

Mathematical Foundation of Computer Sciences III

Turing Machine

Guoqiang Li
School of Software

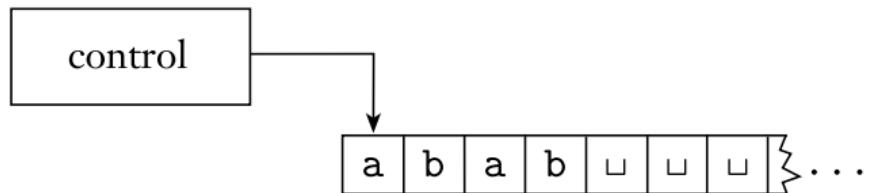
SHANGHAI JIAO TONG
UNIVERSITY

Turing Machine

Alan Turing in 1936 proposed Turing machines M :

- M uses an infinite tape as its unlimited memory, with a tape head reading and writing symbols and moving around on the tape. The tape initially contains only the input string and is blank everywhere else.
- If M needs to store information, it may write this information on the tape. To read the information that it has written, M can move its head back over it.
- M continues computing until it decides to produce an output. The outputs accept and reject are obtained by entering designated accepting and rejecting states.
- If M doesn't enter an accepting or a rejecting state, it will go on forever, never halting.

Schematic of a Turing machine



The difference between finite automata and Turing machines

- ① A Turing machine can both write on the tape and read from it.
- ② The read-write head can move both to the left and to the right.
- ③ The tape is infinite.
- ④ The special states for rejecting and accepting take effect immediately.

$$B = \{w\#w \mid w \in \{0,1\}^*\}$$

M_1 on input string w :

- ① Zig-zag across the tape to corresponding positions on either side of the $\#$ symbol to check whether these positions contain the same symbol. If they do not, or if no $\#$ is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.
- ② When all symbols to the left of the $\#$ have been crossed off, check for any remaining symbols to the right of the $\#$. If any symbols remain, reject; otherwise, accept.

$$B = \{w\#w \mid w \in \{0,1\}^*\}$$

0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...
x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...
x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
x x 1 0 0 0 # x 1 1 0 0 0 □ ...
x x x x x x # x x x x x x □ ...
accept

Definition

A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$, where Q, Σ, Γ are all finite and

- Q is set of states,
- Σ is the input alphabet **not** containing the blank symbol \square ,
- Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- $q_0 \in Q$ is the start state,
- $q_{accept} \in Q$ is the accept state, and
- $q_{reject} \in Q$ is the reject state, where $q_{reject} \neq q_{accept}$.

Initially, M receives its input $w = w_1 w_2 \dots w_n \in \Sigma^*$ on the leftmost n squares of the tape, and the rest of the tape is blank (i.e., filled \sqcup).

The head starts on the leftmost square of the tape.

As Σ does not contain \sqcup , so the first blank appearing on the tape marks the end of the input.

Once M has started, the computation proceeds according to the rules described by the transition function.

If M ever tries to move its head to the left off the left-hand end of the tape, the head stays in the same place for that move, even though the transition function indicates L .

The computation continues until it enters either the accept or reject states, at which point it halts. If neither occurs, M goes on forever.

Configurations

A **configuration** of a Turing machine consists of

- the current **state**,
- the current **tape contents**, and
- the current **head location**.

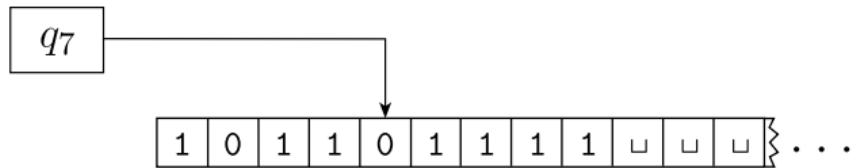
A **configuration** of a Turing machine consists of

- the current **state**,
- the current **tape contents**, and
- the current **head location**.

By uqv we mean the configuration where

- the current state is q ,
- the current tape contents is uv , and
- the current head location is the first symbol of v .
- The tape contains only blanks following the last symbol of v .

Configurations



A Turing machine with configuration $1011\ q_7\ 01111$

Formal definition of computation

Let $a, b, c \in \Gamma$, $u, v \in \Gamma^*$, and $q_i, q_j \in Q$.

