

Fundamentals of Programming Languages I

Introduction and Logics

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Instructor and Teaching Assistants

- Guoqiang LI

Instructor and Teaching Assistants

- Guoqiang LI
 - Homepage: <http://basics.sjtu.edu.cn/~liguoqiang>
 - Course page:
<http://basics.sjtu.edu.cn/~liguoqiang/teaching/Prog17/index.htm>
 - Email: li.g@outlook.com
 - Office: Rm. 1212, Building of Software
 - Phone: [3420-4167](tel:3420-4167)

Instructor and Teaching Assistants

- Guoqiang LI
 - Homepage: <http://basics.sjtu.edu.cn/~liguoqiang>
 - Course page:
<http://basics.sjtu.edu.cn/~liguoqiang/teaching/Prog17/index.htm>
 - Email: li.g@outlook.com
 - Office: Rm. 1212, Building of Software
 - Phone: [3420-4167](tel:3420-4167)
- TA:
 - **Yuwei WANG**: wangyuwei95 (AT) qq (DOT) com

Instructor and Teaching Assistants

- Guoqiang LI
 - Homepage: <http://basics.sjtu.edu.cn/~liguoqiang>
 - Course page:
<http://basics.sjtu.edu.cn/~liguoqiang/teaching/Prog17/index.htm>
 - Email: li.g@outlook.com
 - Office: Rm. 1212, Building of Software
 - Phone: [3420-4167](tel:3420-4167)
- TA:
 - **Yuwei WANG**: wangyuwei95 (AT) qq (DOT) com
- Office hour: **Tue. 14:00-17:00 @ Software Building 3203**

What does the lecture aim for?

Similar Lectures I

Fundamentals of Programming Languages by University of Colorado Boulder

<http://www.cs.colorado.edu/~bec/courses/csci5535-f13/>

Similar Lectures I

Fundamentals of Programming Languages by University of Colorado Boulder

<http://www.cs.colorado.edu/~bec/courses/csci5535-f13/>

- 2010 Spring Programming semantics
- 2013 Fall Programming analysis and verification

Similar Lectures II

Principles of Programming Languages by University of Oxford

<http://www.cs.ox.ac.uk/teaching/courses/2017-2018/principles/>

Foundations of Programming Languages by CMU

www.cs.cmu.edu/~rjsimmon/15312-s14/schedule.html

Theory of Programming Languages by ECNU

basics.sjtu.edu.cn/~yuxin/teaching/Semantics/sem.html

Similar Lectures II

Principles of Programming Languages by University of Oxford

<http://www.cs.ox.ac.uk/teaching/courses/2017-2018/principles/>

Foundations of Programming Languages by CMU

www.cs.cmu.edu/~rjsimmon/15312-s14/schedule.html

Theory of Programming Languages by ECNU

basics.sjtu.edu.cn/~yuxin/teaching/Semantics/sem.html

Programming Semantics

Similar Lectures III

Fundamentals of Programming Analysis by MIT

ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-820-fundamentals-of-program-analysis-fall-2015/lecture-notes/

Principles of Programming Languages by Boston University

<http://www.cs.bu.edu/~hwxi/academic/courses/CS520/Fall15>

Similar Lectures III

Fundamentals of Programming Analysis by MIT

ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-820-fundamentals-of-program-analysis-fall-2015/lecture-notes/

Principles of Programming Languages by Boston University

<http://www.cs.bu.edu/~hwxi/academic/courses/CS520/Fall15>

Programming Analysis and Verification

Similar Lectures IV

Theory of Programming Languages by CMU

www.cs.cmu.edu/~aldrich/courses/15-819O-13sp

Introduction to Programming Languages Theory by Standford

<https://courseware.stanford.edu/pg/courses/lectures/261141>

Theory of Programming Languages by SJTU

<http://basics.sjtu.edu.cn/~xiaojuan/tapl2016/index.html>

Similar Lectures IV

Theory of Programming Languages by CMU

www.cs.cmu.edu/~aldrich/courses/15-819O-13sp

Introduction to Programming Languages Theory by Standford

<https://courseware.stanford.edu/pg/courses/lectures/261141>

Theory of Programming Languages by SJTU

<http://basics.sjtu.edu.cn/~xiaojuan/tapl2016/index.html>

Types and Functional Programming Languages

Fundamental Requirements

- Program Verification and Analysis

Fundamental Requirements

- Program Verification and Analysis
 - Propositional logic, predicate logic etc.
 - Automata theory, DFA, NFA, PDS, PN etc.
 - Algorithm.

Fundamental Requirements

- Program Verification and Analysis
 - Propositional logic, predicate logic etc.
 - Automata theory, DFA, NFA, PDS, PN etc.
 - Algorithm.
- Program Semantics

Fundamental Requirements

- Program Verification and Analysis
 - Propositional logic, predicate logic etc.
 - Automata theory, DFA, NFA, PDS, PN etc.
 - Algorithm.
- Program Semantics
 - Set theory.
 - Algebra theory, group, ring, domain etc.
 - category theory, maybe...

Fundamental Requirements

- Program Verification and Analysis
 - Propositional logic, predicate logic etc.
 - Automata theory, DFA, NFA, PDS, PN etc.
 - Algorithm.
- Program Semantics
 - Set theory.
 - Algebra theory, group, ring, domain etc.
 - category theory, maybe...
- Types and Programming Languages

Fundamental Requirements

- Program Verification and Analysis
 - Propositional logic, predicate logic etc.
 - Automata theory, DFA, NFA, PDS, PN etc.
 - Algorithm.
- Program Semantics
 - Set theory.
 - Algebra theory, group, ring, domain etc.
 - category theory, maybe...
- Types and Programming Languages
 - Logic
 - Computability theory
 - Lambda calculus theory...

