to the next ♯ to its right and the
rightmost mark to the ♯ after that. This time, if no ♯ is available for the rightmost mark, all the
strings have been compared, so accept.

5 Go to stage 3.
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Summery

Languages A, B, C, and E are decidable.

All decidable languages are Turing-recognizable, so these languages are also Turing-recognizable.

Demonstrating a language that is Turing-recognizable but undecidable is more difficult.
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Variants of Turing Machines
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Multitape Turing machines

A multitape Turing machine M has several tapes:

• Each tape has its own head for reading and writing.
• The input is initially on tape 1, with all the other tapes being blank.
• The transition function is

δ : Q× Γk → Q× Γk × {L,R, S}k

where k is the number of tapes.

δ(qi, a1, . . . , ak) = (qj , b1, . . . , bk, L,R, . . . , L)

means that if M is in state qi and heads 1 through k are reading symbols a1 through ak, the
machine goes to state qj , writes symbols b1 through bk, and directs each head to move left or
right, or to stay put, as specified.
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Equivalence

Theorem

Every multitape Turing machine has an equivalent single-tape Turing machine.
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Proof

We simulate an M with k tapes by a single-tape S.

• S uses ♯ to separate the contents of the different tapes.
• S keeps track of the locations of the heads by writing a tape symbol with a dot above it to mark

the place where the head on that tape would be.

Proof (1)

We simulate an M with k tapes by a single-tape S .

I S uses # to separate the contents of the different tapes.

I S keeps track of the locations of the heads by writing a tape symbol with
a dot above it to mark the place where the head on that tape would be.

3.2 VARIANTS OF TURING MACHINES 177

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-
tape TM S. The key idea is to show how to simulateM with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing
their information on its single tape. It uses the new symbol # as a delimiter to
separate the contents of the different tapes. In addition to the contents of these
tapes, S must keep track of the locations of the heads. It does so by writing a tape
symbol with a dot above it to mark the place where the head on that tape would
be. Think of these as “virtual” tapes and heads. As before, the “dotted” tape
symbols are simply new symbols that have been added to the tape alphabet. The
following figure illustrates how one tape can be used to represent three tapes.

FIGURE 3.14

Representing three tapes with one

S = “On input w = w1 · · · wn:
1. First S puts its tape into the format that represents all k tapes

ofM . The formatted tape contains

#
•
w1w2 · · · wn #

• #
• # · · · #.

2. To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way thatM ’s transition function dictates.

3. If at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

28/48



Proof

We simulate an M with k tapes by a single-tape S.

• S uses ♯ to separate the contents of the different tapes.
• S keeps track of the locations of the heads by writing a tape symbol with a dot above it to mark

the place where the head on that tape would be.

Proof (1)

We simulate an M with k tapes by a single-tape S .

I S uses # to separate the contents of the different tapes.

I S keeps track of the locations of the heads by writing a tape symbol with
a dot above it to mark the place where the head on that tape would be.

3.2 VARIANTS OF TURING MACHINES 177

THEOREM 3.13

Every multitape Turing machine has an equivalent single-tape Turing machine.

PROOF We show how to convert a multitape TM M to an equivalent single-
tape TM S. The key idea is to show how to simulateM with S.

Say that M has k tapes. Then S simulates the effect of k tapes by storing
their information on its single tape. It uses the new symbol # as a delimiter to
separate the contents of the different tapes. In addition to the contents of these
tapes, S must keep track of the locations of the heads. It does so by writing a tape
symbol with a dot above it to mark the place where the head on that tape would
be. Think of these as “virtual” tapes and heads. As before, the “dotted” tape
symbols are simply new symbols that have been added to the tape alphabet. The
following figure illustrates how one tape can be used to represent three tapes.

FIGURE 3.14

Representing three tapes with one

S = “On input w = w1 · · · wn:
1. First S puts its tape into the format that represents all k tapes

ofM . The formatted tape contains

#
•
w1w2 · · · wn #

• #
• # · · · #.

2. To simulate a single move, S scans its tape from the first #,
which marks the left-hand end, to the (k + 1)st #, which marks
the right-hand end, in order to determine the symbols under
the virtual heads. Then S makes a second pass to update the
tapes according to the way thatM ’s transition function dictates.

3. If at any point S moves one of the virtual heads to the right onto
a #, this action signifies that M has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape
contents, from this cell until the rightmost #, one unit to the
right. Then it continues the simulation as before.”

