Fundamentals of Programming
Languages |

Introduction and Logics

Guogiang Li

School of Software, Shanghai Jiao Tong University

Instructor and Teaching Assistants

* Guogiang LI

Instructor and Teaching Assistants

* Guogiang LI
* Homepage: http://basics.sjtu.edu.cn/"liguogiang
* Course page:
http://basics.sjtu.edu.cn/"liguoqiang/teaching/Prog17/index.htm
¢ Email: li.g@outlook.com
* Office: Rm. 1212, Building of Software
* Phone: 3420-4167

Instructor and Teaching Assistants

* Guogiang LI
* Homepage: http://basics.sjtu.edu.cn/"liguogiang
* Course page:
http://basics.sjtu.edu.cn/"liguoqiang/teaching/Prog17/index.htm
¢ Email: li.g@outlook.com
* Office: Rm. 1212, Building of Software
* Phone: 3420-4167

o A
* Yuwei WANG: wangyuwei95 (AT) qq (DOT) com

Instructor and Teaching Assistants

* Guogiang LI
* Homepage: http://basics.sjtu.edu.cn/"liguogiang
* Course page:
http://basics.sjtu.edu.cn/"liguoqiang/teaching/Prog17/index.htm
¢ Email: li.g@outlook.com
* Office: Rm. 1212, Building of Software
* Phone: 3420-4167
* TA:
* Yuwei WANG: wangyuwei95 (AT) qq (DOT) com

* Office hour: Tue. 14:00-17:00 @ Software Building 3203

What does the lecture aim for?

Similar Lectures 1

Fundamentals of Programming Languages by University of Colorado
Boulder

http://www.cs.colorado.edu/"bec/courses/csci5535-f13/

Similar Lectures 1

Fundamentals of Programming Languages by University of Colorado
Boulder

http://www.cs.colorado.edu/"bec/courses/csci5535-f13/

e 2010 Spring Programming semantics

* 2013 Fall Programming analysis and verification

Similar Lectures 11

Principles of Programming Languages by University of Oxford
http://www.cs.ox.ac.uk/teaching/courses/2017-2018/principles/
Foundations of Programming Languages by CMU
www.cs.cmu.edu/ tjsimmon/15312-s14/schedule.html

Theory of Programming Languages by ECNU

basics.sjtu.edu.cn/“yuxin/teaching/Semantics/sem.html

Similar Lectures 11

Principles of Programming Languages by University of Oxford
http://www.cs.ox.ac.uk/teaching/courses/2017-2018/principles/
Foundations of Programming Languages by CMU
www.cs.cmu.edu/ tjsimmon/15312-s14/schedule.html

Theory of Programming Languages by ECNU

basics.sjtu.edu.cn/“yuxin/teaching/Semantics/sem.html

Programming Semantics

Similar Lectures 111

Fundamentals of Programming Analysis by MIT

ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
820-fundamentals-of-program-analysis-fall-2015/lecture-notes/

Principles of Programming Languages by Boston University

http://www.cs.bu.edu/"hwxi/academic/courses/CS520/Fall15

Similar Lectures 111

Fundamentals of Programming Analysis by MIT

ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-
820-fundamentals-of-program-analysis-fall-2015/lecture-notes/

Principles of Programming Languages by Boston University

http://www.cs.bu.edu/"hwxi/academic/courses/CS520/Fall15

Programming Analysis and Verification

Similar Lectures IV

Theory of Programming Languages by CMU
www.cs.cmu.edu/ aldrich/courses/15-8190-13sp

Introduction to Programming Languages Theory by Standford
https://courseware.stanford.edu/pg/courses/lectures/26114 1
Theory of Programming Languages by SITU

http://basics.sjtu.edu.cn/"xiaojuan/tapl2016/index.html

Similar Lectures IV

Theory of Programming Languages by CMU
www.cs.cmu.edu/ aldrich/courses/15-8190-13sp

Introduction to Programming Languages Theory by Standford
https://courseware.stanford.edu/pg/courses/lectures/26114 1
Theory of Programming Languages by SITU

http://basics.sjtu.edu.cn/"xiaojuan/tapl2016/index.html

Types and Functional Programming Languages

Fundamental Requirements

* Program Verification and Analysis

Fundamental Requirements

* Program Verification and Analysis

* Propositional logic, predicate logic etc.
* Automata theory, DFA, NFA, PDS, PN etc.
* Algorithm.