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a minimal requirement and self-contained in this lecture.

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very fundamental part,

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very fundamental part, **if time permitted**.

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very fundamental part, **if time permitted**.

As simple as possible,

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very fundamental part, **if time permitted**.

As simple as possible, **although it is very theoretical**.

Lecture Agenda

- Introduction and logic basics (1 lecture)
- Formal basics (3 lectures)
- Programming verification (2 or 3 lectures)
- Exercise I. (1 lecture)
- Programming semantics (2 lectures)
- Basic functional programming (3 lectures)
- Exercise II. (1 lecture)
- Conclusion and wrap up (1 lecture)

Lecture Agenda

- Introduction and logic basics (1 lecture)
- Formal basics (3 lectures)
 - Model checking
 - Finite and Büchi automata
 - LTL model checking
- Programming verification (2 or 3 lectures)
- Exercise I. (1 lecture)
- Programming semantics (2 lectures)
- Basic functional programming (3 lectures)
- Exercise II. (1 lecture)
- Conclusion and wrap up (1 lecture)

Lecture Agenda

- Introduction and logic basics (1 lecture)
- Formal basics (3 lectures)
- Programming verification (2 or 3 lectures)
 - Abstract interpretation
 - Pushdown automata and interprocedural programs
 - Petri Net and concurrent programs
- Exercise I. (1 lecture)
- Programming semantics (2 lectures)
- Basic functional programming (3 lectures)
- Exercise II. (1 lecture)
- Conclusion and wrap up (1 lecture)

Lecture Agenda

- Introduction and logic basics (1 lecture)
- Formal basics (3 lectures)
- Programming verification (2 or 3 lectures)
- Exercise I. (1 lecture)
- Programming semantics (2 lectures)
 - Denotational semantics
 - Operational semantics
 - Axiomatic semantics
- Basic functional programming (3 lectures)
- Exercise II. (1 lecture)
- Conclusion and wrap up (1 lecture)

Lecture Agenda

- Introduction and logic basics (1 lecture)
- Formal basics (3 lectures)
- Programming verification (2 or 3 lectures)
- Exercise I. (1 lecture)
- Programming semantics (2 lectures)
- Basic functional programming (3 lectures)
 - Lambda calculus
 - Simple types
 - Functional programming
- Exercise II. (1 lecture)
- Conclusion and wrap up (1 lecture)

References

No particular textbook that can cover all the parts. Here are three Reference books:

Edmund M. Clarke Jr., Orna Grumberg, Doron A. Peled. Model Checking. MIT Press, 1999

Glynn Winskel. Formal Semantics of Programming Languages: An Introduction. MIT Press, 1993

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002

References

No particular textbook that can cover all the parts. Here are three Reference books:

Edmund M. Clarke Jr., Orna Grumberg, Doron A. Peled. Model Checking. MIT Press, 1999

Glynn Winskel. Formal Semantics of Programming Languages: An Introduction. MIT Press, 1993

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002

+ Several famous papers

+ Lecture notes shared in the course webpage.

Scoring Policy

- 10% Attendance.
- 20% Homework.
- 70% Final exam.

Scoring Policy

- 10% Attendance.
- 20% Homework.
 - Four assignments.
- 70% Final exam.

Scoring Policy

- 10% Attendance.
- 20% Homework.
 - Four assignments.
 - Each one is 5pts.
- 70% Final exam.

Scoring Policy

- 10% Attendance.
- 20% Homework.
 - Four assignments.
 - Each one is 5pts.
 - Work out individually.
- 70% Final exam.

Scoring Policy

- 10% Attendance.
- 20% Homework.
 - Four assignments.
 - Each one is 5pts.
 - Work out individually.
 - Each assignment will be evaluated by *A, B, C, D, F* (Excellent(5), Good(5), Fair(4), Delay(3), Fail(0))
- 70% Final exam.

Scoring Policy

- 10% Attendance.
- 20% Homework.
 - Four assignments.
 - Each one is 5pts.
 - Work out individually.
 - Each assignment will be evaluated by *A, B, C, D, F* (Excellent(5), Good(5), Fair(4), Delay(3), Fail(0))
- 70% Final exam.
 - Maybe replaced by report, if the condition is satisfied!

Any Questions?

Logic Basics

Brief Historical Notes on Logic

Historical View

- Philosophical Logic
 - 500 BC to 19th Century
- Symbolic Logic
 - Mid to late 19th Century
- Mathematical Logic
 - Late 19th to mid 20th Century
- Logic in Computer Science

Philosophical Logic

Philosophical Logic

500 B.C - 19th Century

Philosophical Logic

500 B.C - 19th Century

Logic dealt with arguments in the natural language used by humans.

Philosophical Logic

500 B.C - 19th Century

Logic dealt with arguments in the natural language used by humans.

Example:

- All men are mortal.
- Socrates is a man.
- Therefore, Socrates is mortal.

Philosophical Logic

Philosophical Logic

Natural languages are very ambiguous.

Philosophical Logic

Natural languages are very ambiguous.

