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Randomized Algorithms

“algorithms which employ a degree of randomness as part of its logic”

—Wikipedia

algorithms that flip coins

2/51



Randomized Algorithms

“algorithms which employ a degree of randomness as part of its logic”

—Wikipedia

algorithms that flip coins

2/51



Why Randomized Algorithms
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Basis

Randomized algorithms are a basis of

• Online algorithms

• Approximation algorithms
• Quantum algorithms
• Massive data algorithms
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Pro and Con of Randomization

Cost of Randomness

• chance the answer is wrong.
• chance the algorithm takes a long time.

Benefits of Randomness

• on average, with high probability gives a faster or simpler algorithm.
• some problems require randomness.
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Types of Randomized Algorithms

Las Vegas Algorithm (LV):

• Always correct
• Runtime is random (small time with good probability)
• Examples: Quicksort, Hashing

Monte Carlo Algorithm (MC):

• Always bounded in runtime
• Correctness is random
• Examples: Karger’s min-cut algorithm
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Las Vegas VS. Monte Carlo

LV implies MC:

Fix a time T and let the algorithm run for T steps. If the algorithm terminates before T , we output the
answer, otherwise we output 0.

MC does not always imply LV:

The implication holds when verifying a solution can be done much faster than finding one.

Test the output of MC algorithm and stop only when a correct solution is found.
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Las Vegas Algorithm: Quicksort
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Quick Sort

QuickSort(x);

if x == [] then return [];
Choose pivot t ∈ [n];
return

QuickSort([xi|xi < xt]) + [xt] + QuickSort([xi|xi ≥ xt]);
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Why Random?

If t = 1 always, then the complexity is Θ(n2).

Note that, we do not need an adversary for bad inputs.

In practice, lists that need to be sorted will consist of a mostly sorted list with a few new entries.
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Complexity Analysis

Zij := event that ith largest element is compared to the jth largest element at any time during the
algorithm.

Each comparison can happen at most once. Time is proportional to the number of comparisons
=
∑

i<j Zij

Zij = 1 iff the first pivot in {i, i+ 1, . . . , j} is i or j.

• if the pivot is < i or > j, then i and j are not compared;
• if the pivot is > i and < j, then the pivot splits i and j into two different recursive branches so

they will never be compared.

Thus, we have

Pr[Zij ] =
2

j − i+ 1
.
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Complexity Analysis

E[T ime] ≤ E

[∑
i<j

Zij

]
=
∑
i<j

E [Zij ]

=
∑
i

∑
i<j

(
2

j − i+ 1
)

= 2 ·
∑
i

(
1

2
+ · · ·+ 1

n− i+ 1
)

≤ 2 · n · (Hn − 1)

≤ 2 · n · logn
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Monte Carlo: Min Cuts
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Min Cuts

The (s, t) cut is the set S ⊆ V with s ∈ S, t /∈ S.

The cost of a cut is the number of edges e with one vertex in S and the other vertex not in S.

The min (s, t) cut is the (s, t) cut of minimum cost.

The global min cut is the min (s, t) cut over all s, t ∈ V .
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Complexity

Iterate over all choices of s and t and pick the smallest (s, t) cut, by simply running O(n2) the
Ford-Fulkersons algorithms over all pairs.

The complexity can be reduced by a factor of n by noting that each node must be in one of the two
partitioned subsets.

Select any node s and compute a min(s, t) cut for all other vertices and return the smallest cut. This
results in O(n) the Ford-Fulkersons algorithm, resulting in complexity O(n · nm) = O(n2m).
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The First Randomized Algorithm

MinCut1(G);

while n > 1 do
Choose a random edge;
Contract into a single vertex;

end

Contracting an edge means that removing the edge and combining the two vertices into a
super-node.
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Analysis

Lemma

The chance the algorithm fails in step 1 is ≤ 2

n

Proof.

The chance of failure in the first step is OPT
m

where

OPT = cost of true min cut =| E(S, S̄) |

and m is the number of edge.

For all u ∈ V , let d(u) be the degree of u.

OPT =| E(S, S̄) |≤ min
u
d(u) ≤ 1

n

∑
u∈V

d(u) ≤ 2 ·m
n

Dividing both sides by m we have | E(S, S̄) |
m

≤ 2

n
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Analysis

Continue the analysis in each subsequent round, we have

Pr(fail in 1st step) ≤ 2

n

Pr(fail in 2nd step | success in 1st step) ≤ 2

n− 1

...