Fundamental Requirements

* Program Verification and Analysis

* Propositional logic, predicate logic etc.
* Automata theory, DFA, NFA, PDS, PN etc.
* Algorithm.

* Program Semantics

Fundamental Requirements

* Program Verification and Analysis

* Propositional logic, predicate logic etc.
* Automata theory, DFA, NFA, PDS, PN etc.
* Algorithm.

* Program Semantics

 Set theory.
 Algebra theory, group, ring, domain etc.
* category theory, maybe...

Fundamental Requirements

* Program Verification and Analysis

* Propositional logic, predicate logic etc.
* Automata theory, DFA, NFA, PDS, PN etc.
* Algorithm.

* Program Semantics

 Set theory.
 Algebra theory, group, ring, domain etc.
* category theory, maybe...

* Types and Programming Languages

Fundamental Requirements

* Program Verification and Analysis

* Propositional logic, predicate logic etc.
* Automata theory, DFA, NFA, PDS, PN etc.
* Algorithm.

* Program Semantics

 Set theory.
 Algebra theory, group, ring, domain etc.
* category theory, maybe...

* Types and Programming Languages
* Logic
» Computability theory
* Lambda calculus theory...

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a
minimal requirement and self-contained in this lecture.

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a
minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very
fundamental part,

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a
minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very
fundamental part, if time permitted.

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a
minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very
fundamental part, if time permitted.

As simple as possible,

Fundamental of Fundamental

Several theories in theoretical computer science are given, which is a
minimal requirement and self-contained in this lecture.

All of three directions are taught, which only include very
fundamental part, if time permitted.

As simple as possible, although it is very theoretical.

Lecture Agenda

Introduction and logic basics (1 lecture)
Formal basics (3 lectures)

Programming verification (2 or 3 lectures)
Exercise I. (1 lecture)

Programming semantics (2 lectures)
Basic functional programming (3 lectures)
Exercise II. (1 lecture)

Conclusion and wrap up (1 lecture)

Lecture Agenda

Introduction and logic basics (1 lecture)
Formal basics (3 lectures)

* Model checking
* Finite and Biichi automata
e LTL model checking

Programming verification (2 or 3 lectures)
Exercise I. (1 lecture)

Programming semantics (2 lectures)
Basic functional programming (3 lectures)
Exercise II. (1 lecture)

Conclusion and wrap up (1 lecture)

Lecture Agenda

Introduction and logic basics (1 lecture)

Formal basics (3 lectures)
Programming verification (2 or 3 lectures)

 Abstract interpretation
* Pushdown automata and interprocedural programs
* Petri Net and concurrent programs

Exercise I. (1 lecture)

Programming semantics (2 lectures)
Basic functional programming (3 lectures)
Exercise II. (1 lecture)

Conclusion and wrap up (1 lecture)

Lecture Agenda

Introduction and logic basics (1 lecture)
Formal basics (3 lectures)

Programming verification (2 or 3 lectures)
Exercise I. (1 lecture)

Programming semantics (2 lectures)

* Denotational semantics
* QOperational semantics
* Axiomatic semantics

Basic functional programming (3 lectures)
Exercise II. (1 lecture)

Conclusion and wrap up (1 lecture)

Lecture Agenda

Introduction and logic basics (1 lecture)
Formal basics (3 lectures)

Programming verification (2 or 3 lectures)
Exercise I. (1 lecture)

Programming semantics (2 lectures)
Basic functional programming (3 lectures)

* Lambda calculus
* Simple types
* Functional programming

Exercise II. (1 lecture)

Conclusion and wrap up (1 lecture)

References

No particular textbook that can cover all the parts. Here are three
Reference books:

Edmund M. Clarke Jr., Orna Grumberg, Doron A. Peled. Model Checking. MIT
Press, 1999

Glynn Winskel. Formal Semantics of Programming Languages: An Introduction.
MIT Press, 1993

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002

References

No particular textbook that can cover all the parts. Here are three
Reference books:

Edmund M. Clarke Jr., Orna Grumberg, Doron A. Peled. Model Checking. MIT
Press, 1999

Glynn Winskel. Formal Semantics of Programming Languages: An Introduction.
MIT Press, 1993

Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002

+ Several famous papers

+ Lecture notes shared in the course webpage.