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

28/48



Proof

On input w = w1 . . . wn:

1 First S puts its tape into the format that represents all k tapes of M :

♯ẇ1w2 . . . wn♯⊔̇♯⊔̇♯ . . . ♯

2 To determine the symbols under the virtual heads, S scans its tape from the first ♯, which marks
the left-hand end, to the k + 1st ♯, which marks the right-hand end.

3 Then S makes a second pass to update the tapes according to the way that Ms transition
function dictates.

4 If S moves one of the virtual heads to the right onto a ♯, i.e., M has moved the corresponding
head onto the previously unread blank portion of that tape. So S writes on this tape cell and
shifts the tape contents, from this cell until the rightmost ♯, one unit to the right.

5 Go back to 2.
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Corollary

Corollary

A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.

30/48



Nondeterministic Turing Machines

The transition function for a nondeterministic Turing machine has the form

δ : Q× Γ → P(Q× {L,R})

The computation of a nondeterministic Turing machine is a tree whose branches correspond to
different possibilities for the machine.

If some branch of the computation leads to the accept state, the machine accepts its input.
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Equivalence

Theorem

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.
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Proof

We simulate a nondeterministic N by a deterministic D.

• D try all possible branches of N ’s nondeterministic computation.
• If D ever finds the accept state on one of these branches, it accepts.
• Otherwise, D’s simulation will not terminate.

Proof (1)

We simulate a nondeterministic N by a deterministic D.

1. D try all possible branches of N’s nondeterministic computation.

2. If D ever finds the accept state on one of these branches, it accepts.

3. Otherwise, D’s simulation will not terminate.

3.2 VARIANTS OF TURING MACHINES 179

PROOF The simulating deterministic TM D has three tapes. By Theo-
rem 3.13, this arrangement is equivalent to having a single tape. The machine
D uses its three tapes in a particular way, as illustrated in the following figure.
Tape 1 always contains the input string and is never altered. Tape 2 maintains a
copy of N ’s tape on some branch of its nondeterministic computation. Tape 3
keeps track of D’s location in N ’s nondeterministic computation tree.

FIGURE 3.17

Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible
choices given by N ’s transition function. To every node in the tree we assign
an address that is a string over the alphabet Γb = {1, 2, . . . , b}. We assign the
address 231 to the node we arrive at by starting at the root, going to its 2nd child,
going to that node’s 3rd child, and finally going to that node’s 1st child. Each
symbol in the string tells us which choice to make next when simulating a step
in one branch in N ’s nondeterministic computation. Sometimes a symbol may
not correspond to any choice if too few choices are available for a configuration.
In that case, the address is invalid and doesn’t correspond to any node. Tape 3
contains a string over Γb. It represents the branch of N ’s computation from the
root to the node addressed by that string unless the address is invalid. The empty
string is the address of the root of the tree. Now we are ready to describe D.

1. Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2. Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3. Use tape 2 to simulateN with input w on one branch of its nondeterminis-
tic computation. Before each step of N , consult the next symbol on tape 3
to determine which choice to make among those allowed byN ’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the next string in the string ordering.
Simulate the next branch of N ’s computation by going to stage 2.
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Proof

1 Initially, tape 1 contains the input w, and tapes 2 and 3 are empty.

2 Copy tape 1 to tape 2 and initialize the string on tape 3 to be ε.

3 Use tape 2 to simulate N with input w on one branch of its nondeterministic computation.

1 Before each step of N , consult the next symbol on tape 3 to determine which choice to make among
those allowed by N ’s transition function.

2 If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by
going to stage 4.

3 Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4 Replace the string on tape 3 with the next string in the string ordering. Simulate the next branch
of Ns computation by going to stage 2.
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Corollary

Corollary

A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

Corollary

A language is decidable if and only if some nondeterministic Turing machine decides it.
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Enumerators

An enumerator is a Turing machine with an attached printer.

The Turing machine can use that printer as an output device to print strings.

Every time the Turing machine wants to add a string to the list, it sends the string to the printer.
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Schematic of an enumeratorSchematic of an enumerator
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COROLLARY 3.18

A language is Turing-recognizable if and only if some nondeterministic Turing
machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM, and so
one direction of this corollary follows immediately. The other direction follows
from Theorem 3.16.

We can modify the proof of Theorem 3.16 so that if N always halts on all
branches of its computation,D will always halt. We call a nondeterministic Tur-
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proof in this way to obtain the following corollary to Theorem 3.16.