- ① If $\delta(q_i, b) = (q_j, c, L)$, then

$ua q_i bv$ yields $u q_j acv$

- ② If $\delta(q_i, b) = (q_j, c, R)$, then

$ua q_i bv$ yields $uac q_j v$

Let $a, b, c \in \Gamma$, $u, v \in \Gamma^*$, and $q_i, q_j \in Q$.

- ① If $\delta(q_i, b) = (q_j, c, L)$, then

$ua q_i bv$ yields $u q_j acv$

- ② If $\delta(q_i, b) = (q_j, c, R)$, then

$ua q_i bv$ yields $uac q_j v$

Special cases occur when the head is at one of the ends of the configuration:

- ① For the left-hand end, the configuration $q_i bv$ yields $q_j cv$ if the transition is left moving (because we prevent the machine from going off the left-hand end of the tape), and it yields $c q_j v$ for the right-moving transition.
- ② For the right-hand end, the configuration $ua q_i$ is equivalent to $ua q_i \sqcup$ because we assume that blanks follow the part of the tape represented in the configuration.

Special configurations

The **start configuration** of M on input w is the configuration $q_0 w$.

In an **accepting configuration**, the state of the configuration is q_{accept} .

In a **rejecting configuration**, the state of the configuration is q_{reject} .

Accepting and rejecting configurations are **halting configurations** and do not yield further configurations.

M accepts w if there are sequence of configurations C_1, C_2, \dots, C_k such that

- C_1 the start configuration of M on w .
- Each C_i yields C_{i+1} , and
- C_k is an accepting configuration.

M accepts w if there are sequence of configurations C_1, C_2, \dots, C_k such that

- C_1 the start configuration of M on w .
- Each C_i yields C_{i+1} , and
- C_k is an accepting configuration.

The collection of strings that M accepts is the language of M , or the language recognized by M , denoted $L(M)$.

Definition

A language is **Turing-recognizable**, if some Turing machine recognizes it.

On an input, the machine M may accept, reject, or loop. By loop we mean that the machine simply does not halt.

On an input, the machine M may accept, reject, or loop. By loop we mean that the machine simply does not halt.

If M always halts, then it is a decider. A decider that recognizes some language is said to decide that language.

On an input, the machine M may accept, reject, or loop. By loop we mean that the machine simply does not halt.

If M always halts, then it is a decider. A decider that recognizes some language is said to decide that language.

Definition

A language is Turing-decidable or simply decidable if some Turing machine decides it.

Example: $A = \{0^{2^n} \mid n \geq 0\}$

On input string w :

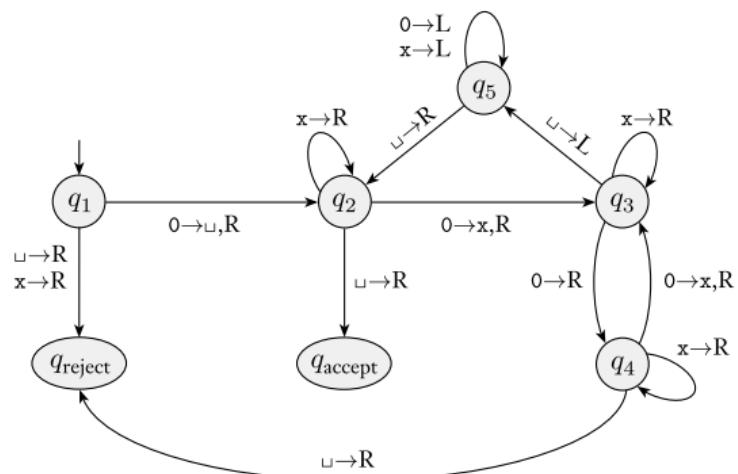
- ① Sweep left to right across the tape, crossing off every other 0.
- ② If in stage 1 the tape contained a single 0, accept.
- ③ If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject.
- ④ Return the head to the left-hand end of the tape.
- ⑤ Go to stage 1.

Example: $A = \{0^{2^n} \mid n \geq 0\}$

$Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$, where q_1 is the start state.

$\Sigma = \{0\}$ and $\Gamma = \{0, x, \sqcup\}$.