Scoring Policy

* 10% Attendance.

e 20% Homework.
¢ 70% Final exam.

Scoring Policy

* 10% Attendance.
* 20% Homework.
* Four assignments.

¢ 70% Final exam.

Scoring Policy

* 10% Attendance.
* 20% Homework.

* Four assignments.
* Each one is 5pts.

¢ 70% Final exam.

Scoring Policy

* 10% Attendance.
* 20% Homework.

* Four assignments.
* Each one is 5pts.
» Work out individually.

¢ 70% Final exam.

Scoring Policy

* 10% Attendance.
* 20% Homework.
* Four assignments.
* Each one is Spts.
* Work out individually.
* Each assignment will be evaluated by A, B, C, D, F (Excellent(5),
Good(5), Fair(4), Delay(3), Fail(0))
* 70% Final exam.

Scoring Policy

* 10% Attendance.
* 20% Homework.
* Four assignments.
* Each one is 5pts.
» Work out individually.
* Each assignment will be evaluated by A, B, C, D, F (Excellent(5),
Good(5), Fair(4), Delay(3), Fail(0))
* 70% Final exam.
» Maybe replaced by report, if the condition is satisfied!

Any Questions?

Logic Basics

Brief Historical Notes on Logic

Historical View

Philosophical Logic

* 500 BC to 19th Century
Symbolic Logic

* Mid to late 19th Century
Mathematical Logic

* Late 19th to mid 20th Century

Logic in Computer Science

Philosophical Logic

Philosophical Logic

500 B.C - 19th Century

Philosophical Logic

500 B.C - 19th Century

Logic dealt with arguments in the natural language used by humans.

Philosophical Logic

500 B.C - 19th Century
Logic dealt with arguments in the natural language used by humans.

Example:

¢ All men are mortal.
e Socrates is a man.

¢ Therefore, Socrates is mortal.

Philosophical Logic

Philosophical Logic

Natural languages are very ambiguous.

Philosophical Logic
Natural languages are very ambiguous.

* Eric does not believe that Mary can pass any test.

* does not believe that she can pass some test, or
* does not believe that she can pass all tests

* I only borrowed your car.
e And not ‘borrowed and used’, or
* And not ‘car and coat’

* Tom hates Jim and he likes Mary.

* Tom likes Mary, or
* Jim likes Mary

Philosophical Logic
Natural languages are very ambiguous.

* Eric does not believe that Mary can pass any test.

* does not believe that she can pass some test, or
* does not believe that she can pass all tests

* I only borrowed your car.

e And not ‘borrowed and used’, or
* And not ‘car and coat’

* Tom hates Jim and he likes Mary.

* Tom likes Mary, or
* Jim likes Mary

It led to many paradoxes.

Philosophical Logic
Natural languages are very ambiguous.

* Eric does not believe that Mary can pass any test.

* does not believe that she can pass some test, or
* does not believe that she can pass all tests

* I only borrowed your car.

e And not ‘borrowed and used’, or
* And not ‘car and coat’

* Tom hates Jim and he likes Mary.

* Tom likes Mary, or
* Jim likes Mary

It led to many paradoxes.

e “This sentence is a lie.”(The Liar’s Paradox)

Sophism

...Sophism generally refers to a particularly confusing, illogical
and/or insincere argument used by someone to make a point, or,
perhaps, not to make a point.

Sophistry refers to [...] rhetoric that is designed to appeal to the
listener on grounds other than the strict logical cogency of the
statements being made.

The Sophist’s Paradox

A Sophist is sued for his tuition by the school that educated him. He
argues that he must win, since, if he loses, the school didn’t educate
him well enough, and doesn’t deserve the money.

