
Algorithm Design (XXIV)
Conclusion

Guoqiang Li
School of Computer Science

1/21



What Is Algorithm

2/21



Algorithm Design

Basic algorithms:

• RECURSION
• ALGORITHMS ON LISTS, TREES AND GRAPHS

Advanced strategies:

• DIVIDE AND CONQUER
• Master Theorem

• DYNAMIC PROGRAMMING
• GREEDY
• DUALITY
• REDUCTION
• APPROXIMATION
• RANDOMIZATION
• COMPUTATIONAL GEOMETRY
• ALGORITHMS ON MASSIVE DATA
• . . .

3/21



Algorithm Design

Basic algorithms:

• RECURSION

• ALGORITHMS ON LISTS, TREES AND GRAPHS

Advanced strategies:

• DIVIDE AND CONQUER
• Master Theorem

• DYNAMIC PROGRAMMING
• GREEDY
• DUALITY
• REDUCTION
• APPROXIMATION
• RANDOMIZATION
• COMPUTATIONAL GEOMETRY
• ALGORITHMS ON MASSIVE DATA
• . . .

3/21



Algorithm Design

Basic algorithms:

• RECURSION
• ALGORITHMS ON LISTS, TREES AND GRAPHS

Advanced strategies:

• DIVIDE AND CONQUER
• Master Theorem

• DYNAMIC PROGRAMMING
• GREEDY
• DUALITY
• REDUCTION
• APPROXIMATION
• RANDOMIZATION
• COMPUTATIONAL GEOMETRY
• ALGORITHMS ON MASSIVE DATA
• . . .

3/21



Algorithm Design

Basic algorithms:

• RECURSION
• ALGORITHMS ON LISTS, TREES AND GRAPHS

Advanced strategies:

• DIVIDE AND CONQUER
• Master Theorem

• DYNAMIC PROGRAMMING
• GREEDY
• DUALITY
• REDUCTION
• APPROXIMATION
• RANDOMIZATION
• COMPUTATIONAL GEOMETRY
• ALGORITHMS ON MASSIVE DATA
• . . .

3/21



Algorithm Design

Basic algorithms:

• RECURSION
• ALGORITHMS ON LISTS, TREES AND GRAPHS

Advanced strategies:

• DIVIDE AND CONQUER

• Master Theorem
• DYNAMIC PROGRAMMING
• GREEDY
• DUALITY
• REDUCTION
• APPROXIMATION
• RANDOMIZATION
• COMPUTATIONAL GEOMETRY
• ALGORITHMS ON MASSIVE DATA
• . . .

3/21



Algorithm Design

Basic algorithms:

• RECURSION
• ALGORITHMS ON LISTS, TREES AND GRAPHS

Advanced strategies:

• DIVIDE AND CONQUER
• Master Theorem

• DYNAMIC PROGRAMMING
• GREEDY
• DUALITY
• REDUCTION

• APPROXIMATION
• RANDOMIZATION
• COMPUTATIONAL GEOMETRY
• ALGORITHMS ON MASSIVE DATA
• . . .

3/21



Algorithm Design

Basic algorithms:

• RECURSION
• ALGORITHMS ON LISTS, TREES AND GRAPHS

Advanced strategies:

• DIVIDE AND CONQUER
• Master Theorem

• DYNAMIC PROGRAMMING
• GREEDY
• DUALITY
• REDUCTION
• APPROXIMATION
• RANDOMIZATION
• COMPUTATIONAL GEOMETRY
• ALGORITHMS ON MASSIVE DATA
• . . .

3/21



Algorithms on Special Structures

Graphs

• undirected graphs, directed graphs.
• DAG.
• bipartite.
• graphs with weights.
• . . .

Network flows

• Ford-Fulkerson algorithm, Edmonds-Karp algorithm
• . . .

COMPUTATIONAL GEOMETRY

4/21



Algorithms on Special Structures

Graphs

• undirected graphs, directed graphs.

• DAG.
• bipartite.
• graphs with weights.
• . . .

Network flows

• Ford-Fulkerson algorithm, Edmonds-Karp algorithm
• . . .

COMPUTATIONAL GEOMETRY

4/21



Algorithms on Special Structures

Graphs

• undirected graphs, directed graphs.
• DAG.

• bipartite.
• graphs with weights.
• . . .

Network flows

• Ford-Fulkerson algorithm, Edmonds-Karp algorithm
• . . .

COMPUTATIONAL GEOMETRY

4/21



Algorithms on Special Structures

Graphs

• undirected graphs, directed graphs.
• DAG.
• bipartite.

• graphs with weights.
• . . .

Network flows

• Ford-Fulkerson algorithm, Edmonds-Karp algorithm
• . . .