- Eric does not believe that Mary can pass **any** test.
 - does not believe that she can pass **some** test, or
 - does not believe that she can pass **all** tests
- I **only** borrowed your car.
 - And not '**borrowed and used**', or
 - And not '**car and coat**'
- Tom hates Jim and **he** likes Mary.
 - Tom likes Mary, or
 - Jim likes Mary

Philosophical Logic

Natural languages are very ambiguous.

- Eric does not believe that Mary can pass **any** test.
 - does not believe that she can pass **some** test, or
 - does not believe that she can pass **all** tests
- I **only** borrowed your car.
 - And not '**borrowed and used**', or
 - And not '**car and coat**'
- Tom hates Jim and **he** likes Mary.
 - Tom likes Mary, or
 - Jim likes Mary

It led to many paradoxes.

Philosophical Logic

Natural languages are very ambiguous.

- Eric does not believe that Mary can pass **any** test.
 - does not believe that she can pass **some** test, or
 - does not believe that she can pass **all** tests
- I **only** borrowed your car.
 - And not '**borrowed and used**', or
 - And not '**car and coat**'
- Tom hates Jim and **he** likes Mary.
 - Tom likes Mary, or
 - Jim likes Mary

It led to many paradoxes.

- “This sentence is a lie.”(The Liar’s Paradox)

Sophism

...**Sophism** generally refers to a **particularly confusing, illogical and/or insincere argument** used by someone to make a point, or, perhaps, not to make a point.

Sophistry refers to [...] rhetoric that is designed to appeal to the listener on grounds **other than** the strict **logical** cogency of the statements being made.

The Sophist's Paradox

A Sophist is sued for his tuition by the school that educated him. He argues that **he must win**, since, if he loses, the school didn't educate him well enough, and doesn't deserve the money.

The Sophist's Paradox

A Sophist is sued for his tuition by the school that educated him. He argues that **he must win**, since, if he loses, the school didn't educate him well enough, and doesn't deserve the money.

The school argues that **he must lose**, since, if he wins, he was educated well enough, and therefore should pay for it.

Logic in Computer Science

Logic has a profound impact on computer science. Some examples:

- Propositional logic - the foundation of computers and circuitry
- Databases - query languages
- Programming languages (e.g. prolog)
- Design Validation and verification
- AI (e.g. inference systems)
- ...

Logic in Computer Science

Propositional Logic

First Order Logic

Higher Order Logic

Temporal Logic

...

Propositional Logic: Syntax

Propositional Logic

Propositional Logic

A **proposition**: a sentence that can be either true or false.

Propositional Logic

A **proposition**: a sentence that can be either true or false.

Propositions:

- x is greater than y
- Noam wrote this letter

Propositional Logic: Syntax

Propositional Logic: Syntax

The symbols of the language:

- Propositional symbols (*Prop*): A, B, C, \dots
- Connectives:
 - \wedge and
 - \vee or
 - \neg not
 - \rightarrow implies
 - \leftrightarrow equivalent to
 - \oplus xor (different than)
 - \perp, \top False, True
- Parenthesis: $(,)$.

Propositional Logic: Syntax

The symbols of the language:

- Propositional symbols (*Prop*): A, B, C, \dots
- Connectives:
 - \wedge and
 - \vee or
 - \neg not
 - \rightarrow implies
 - \leftrightarrow equivalent to
 - \oplus xor (different than)
 - \perp, \top False, True
- Parenthesis: $(,)$.

Q1: How many different binary symbols can we define?

Propositional Logic: Syntax

The symbols of the language:

- Propositional symbols (*Prop*): A, B, C, \dots
- Connectives:
 - \wedge and
 - \vee or
 - \neg not
 - \rightarrow implies
 - \leftrightarrow equivalent to
 - \oplus xor (different than)
 - \perp, \top False, True
- Parenthesis: $(,)$.

Q1: How many different binary symbols can we define?

Q2: What is the minimal number of such symbols?

Formulas

Grammar of **well-formed** propositional formulas

$$\text{Formula} := \text{prop} \mid \neg(\text{Formula}) \mid (\text{Formula} \circ \text{Formula})$$

where $\text{prop} \in \text{Prop}$ and \circ is one of the binary relations.

Formulas

Examples of well-formed formulas:

- $(\neg A)$
- $(\neg(\neg A))$
- $(A \wedge (B \wedge C))$
- $(A \rightarrow (B \rightarrow C))$

Correct expressions of Propositional Logic are full of unnecessary parenthesis.

Formulas: Abbreviations

We write

$$A \circ B \circ C \circ \dots$$

Formulas: Abbreviations

We write

$$A \circ B \circ C \circ \dots$$

in place of

$$(A \circ (B \circ (C \circ \dots)))$$

Formulas: Abbreviations

We write

$$A \circ B \circ C \circ \dots$$

in place of

$$(A \circ (B \circ (C \circ \dots)))$$

Thus, we write

$$A \wedge B \wedge C, \quad A \rightarrow B \rightarrow C, \dots$$

Formulas: Abbreviations

We write

$$A \circ B \circ C \circ \dots$$

in place of

$$(A \circ (B \circ (C \circ \dots)))$$

Thus, we write

$$A \wedge B \wedge C, \quad A \rightarrow B \rightarrow C, \dots$$

in place of

$$(A \wedge (B \wedge C)), \quad (A \rightarrow (B \rightarrow C)), \dots$$

Formulas: Abbreviations

We omit parenthesis whenever we may restore them through operator precedence:

Formulas: Abbreviations

We omit parenthesis whenever we may restore them through operator precedence:

\neg binds more strictly than \wedge , \vee , and \wedge , \vee bind more strictly than \rightarrow , \leftrightarrow .