The Sophist’s Paradox

A Sophist is sued for his tuition by the school that educated him. He
argues that he must win, since, if he loses, the school didn’t educate
him well enough, and doesn’t deserve the money.

The school argues that he must lose, since, if he wins, he was
educated well enough, and therefore should pay for it.

Logic in Computer Science

Logic has a profound impact on computer science. Some examples:

* Propositional logic - the foundation of computers and circuitry
» Databases - query languages

* Programming languages (e.g. prolog)

* Design Validation and verification

* Al (e.g. inference systems)

Logic in Computer Science

Propositional Logic
First Order Logic
Higher Order Logic

Temporal Logic

8 Propositional Logic: Syntax)

R

i ‘

I i ‘

: .

i ". E |

5
|

Propositional Logic

Propositional Logic

A proposition: a sentence that can be either true or false.

Propositional Logic

A proposition: a sentence that can be either true or false.

Propositions:
* x is greater than y

¢ Noam wrote this letter

Propositional Logic: Syntax

Propositional Logic

The symbols of the language:

: Syntax

* Propositional symbols (Prop): A,B,C, ...

* Connectives:
* Aand
* Vor
O =101
* — implies
* & equivalent to
* @ xor (different than)
e |, T False, True

* Parenthesis: (,).

Propositional Logic: Syntax
The symbols of the language:

* Propositional symbols (Prop): A,B,C, ...
» Connectives:

* Aand

* Vor

O =101

* — implies

* & equivalent to

* @ xor (different than)

e |, T False, True

* Parenthesis: (,).

Q1: How many different binary symbols can we define?

Propositional Logic: Syntax
The symbols of the language:

* Propositional symbols (Prop): A,B,C, ...
» Connectives:

* Aand

* Vor

O =101

* — implies

* & equivalent to

* @ xor (different than)

e |, T False, True

* Parenthesis: (,).

Q1: How many different binary symbols can we define?

Q2: What is the minimal number of such symbols?

Formulas

Grammar of well-formed propositional formulas

Formula := prop | —=(Formula) | (Formula o Formula)

where prop € Prop and o is one of the binary relations.

Formulas

Examples of well-formed formulas:

et
(—(-4))

(AN(BAC))

*(A— (B— ()

Correct expressions of Propositional Logic are full of unnecessary
parenthesis.

Formulas: Abbreviations

We write
ABelC®...

Formulas: Abbreviations

We write
ABelC®...

in place of
(Ao(Bo(Co...)

Formulas: Abbreviations

We write
AeoBelCe...

in place of
(Ao(Bo(Co...)

Thus, we write
ANBAC, A—B—C,...

Formulas: Abbreviations

We write
AeoBelCe...

in place of
(Ao(Bo(Co...)

Thus, we write
ANBAC, A—B—C,...

in place of
(ANBAC)), A—->B-—>0),...

Formulas: Abbreviations

We omit parenthesis whenever we may restore them through operator
precedence:

Formulas: Abbreviations

We omit parenthesis whenever we may restore them through operator
precedence:

— binds more strictly than A, V, and A, V bind more strictly than —,
S

Formulas: Abbreviations

We omit parenthesis whenever we may restore them through operator
precedence:

— binds more strictly than A, V, and A, V bind more strictly than —,
S

Thus, we write:

——A for (=(—A)),
—A A B for ((—A) A B)
AAB — Cfor (AAB) — C)

L]

L]

g Propositional Logic: Semantics :

R

i ‘

I i ‘

: .

i ". E |

5
|

Propositional Logic: Semantics

Truth tables define the semantics (=meaning) of the operators

Convention: 0 = false, 1 = true

A|B|AANB|AVB|A—B
0|0 0 0 1
0] 1 0 1 1
110 0 1 0
{18 1 1 1

Propositional Logic: Semantics

Truth tables define the semantics (=meaning) of the operators

Convention: 0 = false, 1 = true

A|B|-A|A<B|A®B
070 1 1 0
O 1] 1 0 1
1O © 0 1
i) @ 1 0

Back to Q1

Q1: How many binary operators can we define that have different
semantic definition?