Pr(fail in ith step | success till (i− 1)th step) ≤ 2

n+ 1− i
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Analysis

Lemma

MinCut1 succeeds with ≥ 2

n2
probability.

Proof.

Zi := the event that an edge from the cut set is picked in round i.

Pr[Zi|Z̄1 ∩ Z̄2 ∩ · · · ∩ Z̄i−1] ≤ 2

n+ 1− i
Thus the probability of success is given by

Pr(Succ) = Pr[Z̄1 ∩ Z̄2 ∩ · · · ∩ Z̄n−2] ≥ (1− 2

n
)(1− 2

n− 1
) . . . (1− 2

3
)

≥ n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· n− 5

n− 3
· ... · 2

4
· 1

3
=

1

n
· 1

n− 1
· 2

1
· 1

1

=
2

n(n− 1)
≥ 2

n2
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A Lemma

Suppose that the MinCut1 is terminated when the number of vertices remaining in the contracted
graph is exactly t. Then any specific min cut survives in the resulting contracted graph with
probability at least

(
t
2

)(
n
2

) = Ω(
t

n
)2
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The Second Randomized Algorithm

MinCut2(G, k);

i = 0;
while i > k do

MinCut1(G);
i+ +;

end
pick the optimization;

If we run MinCut1 k times and pick the set of min cost, then

Pr(failure) ≤ (1− 2

n2
)k ≤ e

−2k

n2
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A Useful Bound

(1− a) ≤ e−a ∀a > 0
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How to Choose k

Set k =
n2

2
log(

1

δ
) to get 1− δ success probability.
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Observation

Initial stages of the algorithm are very likely to be correct. In particular, the first step is wrong with
probability at most 2/n.

As contracting more edges, failure probability goes up.

Since earlier ones are more accurate and slower, why not do less of them at the beginning, and
more as the number of edges decreases?
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The Third Randomized Algorithm

MinCut3(G);

Repeat twice{
take n− n√

2
steps of contraction;

recursively apply this algorithm;
}
take better result;

T (n) = 2T (
n√
2

) +O(n2) = n2 logn
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Success Probability

pr(n) = 1− (failure probability of one branch)2

= 1− (1− success in one branch)2

≥ 1− (1− (

n√
2

n
)2 · pr( n√

2
))2

= 1−
(

1− 1

2
pr

(
n√
2

))2

= pr

(
n√
2

)
− 1

4
pr

(
n√
2

)2
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Success Probability

Let x = log√2 n, by setting f(x) = pr(n), we get

f(x) = f(x− 1)− f(x− 1)2

f(x) =
1

x
gives:

f(x− 1)− f(x) =
1

x− 1
− 1

x
=

1

x(x− 1)
≈ 1

(x− 1)2
= f(x− 1)2

Thus, pr(n) = O

(
1

logn

)
.
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The Fourth Randomized Algorithm

Repeat MinCut3 O(logn log
1

δ
) times.

Complexity & Success Analysis: DIY!

28/51



The Fourth Randomized Algorithm

Repeat MinCut3 O(logn log
1

δ
) times.

Complexity & Success Analysis: DIY!

28/51



Linearity of Expectation
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Linearity of Expectation

E[
∑
i

Xi] =
∑
i

E[Xi]
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Sailors Problem

A ship arrives at a port, and the 40 sailors on board go ashore for revelry. Later at night, the 40

sailors return to the ship and, in their state of inebriation, each chooses a random cabin to sleep in.

What is the expected number of sailors sleeping in their own cabins.

E[

40∑
i=1

Xi] =

40∑
i=1

E[Xi] = 1
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Binary Planar Partition

Given a set S = {S1, S2, . . . , Sn} of non-intersecting line segments in the plane, we wish to find a
binary planar partition such that every region in the partition contains at most one line segment (or a
portion of one line segment).

32/51



An Example
INTRODUCTION 

Figure 1.2: An example of a binary planar partition for a set of segments (dark lines). 
Each leaf is labeled by the line segment it contains. The labels r(v) are omitted for clarity. 

graphics. The second application has to do with the constructive solid geometry 
(or CSG) representation of a polyhedral object. 

In rendering a scene on a graphics terminal, we are often faced with a 
situation in which the scene remains fixed, but it is to be viewed from several 
direc~ions (for instance, in a flight simulator, where the simulated motion of the 
plane causes the viewpoint to change). The hidden line elimination problem is 
the following: having adopted a viewpoint and a direction of viewing, we want 
to draw only the portion of the scene that is visible, eliminating those objects 
that are 'obscured by other objects "in front" of them relative to the viewpoint. 
In such a situation, we might be prepared to spend some computational effort 
preprocessing the scene so that given a direction <lL viewing, the scene can be 
rendered quickly with hidden lines eliminated. 