COROLLARY 3.19

A language is decidable if and only if some nondeterministic Turing machine
decides it.

ENUMERATORS

As we mentioned earlier, some people use the term recursively enumerable lan-
guage for Turing-recognizable language. That term originates from a type of
Turing machine variant called an enumerator. Loosely defined, an enumera-
tor is a Turing machine with an attached printer. The Turing machine can use
that printer as an output device to print strings. Every time the Turing machine
wants to add a string to the list, it sends the string to the printer. Exercise 3.4 asks
you to give a formal definition of an enumerator. The following figure depicts a
schematic of this model.

FIGURE 3.20

Schematic of an enumerator
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Equivalence

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.
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Proof

Let E be an enumerator E that enumerates a language A. The desired M on input w:

• Run E. Every time that E outputs a string, compare it with w.
• If w ever appears in the output of E, then accept.
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Proof

If M recognizes a language A, we can construct the following enumerator E for A. Let
s1, s2, s3, . . . ,, be a list of all possible strings in Σ∗.

1 Repeat the following for i = 1, 2, 3, . . .

2 Run M for i steps on each input, s1, s2, . . . , si.

3 If any computations accept, print out the corresponding sj .
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The Definition of Algorithm
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Polynomials and their roots

A polynomial is a sum of terms, where each term is a product of certain variables and a constant,
i.e., coefficient. For example,

6 · x · x · x · y · z · z = 6x3yz2

is a term with coefficient 6, and
6x3yz2 + 3xy2 − x3 − 10

is a polynomial with four terms, over the variables x, y, and z.

A root of a polynomial is an assignment of values to its variables so that the value of the polynomial
is 0.

This root is an integral root because all the variables are assigned integer values. Some polynomials
have an integral root and some do not.
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Hilbert’s problems

Hilbert’s tenth problem was to devise an algorithm that tests whether a polynomial has an integral
root. He did not use the term algorithm but rather

a process according to which it can be determined by a finite number of operations.
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Church-Turing Thesis

In 1936 to formalize the definition of an algorithm:

• Alonzo Church proposed λ-calculus;
• Alan Turing proposed Turing machines,

which were shown to be equivalent.

So we have the Church-Turing Thesis:

Intuitive notion of algorithms = Turing machine algorithms
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Hilbert’s Tenth Problem

D = {p | p is a polynomial with integer coefficients and with an integral root}

Theorem
(Yuri Matijasevič, Martin Davis, Hilary Putnam, and Julia Robinson, 1970)
D is not decidable.
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A simple variant

D1 =

{
p

∣∣∣∣∣
p is a polynomial on a single variable x with integer
coefficients and with an integral root

}

Lemma

Both D and D1 are Turing-recognizable.

Proof.

On input p(x)

Evaluate p with x set successively to the values 0, 1,−1, 2,−2, 3,−3, . . .. If at any point the
polynomial evaluates to 0, then accept.
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A simple variant

Lemma

Let
p(x) = c1x

n + c2x
n−1 + . . .+ cnx+ cn+1

with c1 ̸= 0 and p(x0) = 0. Define

cmax = max{|ci|}i∈[n+1]

Then
|x0| < cmax · (n+ 1)

|c1|

Corollary

D1 is decidable.
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The relationship among classes of languages

4.2
UNDECIDABILITY

In this section, we prove one of the most philosophically important theorems of
the theory of computation: There is a specific problem that is algorithmically
unsolvable. Computers appear to be so powerful that you may believe that all
problems will eventually yield to them. The theorem presented here demon-
strates that computers are limited in a fundamental way.

What sorts of problems are unsolvable by computer? Are they esoteric,
dwelling only in the minds of theoreticians? No! Even some ordinary prob-
lems that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and
a precise specification of what that program is supposed to do (e.g., sort a list
of numbers). You need to verify that the program performs as specified (i.e.,
that it is correct). Because both the program and the specification are mathe-
matically precise objects, you hope to automate the process of verification by
feeding these objects into a suitably programmed computer. However, you will
be disappointed. The general problem of software verification is not solvable by
computer.

In this section and in Chapter 5, you will encounter several computationally
unsolvable problems. We aim to help you develop a feeling for the types of
problems that are unsolvable and to learn techniques for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a spe-
cific language: the problem of determining whether a Turing machine accepts a
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