COMPUTATIONAL GEOMETRY

4/21



Algorithms on Special Structures

Graphs

• undirected graphs, directed graphs.
• DAG.
• bipartite.
• graphs with weights.

• . . .

Network flows

• Ford-Fulkerson algorithm, Edmonds-Karp algorithm
• . . .

COMPUTATIONAL GEOMETRY

4/21



Algorithms on Special Structures

Graphs

• undirected graphs, directed graphs.
• DAG.
• bipartite.
• graphs with weights.
• . . .

Network flows

• Ford-Fulkerson algorithm, Edmonds-Karp algorithm
• . . .

COMPUTATIONAL GEOMETRY

4/21



Algorithms on Special Structures

Graphs

• undirected graphs, directed graphs.
• DAG.
• bipartite.
• graphs with weights.
• . . .

Network flows

• Ford-Fulkerson algorithm, Edmonds-Karp algorithm
• . . .

COMPUTATIONAL GEOMETRY

4/21



Algorithm Analysis

Big-O Notation (Ω,Θ)

Advanced Methodology:

• PROBABILITY ANALYSIS

• AMORTIZED ANALYSIS

• COMPETITION ANALYSIS

5/21



Algorithm Analysis

Big-O Notation (Ω,Θ)

Advanced Methodology:

• PROBABILITY ANALYSIS

• AMORTIZED ANALYSIS

• COMPETITION ANALYSIS

5/21



Algorithm Analysis

Big-O Notation (Ω,Θ)

Advanced Methodology:

• PROBABILITY ANALYSIS

• AMORTIZED ANALYSIS

• COMPETITION ANALYSIS

5/21



Algorithm Analysis

Big-O Notation (Ω,Θ)

Advanced Methodology:

• PROBABILITY ANALYSIS

• AMORTIZED ANALYSIS

• COMPETITION ANALYSIS

5/21



Algorithm Analysis

Big-O Notation (Ω,Θ)

Advanced Methodology:

• PROBABILITY ANALYSIS

• AMORTIZED ANALYSIS

• COMPETITION ANALYSIS

5/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Standard Algorithms

• SORTING

• SEARCHING & HASHING

• STRONGLY CONNECTED COMPONENTS

• FINDING SHORTEST PATHS IN GRAPHS

• EDIT DISTANCES

• MINIMUM SPANNING TREES IN GRAPHS

• MATCHINGS IN BIPARTITE GRAPHS

• MAXIMUM FLOWS IN NETWORKS

6/21



Data Structure

• BALANCE TREES, RED-AND-BLACK TREES

• KRIPKE STRUCTURE, AUTOMATA

• PRIORITY QUEUE

• DISJOINT SET

• Ordered binary decision diagrams (OBDD)
• . . .

7/21



Data Structure

• BALANCE TREES, RED-AND-BLACK TREES

• KRIPKE STRUCTURE, AUTOMATA

• PRIORITY QUEUE

• DISJOINT SET

• Ordered binary decision diagrams (OBDD)
• . . .

7/21



Data Structure

• BALANCE TREES, RED-AND-BLACK TREES

• KRIPKE STRUCTURE, AUTOMATA

• PRIORITY QUEUE

• DISJOINT SET

• Ordered binary decision diagrams (OBDD)

• . . .

7/21



Data Structure

• BALANCE TREES, RED-AND-BLACK TREES

• KRIPKE STRUCTURE, AUTOMATA

• PRIORITY QUEUE

• DISJOINT SET

• Ordered binary decision diagrams (OBDD)
• . . .