Formulas: Abbreviations

We omit parenthesis whenever we may restore them through operator precedence:

\neg binds more strictly than \wedge , \vee , and \wedge , \vee bind more strictly than \rightarrow , \leftrightarrow .

Thus, we write:

- $\neg\neg A$ for $(\neg(\neg A))$,
- $\neg A \wedge B$ for $((\neg A) \wedge B)$
- $A \wedge B \rightarrow C$ for $((A \wedge B) \rightarrow C)$
- ...

Propositional Logic: Semantics

Propositional Logic: Semantics

Truth tables define the semantics (=meaning) of the operators

Convention: $0 = \text{false}$, $1 = \text{true}$

A	B	$A \wedge B$	$A \vee B$	$A \rightarrow B$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	1

Propositional Logic: Semantics

Truth tables define the semantics (=meaning) of the operators

Convention: $0 = \text{false}$, $1 = \text{true}$

A	B	$\neg A$	$A \leftrightarrow B$	$A \oplus B$
0	0	1	1	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	0

Back to Q1

Q1: How many binary operators can we define that have different semantic definition?

Back to Q1

Q1: How many binary operators can we define that have different semantic definition?

A: 16

Satisfiability and Validity

Assignments

Definition: A truth-values assignment, α , is an element of 2^{Prop} (i.e., $\alpha \in 2^{\text{Prop}}$).

In other words, α is a subset of the variables that are assigned true.

Equivalently, we can see α as a mapping from variables to truth values:

$$\alpha : \text{Prop} \mapsto \{0, 1\}$$

Example: $\alpha = \{A \mapsto 0, B \mapsto 1, \dots\}$

Satisfaction Relation (\models): Intuition

An assignment can either satisfy or not satisfy a given formula.

$\alpha \models \phi$ means

- α satisfies ϕ or
- ϕ holds at α or
- α is a model of ϕ

We will first see an example.

Then we will define these notions formally.

Example

Let $\phi = (A \vee (B \rightarrow C))$

Example

Let $\phi = (A \vee (B \rightarrow C))$

Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

Example

Let $\phi = (A \vee (B \rightarrow C))$

Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

Q: Does α satisfy ϕ ($\alpha \models \phi$?)

Example

Let $\phi = (A \vee (B \rightarrow C))$

Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

Q: Does α satisfy ϕ ($\alpha \models \phi$?)

A: $(0 \vee (0 \rightarrow 1)) = (0 \vee 1) = 1$

Example

Let $\phi = (A \vee (B \rightarrow C))$

Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

Q: Does α satisfy ϕ ($\alpha \models \phi$?)

A: $(0 \vee (0 \rightarrow 1)) = (0 \vee 1) = 1$

Hence, $\alpha \models \phi$.

Example

Let $\phi = (A \vee (B \rightarrow C))$

Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

Q: Does α satisfy ϕ ($\alpha \models \phi$?)

A: $(0 \vee (0 \rightarrow 1)) = (0 \vee 1) = 1$

Hence, $\alpha \models \phi$.

Let us now formalize an evaluation process.

Satisfaction Relation (\models): Formalities

\models is a relation: $\models \subseteq (2^{\text{Prop}} \times \text{Formula})$

Satisfaction Relation (\models): Formalities

\models is a relation: $\models \subseteq (2^{\text{Prop}} \times \text{Formula})$

Examples:

- $(\{A\}, A \vee B)$: the assignment $\alpha = \{A\}$ satisfies $A \vee B$
- $(\{A, B\}, A \wedge B)$

Satisfaction Relation (\models): Formalities

\models is a relation: $\models \subseteq (2^{\text{Prop}} \times \text{Formula})$

Examples:

- $(\{A\}, A \vee B)$: the assignment $\alpha = \{A\}$ satisfies $A \vee B$
- $(\{A, B\}, A \wedge B)$

Alternatively: $\models \subseteq (\{0, 1\}^{\text{Prop}} \times \text{Formula})$

Satisfaction Relation (\models): Formalities

\models is a relation: $\models \subseteq (2^{\text{Prop}} \times \text{Formula})$

Examples:

- $(\{A\}, A \vee B)$: the assignment $\alpha = \{A\}$ satisfies $A \vee B$
- $(\{A, B\}, A \wedge B)$

Alternatively: $\models \subseteq (\{0, 1\}^{\text{Prop}} \times \text{Formula})$

Examples:

- $(01, A \vee B)$: the assignment $\alpha = \{A \mapsto 0, B \mapsto 1\}$ satisfies $A \vee B$
- $(11, A \wedge B)$

Satisfaction Relation (\models): Formalities

\models is defined recursively:

- $\alpha \models A$ if $\alpha(A) = \text{true}$
- $\alpha \models \neg\varphi$ if $\alpha \not\models \varphi$
- $\alpha \models \varphi_1 \wedge \varphi_2$ if $\alpha \models \varphi_1$ and $\alpha \models \varphi_2$
- $\alpha \models \varphi_1 \vee \varphi_2$ if $\alpha \models \varphi_1$ or $\alpha \models \varphi_2$
- $\alpha \models \varphi_1 \rightarrow \varphi_2$ if $\alpha \models \varphi_1$ implies $\alpha \models \varphi_2$
- $\alpha \models \varphi_1 \leftrightarrow \varphi_2$ if $\alpha \models \varphi_1$ iff $\alpha \models \varphi_2$

From Definition to an Evaluation Algorithm

Truth Evaluation Problem:

Given $\varphi \in \text{Formula}$ and $\alpha \in 2^{AP}(\varphi)$, does $\alpha \models \varphi$?