The transition function δ :



Example

$q_1 0000$	$\sqcup q_5 x 0 x \sqcup$	$\sqcup x q_5 x x \sqcup$
$\sqcup q_2 000$	$q_5 \sqcup x 0 x \sqcup$	$\sqcup q_5 x x x \sqcup$
$\sqcup x q_3 00$	$\sqcup q_2 x 0 x \sqcup$	$q_5 \sqcup x x x \sqcup$
$\sqcup x 0 q_4 0$	$\sqcup x q_2 0 x \sqcup$	$\sqcup q_2 x x x \sqcup$
$\sqcup x 0 x q_3 \sqcup$	$\sqcup x x q_3 x \sqcup$	$\sqcup x q_2 x x \sqcup$
$\sqcup x 0 q_5 x \sqcup$	$\sqcup x x x q_3 \sqcup$	$\sqcup x x q_2 x \sqcup$
$\sqcup x q_5 0 x \sqcup$	$\sqcup x x x q_5 x \sqcup$	$\sqcup x x x q_2 \sqcup$
		$\sqcup x x x \sqcup q_{\text{accept}}$

Example: $B = \{w\sharp w \mid w \in \{0, 1\}^*\}$

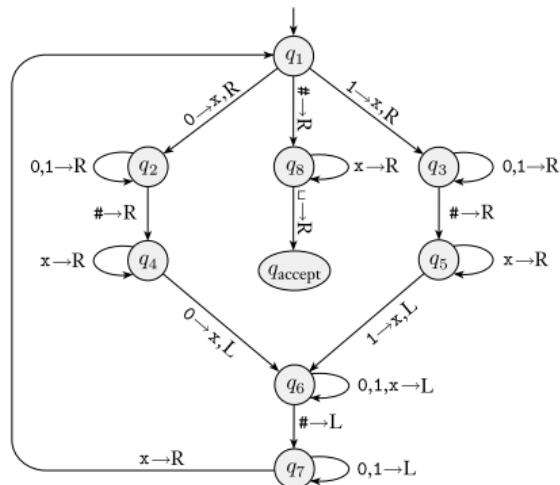
SHANGHAI JIAO TONG
UNIVERSITY

Example: $B = \{w\#w \mid w \in \{0, 1\}^*\}$

$Q = \{q_1, q_2, \dots, q_8, q_{\text{accept}}, q_{\text{reject}}\}$, where q_1 is the start state.

$\Sigma = \{0, 1, \#\}$ and $\Gamma = \{0, 1, \#, x, \sqcup\}$.

The transition function δ :



$$B = \{w\#w \mid w \in \{0,1\}^*\}$$

0 1 1 0 0 0 # 0 1 1 0 0 0 □ ...
x 1 1 0 0 0 # 0 1 1 0 0 0 □ ...
x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
x 1 1 0 0 0 # x 1 1 0 0 0 □ ...
x x 1 0 0 0 # x 1 1 0 0 0 □ ...
x x x x x x # x x x x x x □ ...
accept

Example: $C = \{a^i b^j c^k \mid i, j, k \geq 1 \text{ and } i \times j = k\}$

Example: $C = \{a^i b^j c^k \mid i, j, k \geq 1 \text{ and } i \times j = k\}$

On input string w :

- ① Scan the input from left to right to determine whether it is a member of $a^+b^+c^+$ and reject if it is not.

Example: $C = \{a^i b^j c^k \mid i, j, k \geq 1 \text{ and } i \times j = k\}$

On input string w :

- ① Scan the input from left to right to determine whether it is a member of $a^+b^+c^+$ and reject if it is not.
- ② Return the head to the left-hand end of the tape.

Example: $C = \{a^i b^j c^k \mid i, j, k \geq 1 \text{ and } i \times j = k\}$

On input string w :

- ① Scan the input from left to right to determine whether it is a member of $a^+b^+c^+$ and reject if it is not.
- ② Return the head to the left-hand end of the tape.
- ③ Cross off an a and scan to the right until a b occurs. Shuttle between the b 's and the c 's, crossing off one of each until all b 's are gone. If all c 's have been crossed off and some b 's remain, **reject**.

Example: $C = \{a^i b^j c^k \mid i, j, k \geq 1 \text{ and } i \times j = k\}$

On input string w :

- ① Scan the input from left to right to determine whether it is a member of $a^+b^+c^+$ and reject if it is not.
- ② Return the head to the left-hand end of the tape.
- ③ Cross off an a and scan to the right until a b occurs. Shuttle between the b 's and the c 's, crossing off one of each until all b 's are gone. If all c 's have been crossed off and some b 's remain, **reject**.
- ④ Restore the crossed off b 's and repeat stage 3 if there is another a to cross off. If all a 's have been crossed off, determine whether all c 's also have been crossed off. If yes, **accept**; otherwise, **reject**.