7/21



Computational Complexity

Church-Turing Thesis

Complexity class

• P, NP, Co-NP, NPI, NP-complete
• PSPACE
• RP, ZPP

Handling hard problems

• Simplex, DPLL(CDCL)(backtracking)
• Approximation,
• local search
• treewidth

8/21



Computational Complexity

Church-Turing Thesis

Complexity class

• P, NP, Co-NP, NPI, NP-complete
• PSPACE
• RP, ZPP

Handling hard problems

• Simplex, DPLL(CDCL)(backtracking)
• Approximation,
• local search
• treewidth

8/21



Computational Complexity

Church-Turing Thesis

Complexity class

• P, NP, Co-NP, NPI, NP-complete

• PSPACE
• RP, ZPP

Handling hard problems

• Simplex, DPLL(CDCL)(backtracking)
• Approximation,
• local search
• treewidth

8/21



Computational Complexity

Church-Turing Thesis

Complexity class

• P, NP, Co-NP, NPI, NP-complete
• PSPACE

• RP, ZPP

Handling hard problems

• Simplex, DPLL(CDCL)(backtracking)
• Approximation,
• local search
• treewidth

8/21



Computational Complexity

Church-Turing Thesis

Complexity class

• P, NP, Co-NP, NPI, NP-complete
• PSPACE
• RP, ZPP

Handling hard problems

• Simplex, DPLL(CDCL)(backtracking)
• Approximation,
• local search
• treewidth

8/21



Computational Complexity

Church-Turing Thesis

Complexity class

• P, NP, Co-NP, NPI, NP-complete
• PSPACE
• RP, ZPP

Handling hard problems

• Simplex, DPLL(CDCL)(backtracking)
• Approximation,
• local search
• treewidth

8/21



Computational Complexity

Church-Turing Thesis

Complexity class

• P, NP, Co-NP, NPI, NP-complete
• PSPACE
• RP, ZPP

Handling hard problems

• Simplex, DPLL(CDCL)(backtracking)
• Approximation,
• local search
• treewidth

8/21



The Door of Algorithms Will Open!

9/21



Roadmap

10/21



Guidelines of This Exam

11/21



Algorithms in This Lecture

Algorithm Strategies

• divide and conquer
• dynamic programming
• greedy algorithms
• duality
• reduction

Specific algorithms
• algorithm with numbers
• graph algorithms
• network flows

NP problems
• NP, Co-NP, NPC
• reduction
• handling NPH problem

12/21



Algorithms in This Lecture

Algorithm Strategies
• divide and conquer
• dynamic programming
• greedy algorithms
• duality
• reduction

Specific algorithms
• algorithm with numbers
• graph algorithms
• network flows

NP problems
• NP, Co-NP, NPC
• reduction
• handling NPH problem

12/21



Algorithms in This Lecture

Algorithm Strategies
• divide and conquer
• dynamic programming
• greedy algorithms
• duality
• reduction

Specific algorithms

• algorithm with numbers
• graph algorithms
• network flows

NP problems
• NP, Co-NP, NPC
• reduction
• handling NPH problem

12/21



Algorithms in This Lecture

Algorithm Strategies
• divide and conquer
• dynamic programming
• greedy algorithms
• duality
• reduction

Specific algorithms
• algorithm with numbers
• graph algorithms
• network flows

NP problems
• NP, Co-NP, NPC
• reduction
• handling NPH problem

12/21



Algorithms in This Lecture

Algorithm Strategies
• divide and conquer
• dynamic programming
• greedy algorithms
• duality
• reduction

Specific algorithms
• algorithm with numbers
• graph algorithms
• network flows

NP problems

• NP, Co-NP, NPC
• reduction
• handling NPH problem

12/21



Algorithms in This Lecture

Algorithm Strategies
• divide and conquer
• dynamic programming
• greedy algorithms
• duality
• reduction

Specific algorithms
• algorithm with numbers
• graph algorithms
• network flows

NP problems
• NP, Co-NP, NPC
• reduction
• handling NPH problem

12/21



First of ALL

Hand in ALL homework!

13/21



Languages

The exam is given in Chinese,

with translation sheet for international students.

14/21



Languages

The exam is given in Chinese,

with translation sheet for international students.

14/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, and algorithm analysis ability (20’)

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

M3. Design algorithms and analysis on numbers, graphs, and flows. (25’)

M4. Prove a NPC problem (15’)

M5. Cope with NPH problem (10’)

15/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, and algorithm analysis ability (20’)

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

M3. Design algorithms and analysis on numbers, graphs, and flows. (25’)

M4. Prove a NPC problem (15’)

M5. Cope with NPH problem (10’)

15/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, and algorithm analysis ability (20’)

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

M3. Design algorithms and analysis on numbers, graphs, and flows. (25’)

M4. Prove a NPC problem (15’)

M5. Cope with NPH problem (10’)

15/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, and algorithm analysis ability (20’)

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

M3. Design algorithms and analysis on numbers, graphs, and flows. (25’)

M4. Prove a NPC problem (15’)

M5. Cope with NPH problem (10’)

15/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, and algorithm analysis ability (20’)

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

M3. Design algorithms and analysis on numbers, graphs, and flows. (25’)

M4. Prove a NPC problem (15’)

M5. Cope with NPH problem (10’)

15/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, algorithm analysis ability (20’)

• given an problem, try to model it formally.
• proof the correctness of a simple algorithm.
• give an analysis to a piece of Pseudo codes.
• given a linear programming, figure out its duality, and find out the optimization solution.

16/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, algorithm analysis ability (20’)

• given an problem, try to model it formally.

• proof the correctness of a simple algorithm.
• give an analysis to a piece of Pseudo codes.
• given a linear programming, figure out its duality, and find out the optimization solution.

16/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, algorithm analysis ability (20’)

• given an problem, try to model it formally.
• proof the correctness of a simple algorithm.