From Definition to an Evaluation Algorithm

Truth Evaluation Problem:

Given $\varphi \in \text{Formula}$ and $\alpha \in 2^{AP}(\varphi)$, does $\alpha \models \varphi$?

$\text{Eval}(\varphi, \alpha)$

```
if  $\varphi \equiv A$  then return  $\alpha(A)$ ;  
if  $\varphi \equiv \neg\phi$  then return  $\neg \text{Eval}(\phi, \alpha)$ ;  
if  $\varphi \equiv \psi \circ \phi$  then  
  return  $\text{Eval}(\psi, \alpha) \circ \text{Eval}(\phi, \alpha)$ ;
```

From Definition to an Evaluation Algorithm

Truth Evaluation Problem:

Given $\varphi \in \text{Formula}$ and $\alpha \in 2^{AP}(\varphi)$, does $\alpha \models \varphi$?

$\text{Eval}(\varphi, \alpha)$

```
if  $\varphi \equiv A$  then return  $\alpha(A)$ ;  
if  $\varphi \equiv \neg\phi$  then return  $\neg \text{Eval}(\phi, \alpha)$ ;  
if  $\varphi \equiv \psi \circ \phi$  then  
  return  $\text{Eval}(\psi, \alpha) \circ \text{Eval}(\phi, \alpha)$ ;
```

Eval uses polynomial time and space.

Nothing More Than What We Already Know

Recall the Example:

- Let $\phi = (A \vee (B \rightarrow C))$
- Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

Nothing More Than What We Already Know

Recall the Example:

- Let $\phi = (A \vee (B \rightarrow C))$
- Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

$$\begin{aligned}\text{Eval}(\phi, \alpha) &= \text{Eval}(A, \alpha) \vee \text{Eval}(B \rightarrow C, \alpha) = \\ 0 \vee \text{Eval}(B, \alpha) \rightarrow \text{Eval}(C, \alpha) &= 0 \vee (0 \rightarrow 1) = 0 \vee 1 = 1\end{aligned}$$

Nothing More Than What We Already Know

Recall the Example:

- Let $\phi = (A \vee (B \rightarrow C))$
- Let $\alpha = \{A \mapsto 0, B \mapsto 0, C \mapsto 1\}$

$$\begin{aligned}\text{Eval}(\phi, \alpha) &= \text{Eval}(A, \alpha) \vee \text{Eval}(B \rightarrow C, \alpha) = \\ 0 \vee \text{Eval}(B, \alpha) \rightarrow \text{Eval}(C, \alpha) &= 0 \vee (0 \rightarrow 1) = 0 \vee 1 = 1\end{aligned}$$

Hence, $\alpha \models \phi$.

Extending Truth Table

p	q	$(p \rightarrow (q \rightarrow p))$	$(p \wedge \neg p)$	$(p \vee \neg q)$
0	0	1	0	1
0	1	1	0	0
1	0	1	0	1
1	1	1	0	1

Extending Truth Table

p	q	r	$(p \rightarrow (q \rightarrow \neg r))$
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	0	0	
1	1	1	

Extending Truth Table

p	q	r	$(p \rightarrow (q \rightarrow \neg r))$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	0	0	1
1	1	1	0

Set of Assignment

Intuition: a formula specifies a **set of truth assignments**.

Function **models**: $models : Formula \mapsto 2^{Prop}$
(a formula \mapsto set of satisfying assignments)

Recursive definition:

- $models(A) = \{\alpha | \alpha(A) = 1\}, A \in Prop$
- $models(\neg\varphi) = 2^{Prop} - models(\varphi)$
- $models(\varphi_1 \wedge \varphi_2) = models(\varphi_1) \cap models(\varphi_2)$
- $models(\varphi_1 \vee \varphi_2) = models(\varphi_1) \cup models(\varphi_2)$
- $models(\varphi_1 \rightarrow \varphi_2) = (2^{Prop} - models(\varphi_1)) \cup models(\varphi_2)$

Example

$$\text{models}(A \vee B) = \{\{10\}, \{01\}, \{11\}\}$$

This is compatible with the recursive definition:

$$\begin{aligned}\text{models}(A \vee B) &= \text{models}(A) \cup \text{models}(B) = \\ \{\{10\}, \{11\}\} &\cup \{\{01\}, \{11\}\} = \\ \{\{10\}, \{01\}, \{11\}\}\end{aligned}$$

Theorem

Let $\varphi \in \text{Formula}$ and $\alpha \in 2^{\text{Prop}}$, then the following statements are equivalent:

- $\alpha \models \varphi$
- $\alpha \in \text{models}(\varphi)$

Projected Assignment

$AP(\varphi)$: the **Atomic Propositions** in φ .

Clearly $AP(\varphi) \subseteq Prop$.

Let $\alpha_1, \alpha_2 \in 2^{Prop}, \in Formula$.

Lemma: if $\alpha_1 |_{AP(\varphi)} = \alpha_2 |_{AP(\varphi)}$, then

$$\alpha_1 \models \varphi \text{ iff } \alpha_2 \models \varphi$$

Corollary: $\alpha \models \varphi$ iff $\alpha |_{AP(\varphi)} \models \varphi$

We will assume, for simplicity, that $Prop = AP(\varphi)$.