One approach to this problem uses a binary partition tree. In this chapter we 
consider the simple case where the scene lies entirely in the plane, and we view it 
from a point in the same plane. Thus, the output is a one-dimensional projected 
"picture." We can assume that the input scene consists of non-intersecting line 
segments, since any line that is intersected by another can be broken up into 
segments, each of which touches other lines only at its endpoints (if at all). 
Once the scene has been thus decomposed into line segments, we construct a 
binary planar partition tree for it. Now, given the direction of viewing, we use 
an idea known as the painter's algorithm to render the scene: first draw the 
objects that are furthest "behind," and then progressively draw the objects that 
are in front. Given the binary planar partition tree, the painter's algorithm 
can be implemented by recursively traversing the tree as follows. At the root 
of the tree, determine which side of the partitioning line Ll is "behind" from 
the viewpoint and render all the objects in that sub-tree (recursively). Having 
completely rendered the portion of the tree corresponding to that sub-tree, 
do the same for the portion in "front" of Ll, "painting over" objects already 
drawn. 

The time it takes to render the scene depends on the size of the binary planar 
partition tree. We therefore wish to construct a binary planar partition that is 
as small as possible. Notice that since the tree must be traversed completely to 

12 
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Binary Partition Tree

A binary planar partition consists of a binary tree together with some additional information.

Associated with each node v is a region r(v) of the plane, and with each internal node v is a line l(v)

that intersects r(v).

The region corresponding to the root is the entire plane. The region r(v) is partitioned by l(v) into
two regions r1(v) and r2(v), which are the regions associated with the two children of v.
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The Example

INTRODUCTION 

Figure 1.2: An example of a binary planar partition for a set of segments (dark lines). 
Each leaf is labeled by the line segment it contains. The labels r(v) are omitted for clarity. 

graphics. The second application has to do with the constructive solid geometry 
(or CSG) representation of a polyhedral object. 

In rendering a scene on a graphics terminal, we are often faced with a 
situation in which the scene remains fixed, but it is to be viewed from several 
direc~ions (for instance, in a flight simulator, where the simulated motion of the 
plane causes the viewpoint to change). The hidden line elimination problem is 
the following: having adopted a viewpoint and a direction of viewing, we want 
to draw only the portion of the scene that is visible, eliminating those objects 
that are 'obscured by other objects "in front" of them relative to the viewpoint. 
In such a situation, we might be prepared to spend some computational effort 
preprocessing the scene so that given a direction <lL viewing, the scene can be 
rendered quickly with hidden lines eliminated. 

One approach to this problem uses a binary partition tree. In this chapter we 
consider the simple case where the scene lies entirely in the plane, and we view it 
from a point in the same plane. Thus, the output is a one-dimensional projected 
"picture." We can assume that the input scene consists of non-intersecting line 
segments, since any line that is intersected by another can be broken up into 
segments, each of which touches other lines only at its endpoints (if at all). 
Once the scene has been thus decomposed into line segments, we construct a 
binary planar partition tree for it. Now, given the direction of viewing, we use 
an idea known as the painter's algorithm to render the scene: first draw the 
objects that are furthest "behind," and then progressively draw the objects that 
are in front. Given the binary planar partition tree, the painter's algorithm 
can be implemented by recursively traversing the tree as follows. At the root 
of the tree, determine which side of the partitioning line Ll is "behind" from 
the viewpoint and render all the objects in that sub-tree (recursively). Having 
completely rendered the portion of the tree corresponding to that sub-tree, 
do the same for the portion in "front" of Ll, "painting over" objects already 
drawn. 

The time it takes to render the scene depends on the size of the binary planar 
partition tree. We therefore wish to construct a binary planar partition that is 
as small as possible. Notice that since the tree must be traversed completely to 

12 
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Remark

Because the construction of the partition can break some of the input segments Si into smaller
pieces, the size of the partition need not be n.

it is not clear that a partition of size O(n) always exists.
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Autopartition

For a line segment s, let l(s) denote the line obtained by extending s on both sides to infinity.