• give an analysis to a piece of Pseudo codes.
• given a linear programming, figure out its duality, and find out the optimization solution.

16/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, algorithm analysis ability (20’)

• given an problem, try to model it formally.
• proof the correctness of a simple algorithm.
• give an analysis to a piece of Pseudo codes.

• given a linear programming, figure out its duality, and find out the optimization solution.

16/21



Types of the Exam Problems

M1. Show modelling ability, proof ability, algorithm analysis ability (20’)

• given an problem, try to model it formally.
• proof the correctness of a simple algorithm.
• give an analysis to a piece of Pseudo codes.
• given a linear programming, figure out its duality, and find out the optimization solution.

16/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer (master theorem)
• Dynamic programming (design, border conditions, complexity)
• Greedy
• Reduction
• Duality

17/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer

(master theorem)
• Dynamic programming (design, border conditions, complexity)
• Greedy
• Reduction
• Duality

17/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer (master theorem)

• Dynamic programming (design, border conditions, complexity)
• Greedy
• Reduction
• Duality

17/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer (master theorem)
• Dynamic programming

(design, border conditions, complexity)
• Greedy
• Reduction
• Duality

17/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer (master theorem)
• Dynamic programming (design, border conditions, complexity)

• Greedy
• Reduction
• Duality

17/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer (master theorem)
• Dynamic programming (design, border conditions, complexity)
• Greedy

• Reduction
• Duality

17/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer (master theorem)
• Dynamic programming (design, border conditions, complexity)
• Greedy
• Reduction

• Duality

17/21



Types of the Exam Problems

M2. Adopt algorithmic strategies to solve and analyze problems (greedy, D&C, DP, etc.) (30’)

• Divide and conquer (master theorem)
• Dynamic programming (design, border conditions, complexity)
• Greedy
• Reduction
• Duality

17/21



Types of the Exam Problems

M3. Design algorithms and analysis on graphs, numbers and flow (25’)

• DFS, BFS
• Shortest path, MST
• Algorithms on DAG
• Algorithms on numbers (modular)
• Applications of network flows

18/21



Types of the Exam Problems

M3. Design algorithms and analysis on graphs, numbers and flow (25’)

• DFS, BFS

• Shortest path, MST
• Algorithms on DAG
• Algorithms on numbers (modular)
• Applications of network flows

18/21



Types of the Exam Problems

M3. Design algorithms and analysis on graphs, numbers and flow (25’)

• DFS, BFS
• Shortest path, MST

• Algorithms on DAG
• Algorithms on numbers (modular)
• Applications of network flows

18/21



Types of the Exam Problems

M3. Design algorithms and analysis on graphs, numbers and flow (25’)

• DFS, BFS
• Shortest path, MST
• Algorithms on DAG

• Algorithms on numbers (modular)
• Applications of network flows

18/21



Types of the Exam Problems

M3. Design algorithms and analysis on graphs, numbers and flow (25’)

• DFS, BFS
• Shortest path, MST
• Algorithms on DAG
• Algorithms on numbers (modular)

• Applications of network flows

18/21



Types of the Exam Problems

M3. Design algorithms and analysis on graphs, numbers and flow (25’)

• DFS, BFS
• Shortest path, MST
• Algorithms on DAG
• Algorithms on numbers (modular)
• Applications of network flows

18/21



Types of the Exam Problems

M4. Prove an NPC problem (15’)

• Prove an NP problem
• Prove an NPC problem

19/21



Types of the Exam Problems

M4. Prove an NPC problem (15’)

• Prove an NP problem

• Prove an NPC problem

19/21



Types of the Exam Problems

M4. Prove an NPC problem (15’)

• Prove an NP problem
• Prove an NPC problem

19/21



Types of the Exam Problems

M5. Cope with NPC problem (10’)

• Approximation algorithm
• Backtracking
• Local search

20/21



Types of the Exam Problems

M5. Cope with NPC problem (10’)

• Approximation algorithm

• Backtracking
• Local search

20/21



Types of the Exam Problems

M5. Cope with NPC problem (10’)

• Approximation algorithm
• Backtracking

• Local search

20/21



Types of the Exam Problems

M5. Cope with NPC problem (10’)

• Approximation algorithm
• Backtracking
• Local search

20/21



Exam This Year

1 2 3 4 5 6 7 Total
M1: Modeling, proof and analysis (20’) 5 5 10 20
M2: Strategies (30’) 10 15 5 30
M3: Graph, flow, and number (25’) 10 15 25
M4: Prove NPC (15’) 15 15
M5: Handle NPH (10’) 10 10

Total 15 15 15 10 15 10 20 100

21/21


	What Is Algorithm
	Guidelines of This Exam