Example: $E = \{\#x_1\#\dots\#x_\ell \mid \text{each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}$

SHANGHAI JIAO TONG
UNIVERSITY

Example: $E = \{\#x_1\#\dots\#x_\ell \mid \text{each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}$

SHANGHAI JIAO TONG
UNIVERSITY

On input string w :

- 1 Place a mark on top of the leftmost tape symbol. If that symbol was a blank, **accept**. If that symbol was a $\#$, continue with the next stage. Otherwise, **reject**.

Example: $E = \{\#x_1\# \dots \#x_\ell \mid \text{each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}$

SHANGHAI JIAO TONG
UNIVERSITY

On input string w :

- ① Place a mark on top of the leftmost tape symbol. If that symbol was a blank, **accept**. If that symbol was a $\#$, continue with the next stage. Otherwise, **reject**.
- ② Scan right to the next $\#$ and place a second mark on top of it. If no $\#$ is encountered before a blank symbol, only x_1 was present, so **accept**.

Example: $E = \{\#x_1\#\dots\#x_\ell \mid \text{each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}$

SHANGHAI JIAO TONG
UNIVERSITY

On input string w :

- ① Place a mark on top of the leftmost tape symbol. If that symbol was a blank, **accept**. If that symbol was a $\#$, continue with the next stage. Otherwise, **reject**.
- ② Scan right to the next $\#$ and place a second mark on top of it. If no $\#$ is encountered before a blank symbol, only x_1 was present, so **accept**.
- ③ By **zig-zagging**, compare the two strings to the right of the marked $\#$ s. If they are equal, **reject**.

Example: $E = \{ \#x_1\# \dots \#x_\ell \mid \text{each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$

SHANGHAI JIAO TONG
UNIVERSITY

On input string w :

- ① Place a mark on top of the leftmost tape symbol. If that symbol was a blank, **accept**. If that symbol was a $\#$, continue with the next stage. Otherwise, **reject**.
- ② Scan right to the next $\#$ and place a second mark on top of it. If no $\#$ is encountered before a blank symbol, only x_1 was present, so **accept**.
- ③ By **zig-zagging**, compare the two strings to the right of the marked $\#$ s. If they are equal, **reject**.
- ④ Move the rightmost of the two marks to the next $\#$ symbol to the right. If no $\#$ symbol is encountered before a blank symbol, move the leftmost mark to the next $\#$ to its right and the rightmost mark to the $\#$ after that. This time, if no $\#$ is available for the rightmost mark, all the strings have been compared, so **accept**.

Example: $E = \{ \#x_1\# \dots \#x_\ell \mid \text{each } x_i \in \{0, 1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}$

SHANGHAI JIAO TONG
UNIVERSITY

On input string w :

- ① Place a mark on top of the leftmost tape symbol. If that symbol was a blank, **accept**. If that symbol was a $\#$, continue with the next stage. Otherwise, **reject**.
- ② Scan right to the next $\#$ and place a second mark on top of it. If no $\#$ is encountered before a blank symbol, only x_1 was present, so **accept**.
- ③ By **zig-zagging**, compare the two strings to the right of the marked $\#$ s. If they are equal, **reject**.
- ④ Move the rightmost of the two marks to the next $\#$ symbol to the right. If no $\#$ symbol is encountered before a blank symbol, move the leftmost mark to the next $\#$ to its right and the rightmost mark to the $\#$ after that. This time, if no $\#$ is available for the rightmost mark, all the strings have been compared, so **accept**.
- ⑤ Go to stage 3.

Languages A , B , C , and E are **decidable**.

All decidable languages are **Turing-recognizable**, so these languages are also Turing-recognizable.

Demonstrating a language that is Turing-recognizable but undecidable is more difficult.