Extension of \models to Assignment Sets

Let $\varphi \in \text{Formula}$

Let T be a set of assignments, i.e., $T \subseteq 2^{2^{\text{Prop}}}$

Definition. $T \models \varphi$ if $T \subseteq \text{models}(\varphi)$

i.e., $\models \subseteq 2^{2^{\text{Prop}}} \times \text{Formula}$

Extension of \models to Formulas

$$\models \subseteq 2^{\text{Formula}} \times 2^{\text{Formula}}$$

Definition. Let Γ_1, Γ_2 be prop. formulas.

$$\Gamma_1 \models \Gamma_2$$

iff $\text{models}(\Gamma_1) \subseteq \text{models}(\Gamma_2)$

iff for all $\alpha \in 2^{\text{Prop}}$ if $\alpha \models \Gamma_1$ then $\alpha \models \Gamma_2$

Examples:

$$\begin{aligned} x_1 \wedge x_2 &\models x_1 \vee x_2 \\ x_1 \wedge x_2 &\models x_2 \vee x_3 \end{aligned}$$

Classification of Formulas

A formula φ is called **valid** if $\text{models}(\varphi) = 2^{\text{Prop}}$.
(also called a **tautology**).

A formula φ is called **satisfiable** if $\text{models}(\varphi) \neq \emptyset$.

A formula φ is called **unsatisfiable** if $\text{models}(\varphi) = \emptyset$
(also called a **contradiction**).

Characteristics of Formulas

A formula φ is valid iff $\neg\varphi$ is unsatisfiable.

φ is satisfiable iff $\neg\varphi$ is not valid.

Characteristics of Formulas

We can write

$\models \varphi$ when φ is valid.

$\not\models \varphi$ when φ is not valid.

$\not\models \neg\varphi$ when φ is satisfiable.

$\models \neg\varphi$ when φ is unsatisfiable

Examples

$(p \wedge q) \rightarrow (p \vee q)$ is valid

$(p \vee q) \rightarrow p$ is satisfiable

$(p \wedge q) \wedge \neg p$ is unsatisfiable

Equivalences

$$\models A \wedge 1 \leftrightarrow A$$

$$\models A \wedge 0 \leftrightarrow 0$$

$$\models \neg\neg A \leftrightarrow A$$

$$\models A \wedge (B \vee C) \leftrightarrow (A \wedge B) \vee (A \wedge C)$$

$$\models \neg(A \wedge B) \leftrightarrow (\neg A \vee \neg B)$$

$$\models \neg(A \vee B) \leftrightarrow (\neg A \wedge \neg B)$$

Minimal Set of Binary Operators

Recall the question: what is the **minimal** set of operators necessary?

A: Through such equivalences all Boolean operators can be written with a single operator (\oplus).

Indeed, typically industrial circuits only use one type of logical gate.

We'll see how two are enough: \neg and \wedge

- Or: $\models (A \vee B) \leftrightarrow \neg(\neg A \wedge \neg B)$
- Implies: $\models (A \rightarrow B) \leftrightarrow (\neg A \vee B)$
- Equivalence: $\models (A \leftrightarrow B) \leftrightarrow (A \rightarrow B) \wedge (B \rightarrow A)$
- ...

Decision Problem

The decision problem:

Given a propositional formula ϕ , is ϕ satisfiable?

An algorithm that always **terminates** with a **correct answer** to this problem is called a **decision procedure** for propositional logic.

Normal Forms

Definitions

A **literal** is either an atom or a negation of an atom.

Let $\phi = \neg(A \vee \neg B)$. Then:

- **Atoms:** $AP(\phi) = \{A, B\}$
- **Literals:** $lit(\phi) = \{A, \neg B\}$

Equivalent formulas can have different literals

- $\phi = \neg(A \vee \neg B) = \neg A \wedge B$
- Now $lit(\phi) = \{\neg A, B\}$

Definitions

A **term** is a conjunction of literals

- Example: $(A \wedge \neg B \wedge C)$

A **clause** is a disjunction of literals

- Example: $(A \vee \neg B \vee C)$

Negation Normal Form (NNF)

A formula is said to be in **Negation Normal Form (NNF)** if it only contains \neg , \wedge , \vee connectives and only atoms can be negated.

Examples:

- $\neg(A \vee \neg B)$ is not in NNF
- $\neg A \wedge B$ is in NNF

Converting to NNF

Every formula can be converted to NNF in **linear time**:

- Eliminate all connectives other than \wedge, \vee, \neg
- Use De Morgan and double-negation rules to push negations to the right

Example: $\neg(A \rightarrow \neg B)$

- Eliminate \rightarrow : $\neg(\neg A \vee \neg B)$
- Push negation using De Morgan: $(\neg\neg A \wedge \neg\neg B)$
- Use Double negation rule: $(A \wedge B)$

Disjunctive Normal Form (DNF)

A formula is said to be in **Disjunctive Normal Form (DNF)** if it is a disjunction of terms.

In other words, it is a formula of the form

$$\bigvee_i \left(\bigwedge_j l_{i,j} \right)$$

where $l_{i,j}$ is the j -th literal in the i -th term.

Examples

- $(A \wedge \neg B \wedge C) \vee (\neg A \wedge D) \vee (B)$ is in DNF.

Disjunctive Normal Form (DNF)

A formula is said to be in **Disjunctive Normal Form (DNF)** if it is a disjunction of terms.

In other words, it is a formula of the form

$$\bigvee_i \left(\bigwedge_j l_{i,j} \right)$$

where $l_{i,j}$ is the j -th literal in the i -th term.