Back to Q1

Q1: How many binary operators can we define that have different
semantic definition?

A: 16

g Satisfiability and Validity

Ty

5
|

Assignments

Definition: A truth-values assignment, «, is an element of 2 Eropi(Ge
 E Y

In other words, « is a subset of the variables that are assigned true.
Equivalently, we can see « as a mapping from variables to truth

values:
a : Prop — {0,1}

Example: a = {A— 0,B—1,...}

Satisfaction Relation (}=): Intuition

An assignment can either satisfy or not satisfy a given formula.

a = ¢ means
* satisfies ¢ or
* ¢ holds at o or
* «is a model of ¢

We will first see an example.

Then we will define these notions formally.

Example

Example

Let¢ = (AV (B — C))

Leta={A—0,B—0,C— 1}

Example

Let¢p =(AV (B— C))
Leta={A—0,B—0,C— 1}

Q: Does «a satisty ¢ (a = ¢?)

Example

Letop=(AV (B— (C))
Leta={A—0,B—0,C— 1}
Q: Does «a satisty ¢ (a = ¢?)

A (OV(O0—>1)= (V1) =1

Example

Letop=(AV (B— (C))
Leta={A—0,B—0,C— 1}
Q: Does «a satisty ¢ (a = ¢?)

A:(0v(0—>1)=((0Vvl1) =1
Hence, o = ¢.

Example

Letop=(AV (B— (C))
Leta={A—0,B—0,C— 1}
Q: Does «a satisty ¢ (a = ¢?)

A:(0v(0—>1)=((0Vvl1) =1
Hence, o = ¢.

Let us now formalize an evaluation process.

Satisfaction Relation (}=):
Formalities

k= is a relation: =C (2P™P x Formula)

Satisfaction Relation (}=):
Formalities

k= is a relation: =C (2P™P x Formula)

Examples:
* ({A},AV B): the assignment o = {A} satisfies A V B
* ({A,B},AAB)

Satisfaction Relation (}=):
Formalities

k= is a relation: =C (2P™P x Formula)

Examples:
* ({A},AV B): the assignment o = {A} satisfies A V B
* ({A,B},AAB)

Alternatively: =C ({0, 1} x Formula)

Satisfaction Relation (}=):
Formalities

k= is a relation: =C (2P™P x Formula)

Examples:
* ({A},AV B): the assignment o = {A} satisfies A V B
* ({A,B},AAB)

Alternatively: =C ({0, 1} x Formula)

Examples:
* (01,A V B): the assignment o = {A — 0, B — 1} satisfies AV B
. (11,AAB)

Satisfaction Relation (}=):
Formalities

= is defined recursively:
s aEAifalA) = true
= cito - o
caEpiApifalEprandaE v
caEpiVpifakEgpioralE
s alE g — v ifa = ¢ implies a = ¢
cakEpr o pmifaEeiffalE e

From Definition to an Evaluation
Algorithm

Truth Evaluation Problem:
Given o € Formula and o € 24P (), does a = ?

From Definition to an Evaluation
Algorithm

Truth Evaluation Problem:
Given o € Formula and o € 24P (), does a = ?

Eval (¢, o)

if o = A then return a(A);

if ¢ = —¢ then return -~ Eval (¢, o);
if o =1 o ¢ then

return Eval (¢, @) o Eval (¢, a);

From Definition to an Evaluation
Algorithm

Truth Evaluation Problem:
Given o € Formula and o € 24P (), does a = ?

Eval (¢, o)

if ¢ = A then return a(A);

if ¢ = —¢ then return -~ Eval (¢, o);
if o =1 o ¢ then

return Eval (¢, @) o Eval (¢, a);

Eval uses polynomial time and space.