Variants of Turing Machines

A **multitape Turing machine** M has several tapes:

- Each tape has its own head for reading and writing.
- The input is initially on **tape 1**, with all the other tapes being blank.
- The transition function is

$$\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R, S\}^k$$

where k is the number of tapes.

$$\delta(q_i, a_1, \dots, a_k) = (q_j, b_1, \dots, b_k, L, R, \dots, L)$$

means that if M is in state q_i and heads 1 through k are reading symbols a_1 through a_k , the machine goes to state q_j , writes symbols b_1 through b_k , and directs each head to move left or right, or to **stay put**, as specified.

Theorem

Every multitape Turing machine has an equivalent single-tape Turing machine.

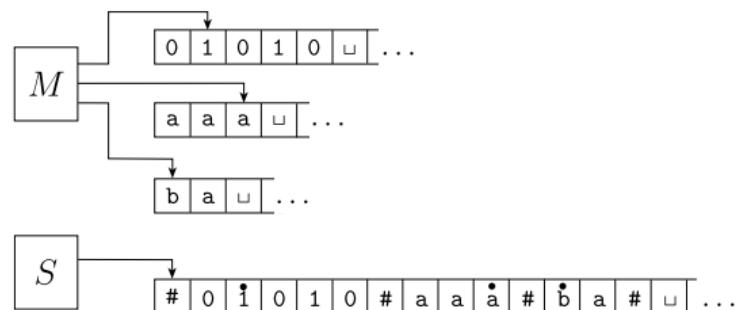
Proof

SHANGHAI JIAO TONG
UNIVERSITY

We simulate an M with k tapes by a single-tape S .

We simulate an M with k tapes by a single-tape S .

- S uses $\#$ to separate the contents of the different tapes.
- S keeps track of the locations of the heads by writing a tape symbol with a dot above it to mark the place where the head on that tape would be.



Proof

On input $w = w_1 \dots w_n$:

- ① First S puts its tape into the format that represents all k tapes of M :

$\#\dot{w}_1w_2 \dots w_n\#\dot{\cup}\#\dot{\cup}\#\dots\#$

On input $w = w_1 \dots w_n$:

- ① First S puts its tape into the format that represents all k tapes of M :

$\#\dot{w}_1w_2 \dots w_n\#\dot{\square}\#\dot{\square}\#\dots\#$

- ② To determine the symbols under the virtual heads, S scans its tape from the first $\#$, which marks the left-hand end, to the $k + 1$ st $\#$, which marks the right-hand end.

On input $w = w_1 \dots w_n$:

- ① First S puts its tape into the format that represents all k tapes of M :

$\# w_1 w_2 \dots w_n \# \# \# \dots \#$

- ② To determine the symbols under the virtual heads, S scans its tape from the first $\#$, which marks the left-hand end, to the $k + 1$ st $\#$, which marks the right-hand end.
- ③ Then S makes a second pass to update the tapes according to the way that M 's transition function dictates.

On input $w = w_1 \dots w_n$:

- ① First S puts its tape into the format that represents all k tapes of M :

$\#\dot{w}_1w_2 \dots w_n\#\dot{\cup}\#\dot{\cup}\#\dots\#$

- ② To determine the symbols under the virtual heads, S scans its tape from the first $\#$, which marks the left-hand end, to the $k + 1$ st $\#$, which marks the right-hand end.
- ③ Then S makes a second pass to update the tapes according to the way that M 's transition function dictates.
- ④ If S moves one of the virtual heads to the right onto a $\#$, i.e., M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes on this tape cell and shifts the tape contents, from this cell until the rightmost $\#$, one unit to the right.

On input $w = w_1 \dots w_n$:

- ① First S puts its tape into the format that represents all k tapes of M :

$\#\dot{w}_1w_2 \dots w_n\#\dot{\cup}\#\dot{\cup}\#\dots\#$

- ② To determine the symbols under the virtual heads, S scans its tape from the first $\#$, which marks the left-hand end, to the $k + 1$ st $\#$, which marks the right-hand end.
- ③ Then S makes a second pass to update the tapes according to the way that M 's transition function dictates.
- ④ If S moves one of the virtual heads to the right onto a $\#$, i.e., M has moved the corresponding head onto the previously unread blank portion of that tape. So S writes on this tape cell and shifts the tape contents, from this cell until the rightmost $\#$, one unit to the right.
- ⑤ Go back to 2.

Corollary

A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.

The **transition function** for a **nondeterministic Turing machine** has the form

$$\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \{L, R\})$$

The **computation** of a nondeterministic Turing machine is a tree whose branches correspond to different possibilities for the machine.