Examples

- $(A \wedge \neg B \wedge C) \vee (\neg A \wedge D) \vee (B)$ is in DNF.

DNF is a special case of NNF.

Converting to DNF

Every formula can be converted to DNF in **exponential time and space**:

- Convert to NNF
- Distribute disjunctions following the rule:

$$\models A \wedge (B \vee C) \leftrightarrow ((A \wedge B) \vee (A \wedge C))$$

Example: $(A \vee B) \wedge (\neg C \vee D)$

- $((A \vee B) \wedge (\neg C)) \vee ((A \vee B) \wedge D)$
- $(A \wedge \neg C) \vee (B \wedge \neg C) \vee (A \wedge D) \vee (B \wedge D)$

Converting to DNF

Every formula can be converted to DNF in **exponential time and space**:

- Convert to NNF
- Distribute disjunctions following the rule:

$$\models A \wedge (B \vee C) \leftrightarrow ((A \wedge B) \vee (A \wedge C))$$

Example: $(A \vee B) \wedge (\neg C \vee D)$

- $((A \vee B) \wedge (\neg C)) \vee ((A \vee B) \wedge D)$
- $(A \wedge \neg C) \vee (B \wedge \neg C) \vee (A \wedge D) \vee (B \wedge D)$

Q: How many clauses would the DNF have had we started from a conjunction of n clauses?

Satisfiability of DNF

Is the following DNF formula satisfiable?

$$(x_1 \wedge x_2 \wedge \neg x_1) \vee (x_2 \wedge x_1) \vee (x_2 \wedge \neg x_3 \wedge x_3)$$

Satisfiability of DNF

Is the following DNF formula satisfiable?

$$(x_1 \wedge x_2 \wedge \neg x_1) \vee (x_2 \wedge x_1) \vee (x_2 \wedge \neg x_3 \wedge x_3)$$

What is the complexity of satisfiability of DNF formulas?

Conjunctive Normal Form (CNF)

A formula is said to be in **Conjunctive Normal Form (CNF)** if it is a conjunction of clauses.

In other words, it is a formula of the form

$$\bigwedge_i \left(\bigvee_j l_{i,j} \right)$$

where $l_{i,j}$ is the j -th literal in the i -th term.

Examples

- $(A \vee \neg B \vee C) \wedge (\neg A \vee D) \wedge (B)$ is in CNF

Conjunctive Normal Form (CNF)

A formula is said to be in **Conjunctive Normal Form (CNF)** if it is a conjunction of clauses.

In other words, it is a formula of the form

$$\bigwedge_i \left(\bigvee_j l_{i,j} \right)$$

where $l_{i,j}$ is the j -th literal in the i -th term.

Examples

- $(A \vee \neg B \vee C) \wedge (\neg A \vee D) \wedge (B)$ is in CNF

CNF is a special case of NNF.

Converting to CNF

Every formula can be converted to CNF:

Converting to CNF

Every formula can be converted to CNF:

- in **exponential time and space** with the same set of atoms

Converting to CNF

Every formula can be converted to CNF:

- in **exponential time and space** with the same set of atoms
- in **linear time and space** if new variables are added.

Converting to CNF

Every formula can be converted to CNF:

- in **exponential time and space** with the same set of atoms
- in **linear time and space** if new variables are added.
 - In this case the original and converted formulas are “equi-satisfiable”.
 - This technique is called **Tseitin’s encoding**.

Converting to CNF: the Exponential Way

$CNF(\phi)$ {

case

- ϕ is a literal: return ϕ
- ϕ is $\varphi_1 \wedge \varphi_2$: return $CNF(\varphi_1) \wedge CNF(\varphi_2)$
- ϕ is $\varphi_1 \vee \varphi_2$: return $Dist(CNF(\varphi_1), CNF(\varphi_2))$

}

$Dist(\varphi_1, \varphi_2)$ {

case

- φ_1 is $\psi_{11} \wedge \psi_{12}$: return $Dist(\psi_{11}, \varphi_2) \wedge Dist(\psi_{12}, \varphi_2)$
- φ_2 is $\psi_{21} \wedge \psi_{22}$: return $Dist(\varphi_1, \psi_{21}) \wedge Dist(\varphi_1, \psi_{22})$

}

Converting to CNF: the Exponential Way

Consider the formula $\phi = (x_1 \wedge y_1) \vee (x_2 \wedge y_2)$

Converting to CNF: the Exponential Way

Consider the formula $\phi = (x_1 \wedge y_1) \vee (x_2 \wedge y_2)$

$$CNF(\phi) = (x_1 \vee x_2) \wedge (x_1 \vee y_2) \wedge (y_1 \vee x_2) \wedge (y_1 \vee y_2)$$

Converting to CNF: the Exponential Way

Consider the formula $\phi = (x_1 \wedge y_1) \vee (x_2 \wedge y_2)$

$$CNF(\phi) = (x_1 \vee x_2) \wedge (x_1 \vee y_2) \wedge (y_1 \vee x_2) \wedge (y_1 \vee y_2)$$

Now consider: $\phi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$

Converting to CNF: the Exponential Way

Consider the formula $\phi = (x_1 \wedge y_1) \vee (x_2 \wedge y_2)$

$$CNF(\phi) = (x_1 \vee x_2) \wedge (x_1 \vee y_2) \wedge (y_1 \vee x_2) \wedge (y_1 \vee y_2)$$

Now consider: $\phi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$

Q: How many clauses $CNF(\phi_n)$ returns?