Nothing More Than What We
Already Know

Recall the Example:
slet¢=(AV(B—C))
*Leta={A—0,B—0,C— 1}

Nothing More Than What We
Already Know

Recall the Example:
slet¢=(AV(B—C))
*leta={A—0,B—~0,C+— 1}

Eval(¢,a) =Eval(A,«)VEval(B — C,a)
0VEval(B,a) » Eval(C,a)=0V (0 —1)

Ovl=1

Nothing More Than What We
Already Know

Recall the Example:
slet¢=(AV(B—C))
*leta={A—0,B—~0,C+— 1}

Eval(¢,a) =Eval(A,«)VEval(B — C,a)
0VEval(B,a) » Eval(C,a)=0V (0 —1)

Ovl=1

Hence, a | ¢.

Extending Truth Table

(»—(qg—p)

(pV —q)

e E=lEk=]k~

—| O = O

—] | —

<
oooo?
=

— = | —

Extending Truth Table

(i TSR

r

q
0

P

Extending Truth Table

(i TSR

r

q
0

P

Set of Assignment

Intuition: a formula specifies a set of truth assignments.

Function models: models : Formula — 22"
(a formula — set of satisfying assignments)

Recursive definition:
* models(A) = {a|a(A) = 1},A € Prop
* models(—p) = 2P — models(y)
* models(p1 N p2) = models(yp1) N models(v)
* models(1 V p2) = models(p1) U models(v3)
(

* models(p) — ¢2) = (2P — models (1) U models(ps)

Example

models(A vV B) = {{10},{01},{11}}
This is compatible with the recursive definition:

models(A V' B) = models(A) U models(B) =
{{10}, {113} U{{01},{11}} =
{{10}, {01}, {11}}

Theorem

Let ¢ € Formula and o € 2Prp then the following statements are
equivalent:

cafFe

* a € models(yp)

Projected Assignment

AP(y): the Atomic Propositions in ¢.

Clearly AP(y) C Prop.

Let ap, ap € 2P7°P . € Formula.

Lemma: if a; |ap(,)= @2 |ap(y), then

ar Eeiffan E e

Corollary: a |= ¢ iff a [4p(,) = ¢

We will assume, for simplicity, that Prop = AP(yp).

Extension of |= to Assignment Sets

Let ¢ € Formula
Let T be a set of assignments, i.e., T C 22

Definition. T |= ¢ if T C models(yp)

e =C 22" Formula

Extension of = to Formulas
il
Definition. Let Ty, T'» be prop. formulas.
=
iff models(T';) C models(T,)

iff for all o« € 2P if & |= Ty then o = T»

Examples:

x1 N\ xp }:x1Vx2
X1 A\ Xxp)Z)Cz\/)@

Classification of Formulas

A formula ¢ is called valid if models(p) = 2F™P,
(also called a tautology).

A formula ¢ is called satisfiable if models(p) # 0.

A formula ¢ is called unsatisfiable if models(p) = ()
(also called a contradiction).

Characteristics of Formulas

A formula ¢ is valid iff —¢ is unsatisfiable.

(is satisfiable iff —¢p is not valid.

Characteristics of Formulas

We can write

= ¢ when ¢ is valid.

F~ ¢ when ¢ is not valid.

£ —p when o is satisfiable.

= —¢ when ¢ is unsatisfiable

Examples

(pANg) — (pVgq) 1is valid
(pVg)—p is satisfiable
(pANg)N—p is unsatisfiable

Equivalences

EAAL<A

EAAO O

E-—AA

EAABVC)+ (AAB)V(AAC)
E-(AAB) + (-AV -B)

E-(AVB)+ (AA-B)

Minimal Set of Binary Operators

Recall the question: what is the minimal set of operators necessary?

A: Through such equivalences all Boolean operators can be written
with a single operator ().

Indeed, typically industrial circuits only use one type of logical gate.

We’ll see how two are enough: — and A
* Or: = (AVB) < —(-AA—B)
* Implies: = (A — B) <> (-AV B)
* Equivalence: = (A > B) <> (A— B)A(B—A)

L]

Decision Problem

The decision problem:

Given a propositional formula ¢, is ¢ satisfiable?

An algorithm that always terminates with a correct answer to this
problem is called a decision procedure for propositional logic.

:
s
=
:
Z

Definitions

A literal is either an atom or a negation of an atom.