If **some branch of the computation leads to the accept state**, the machine accepts its input.

Theorem

Every nondeterministic Turing machine has an equivalent deterministic Turing machine.

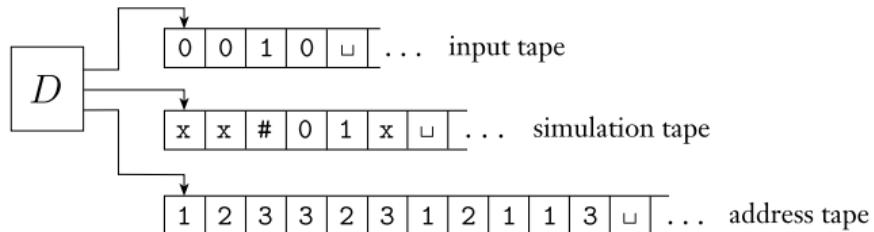
Proof

SHANGHAI JIAO TONG
UNIVERSITY

We simulate a nondeterministic N by a deterministic D .

We simulate a nondeterministic N by a deterministic D .

- D try all possible branches of N 's nondeterministic computation.
- If D ever finds the accept state on one of these branches, it accepts.
- Otherwise, D 's simulation will not terminate.



- ➊ Initially, tape 1 contains the input w , and tapes 2 and 3 are empty.

- ① Initially, tape 1 contains the input w , and tapes 2 and 3 are empty.
- ② Copy tape 1 to tape 2 and initialize the string on tape 3 to be ϵ .

- ① Initially, tape 1 contains the input w , and tapes 2 and 3 are empty.
- ② Copy tape 1 to tape 2 and initialize the string on tape 3 to be ϵ .
- ③ Use tape 2 to simulate N with input w on one branch of its nondeterministic computation.
 - ① Before each step of N , consult the next symbol on tape 3 to determine which choice to make among those allowed by N 's transition function.
 - ② If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4.
 - ③ Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.

- ① Initially, tape 1 contains the input w , and tapes 2 and 3 are empty.
- ② Copy tape 1 to tape 2 and initialize the string on tape 3 to be ϵ .
- ③ Use tape 2 to simulate N with input w on one branch of its nondeterministic computation.
 - ① Before each step of N , consult the next symbol on tape 3 to determine which choice to make among those allowed by N 's transition function.
 - ② If no more symbols remain on tape 3 or if this nondeterministic choice is invalid, abort this branch by going to stage 4.
 - ③ Also go to stage 4 if a rejecting configuration is encountered. If an accepting configuration is encountered, accept the input.
- ④ Replace the string on tape 3 with the next string in the string ordering. Simulate the next branch of N 's computation by going to stage 2.

Corollary

A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.

Corollary

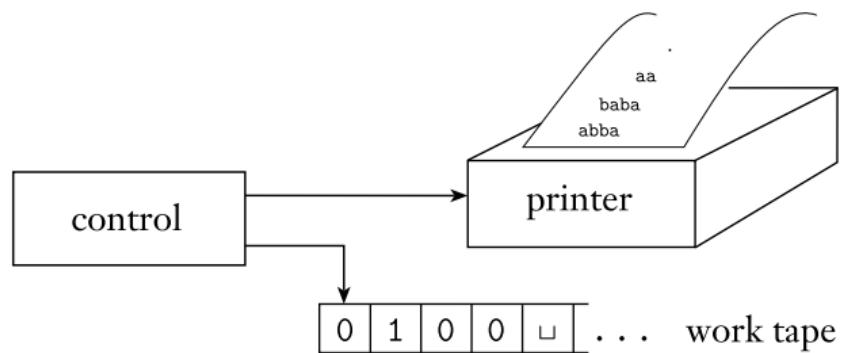
A language is decidable if and only if some nondeterministic Turing machine decides it.

An **enumerator** is a Turing machine with an attached printer.

The Turing machine can use that printer as an output device to print strings.

Every time the Turing machine wants to add a string to the list, it sends the string to the printer.

Schematic of an enumerator



Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

Let E be an enumerator E that enumerates a language A . The desired M on input w :

Let E be an enumerator E that enumerates a language A . The desired M on input w :

- Run E . Every time that E outputs a string, compare it with w .
- If w ever appears in the output of E , then accept.