Converting to CNF: the Exponential Way

Consider the formula $\phi = (x_1 \wedge y_1) \vee (x_2 \wedge y_2)$

$$CNF(\phi) = (x_1 \vee x_2) \wedge (x_1 \vee y_2) \wedge (y_1 \vee x_2) \wedge (y_1 \vee y_2)$$

Now consider: $\phi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$

Q: How many clauses $CNF(\phi_n)$ returns?

A: 2^n

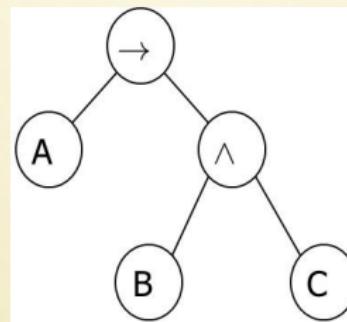
Tseitin's Encoding

Consider the formula $(A \rightarrow (B \wedge C))$

Tseitin's Encoding

Consider the formula $(A \rightarrow (B \wedge C))$

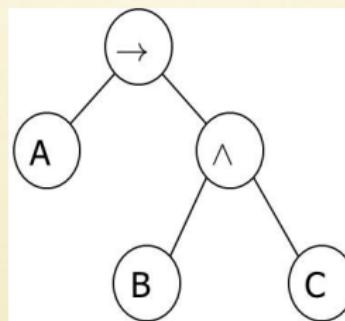
The parse tree:



Tseitin's Encoding

Consider the formula $(A \rightarrow (B \wedge C))$

The parse tree:



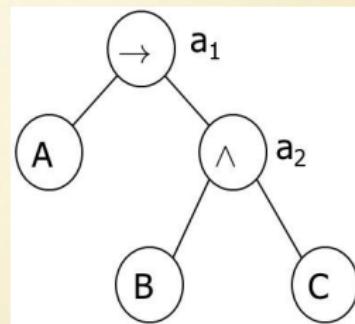
Associate a new **auxiliary variable** with each gate.

Add constraints that define these new variables.

Finally, enforce the root node.

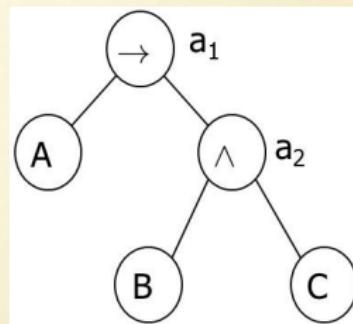
Tseitin's Encoding

$$(a_1 \leftrightarrow (A \rightarrow a_2)) \wedge (a_2 \leftrightarrow (B \wedge C)) \wedge (a_1)$$



Tseitin's Encoding

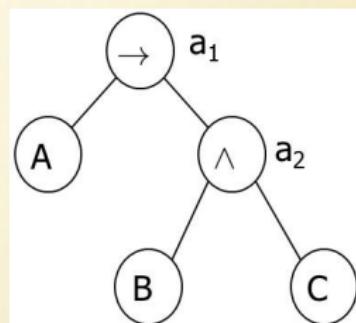
$$(a_1 \leftrightarrow (A \rightarrow a_2)) \wedge (a_2 \leftrightarrow (B \wedge C)) \wedge (a_1)$$



Each such constraint has a CNF representation with 3 or 4 clauses.

Tseitin's Encoding

$$(a_1 \leftrightarrow (A \rightarrow a_2)) \wedge (a_2 \leftrightarrow (B \wedge C)) \wedge (a_1)$$



Each such constraint has a CNF representation with 3 or 4 clauses.

First: $(a_1 \vee A) \wedge (a_1 \vee \neg a_2) \wedge (\neg a_1 \vee A \vee a_2)$

Second: $(\neg a_2 \vee B) \wedge (\neg a_2 \vee C) \wedge (a_2 \vee \neg B \vee \neg C)$

Tseitin's Encoding

$$\phi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$$

Tseitin's Encoding

$$\phi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$$

With Tseitin's encoding we need:

- n auxiliary variables a_1, \dots, a_n .
- Each adds 3 constraints.
- Top clause: $(a_1 \vee \dots \vee a_n)$

Tseitin's Encoding

$$\phi_n = (x_1 \wedge y_1) \vee (x_2 \wedge y_2) \vee \dots \vee (x_n \wedge y_n)$$

With Tseitin's encoding we need:

- n auxiliary variables a_1, \dots, a_n .
- Each adds 3 constraints.
- Top clause: $(a_1 \vee \dots \vee a_n)$

Hence, we have

- $3n + 1$ clauses, instead of 2^n .
- $3n$ variables rather than $2n$.

SAT Problem and SAT Solver

SAT problem is: Given a Boolean formula in CNF, asking whether there exists an assignment to each variable so that the value of the formula is **true**.

SAT Problem and SAT Solver

SAT problem is: Given a Boolean formula in CNF, asking whether there exists an assignment to each variable so that the value of the formula is **true**.

It is a NPC problem, which means that there is only exponential algorithm so far. A **SAT solver** is a tool that solves the SAT problem.

SAT Problem and SAT Solver

SAT problem is: Given a Boolean formula in CNF, asking whether there exists an assignment to each variable so that the value of the formula is **true**.

It is a NPC problem, which means that there is only exponential algorithm so far. A **SAT solver** is a tool that solves the SAT problem. However,

SAT solver is to be said as the "**most successful formal tools**, which can handle **100,000** variables with **millions of clauses** in less than one sec.