For the set S = {s1, s2, . . . , sn} of line segments, a simple and natural class of partitions is the set of
autopartitions, which are formed by only using lines from the set {l(s1), l(s2), . . . , l(sn)}
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An Algorithm

AutoPartition({s1, s2, . . . , sn})

Pick a permutation π of {1, 2, . . . , n} uniformly at random from the n!

possible permutations;
while a region contains more than one segment do

cut it with l(si) where i is first in the ordering π such that si cuts
that region;

end
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Analysis

Theorem

The expected size of the autopartition produced by AutoPartition is O(n logn).
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Proofs

index(u, v) = i if l(u) intersects i− 1 other segments before hitting v.

u a v denotes the event that l(u) cuts v in the constructed partition.

The probability of index(u, v) = i and u a v is 1/(i+ 1).

Let Cuv = 1 if u a v and 0 otherwise,

E[Cuv] = Pr[u a v] ≤ 1

index(u, v) + 1
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Proofs

Pr(partition numbers) = n+ E[
∑
u

∑
v

Cuv]

= n+
∑
u

∑
v

E[Cuv]

= n+
∑
u

∑
v 6=u

Pr[u a v]

≤ n+
∑
u

∑
v 6=u

1

index(u, v) + 1

≤ n+
∑
u

n−1∑
i=1

2

i+ 1

≤ n+ 2nHn
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Probability Basics and Fundamental Inequalities
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Binomial Distribution

Flipping an unbiased coin 1000 times. How many heads?

Probably 500, but more likely to not get
exactly 500?

X ∼ B(1000, 1/2) Pr[X = x] =

(
1000

x

)
2−1000

But that gives no intuition! Some tools to estimate the probabilities are needed.
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Central Limit Theorem

Let X1...Xn be i.i.d. random variables. Define X =
∑n

i=1Xi. Then as n→ +∞, we have
X ∼ N(nE(Xi), n V ar(Xi)).

This implies that the average of n i.i.d. random variables approaches X ∼ N(E(Xi),
Var(Xi)

n
).

We have Var(Xi) = E((Xi − E(Xi))
2) = 1/4. Therefore, for n = 1000 we have

σ =

√
Var

∑
i

Xi =

√∑
i

VarXi =
√
n/4 =

√
250 ≈ 16

We can expect to be within 2σ (95% chance), so we probably get 470 to 530 heads. 600 is a big
surprise!
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Chebyshev’s Inequality

Markov’s inequality

Let X be a non-negative random variable. It is the case that: E(X) ≥ tPr[y ≥ t], therefore:

Pr[y ≥ t] ≤ E(X)

t

Chebyshev’s inequality:

Let X a random variable of variance σ2 that can now take negative values. It is the case that:

Pr [|X − E(X)| > tσ] ≤ 1

t2
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Applying to Coins

Applying Chebyshev’s inequality to n coins such that E(X) = np and V ar(X) = n
4

, we have:

Pr [|X − E(X)| > tσ] ≤ 1

t2

For n = 1000 coins, the probability of |X − 500| > 2σ is less than 1
4
. In other words, we expect with

probability greater than 3/4, the number of heads to be between [468, 516].
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Randomized Complexity Classes
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Common Complexity Class

P: Deterministic Polynomial Time. We have L ∈ P iff there exists a polynomial-time algorithm that
decides L.

NP: Nondeterministic Polynomial-Time. We have L ∈ NP iff for every input x ∈ L there exists some
solution string y such that a polynomial-time algorithm can accept x if x ∈ L given the solution y.
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Randomized Complexity Classes

ZPP: Zero-error probabilistic Polynomial-Time. L ∈ ZPP iff there exists an algorithm that decides L,
and the expected value of its running time is polynomial. Note that this class describes the Las
Vegas algorithms.

RP: Randomized polynomial time. This class has tolerance for one-sided error, that is, L ∈ RP iff
there exists a polynomial-time algorithm A such that:

• if x ∈ L then A accepts with probability ≥ 1/2.
• if x 6∈ L then A rejects.
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Randomized Complexity Classes

PP: Probabilistic Polynomial. L ∈ PP iff there exists a polynomial-time algorithm A s.t.

• if x ∈ L then A accepts with probability ≥ 1/2.
• if x 6∈ L then A rejects with probability > 1/2.

BPP: Bounded Probabilistic Polynomial. L ∈ BPP iff there exists a poly-time algorithm A s.t.

• if x ∈ L then A accepts with probability ≥ 2/3

• if x 6∈ L then A rejects with probability ≥ 2/3.
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Relations

P ⊆ ZPP ⊆ RP ⊆ NP ⊆ PP

RP ⊆ BPP ⊆ PP

Conjecture
P = BPP ⊆ NP
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