If M recognizes a language A , we can construct the following enumerator E for A . Let s_1, s_2, s_3, \dots , be a list of all possible strings in Σ^* .

- ① Repeat the following for $i = 1, 2, 3, \dots$
- ② Run M for i steps on each input, s_1, s_2, \dots, s_i .
- ③ If any computations accept, print out the corresponding s_j .

The Definition of Algorithm

A **polynomial** is a sum of terms, where each term is a product of certain variables and a constant, i.e., **coefficient**. For example,

$$6 \cdot x \cdot x \cdot x \cdot y \cdot z \cdot z = 6x^3yz^2$$

is a term with coefficient **6**, and

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

is a polynomial with four terms, over the variables ***x***, ***y***, and ***z***.

A **polynomial** is a sum of terms, where each term is a product of certain variables and a constant, i.e., **coefficient**. For example,

$$6 \cdot x \cdot x \cdot x \cdot y \cdot z \cdot z = 6x^3yz^2$$

is a term with coefficient **6**, and

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

is a polynomial with four terms, over the variables **x , y , and z** .

A **root** of a polynomial is an assignment of values to its variables so that the value of the polynomial is **0**.

This root is an **integral root** because all the variables are assigned integer values. Some polynomials have an integral root and some do not.

Hilbert's tenth problem was to devise an algorithm that tests whether a polynomial has an integral root. He did not use the term algorithm but rather

a process according to which it can be determined by a finite number of operations.

In 1936 to formalize the definition of an algorithm:

- Alonzo Church proposed λ -calculus;
- Alan Turing proposed Turing machines,

which were shown to be equivalent.

In 1936 to formalize the definition of an algorithm:

- Alonzo Church proposed λ -calculus;
- Alan Turing proposed Turing machines,

which were shown to be equivalent.

So we have the Church-Turing Thesis:

Intuitive notion of algorithms = Turing machine algorithms

$D = \{p \mid p \text{ is a polynomial with integer coefficients and with an integral root}\}$

$D = \{p \mid p \text{ is a polynomial with integer coefficients and with an integral root}\}$

Theorem

(Yuri Matijasevič, Martin Davis, Hilary Putnam, and Julia Robinson, 1970)

D is not decidable.

A simple variant

$$D_1 = \left\{ p \mid \begin{array}{l} p \text{ is a polynomial on a single variable } x \text{ with integer} \\ \text{coefficients and with an integral root} \end{array} \right\}$$

$$D_1 = \left\{ p \mid \begin{array}{l} p \text{ is a polynomial on a single variable } x \text{ with integer} \\ \text{coefficients and with an integral root} \end{array} \right\}$$

Lemma

Both D and D_1 are Turing-recognizable.

$$D_1 = \left\{ p \mid \begin{array}{l} p \text{ is a polynomial on a single variable } x \text{ with integer} \\ \text{coefficients and with an integral root} \end{array} \right\}$$

Lemma

Both D and D_1 are Turing-recognizable.

Proof.

$$D_1 = \left\{ p \mid \begin{array}{l} p \text{ is a polynomial on a single variable } x \text{ with integer} \\ \text{coefficients and with an integral root} \end{array} \right\}$$

Lemma

Both D and D_1 are Turing-recognizable.

Proof.

On input $p(x)$

Evaluate p with x set successively to the values $0, 1, -1, 2, -2, 3, -3, \dots$. If at any point the polynomial evaluates to 0 , then accept.

A simple variant

Lemma

Let

$$p(x) = c_1 x^n + c_2 x^{n-1} + \dots + c_n x + c_{n+1}$$

with $c_1 \neq 0$ and $p(x_0) = 0$. Define

$$c_{max} = \max\{|c_i|\}_{i \in [n+1]}$$

Then

$$|x_0| < \frac{c_{max} \cdot (n+1)}{|c_1|}$$

A simple variant

Lemma

Let

$$p(x) = c_1 x^n + c_2 x^{n-1} + \dots + c_n x + c_{n+1}$$

with $c_1 \neq 0$ and $p(x_0) = 0$. Define

$$c_{max} = \max\{|c_i|\}_{i \in [n+1]}$$

Then

$$|x_0| < \frac{c_{max} \cdot (n+1)}{|c_1|}$$

Corollary

D_1 is decidable.

Relationship among classes of languages

SHANGHAI JIAO TONG
UNIVERSITY