Let¢ = —(A V —B). Then:
* Atoms: AP(¢) = {A, B}
* Literals: lit(¢) = {A, B}

Equivalent formulas can have different literals
*¢=-(AV-B)=-AAB
* Now lit(¢) = {-A, B}

Definitions

A term is a conjunction of literals
» Example: (AA—-BAC)

A clause is a disjunction of literals
* Example: (AV -BV C)

Negation Normal Form (NNF)

A formula is said to be in Negation Normal Form (NNF) if it only
contains —, /A, V connectives and only atoms can be negated.

Examples:
* =(A V =B) is not in NNF
* —A A Bisin NNF

Coverting to NNF

Every formula can be converted to NNF in linear time:
* Eliminate all connectives other than A, V, =

* Use De Morgan and double-negation rules to push negations to
the right

Example: =(A — —B)
* Eliminate —: =(-A V —B)
* Push negation using De Morgan: (-—A A =—B)
* Use Double negation rule: (A A B)

Disjunctive Normal Form (DNF)

A formula is said to be in Disjunctive Normal Form (DNF) if it is a
disjunction of terms.

In other words, it is a formula of the form
W)
i j
where /;; is the j-th literal in the i-th term.

Examples
* (AN-BAC)V (N AD)V (B)isin DNFE

Disjunctive Normal Form (DNF)

A formula is said to be in Disjunctive Normal Form (DNF) if it is a
disjunction of terms.

In other words, it is a formula of the form

\/(/\liJ)

i
where /;; is the j-th literal in the i-th term.

Examples
* (AN-BAC)V (N AD)V (B)isin DNFE

DNF is a special case of NNF.

Coverting to DNF

Every formula can be converted to DNF in exponential time and
space:

¢ Convert to NNF

* Distribute disjunctions following the rule:

= AA(BVC) < (AAB)V (AAC))

Example: (AV B) A (—C V D)
* ((AVB)A(=C))V ((AVB)AD)
* (AN-C)V (BA-C)V(AAD)V (BAD)

Coverting to DNF

Every formula can be converted to DNF in exponential time and
space:

¢ Convert to NNF

* Distribute disjunctions following the rule:

= AA(BVC) < (AAB)V (AAC))

Example: (AV B) A (—C V D)
* ((AVB)A(=C))V ((AVB)AD)
* (AN-C)V (BA-C)V(AAD)V (BAD)

Q:How many clauses would the DNF have had we started from a
conjunction of n clauses?

Satisfiability of DNF

Is the following DNF formula satisfiable?

(x1 A xy A ﬂxl) V (XQ /\xl) V (XZ N —x3 /\X3)

Satisfiability of DNF

Is the following DNF formula satisfiable?

(x1 A xy A -wxl) V (XQ /\xl) V (xz N —x3 /\X3)

What is the complexity of satisfiability of DNF formulas?

Conjunctive Normal Form (CNF)

A formula is said to be in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses.

In other words, it is a formula of the form
AN L))
i j
where /;; is the j-th literal in the i-th term.

Examples
* (AV-BVC)A(=AVD)A (B) is in CNF

Conjunctive Normal Form (CNF)

A formula is said to be in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses.

In other words, it is a formula of the form

/\(\/li,i)

i
where /;; is the j-th literal in the i-th term.

Examples
* (AV-BVC)A(=AVD)A (B) is in CNF

CNF is a special case of NNF.

Coverting to CNF

Every formula can be converted to CNF:

Coverting to CNF

Every formula can be converted to CNF:

* in exponential time and space with the same set of atoms

Coverting to CNF

Every formula can be converted to CNF:

* in exponential time and space with the same set of atoms
* in linear time and space if new variables are added.

Coverting to CNF

Every formula can be converted to CNF:

* in exponential time and space with the same set of atoms
* in linear time and space if new variables are added.

* In this case the original and converted formulas are
“equi-satisfiable”.
* This technique is called Tseitin’s encoding.

Converting to CNF: the Exponential Way

CNF(¢){

* ¢ is a literal: return ¢
* ¢is 1 A py: return CNF(p1) A CNF ()
* ¢is 1 V py: return Dist(CNF (p;), CNF(v2))

}

Dist(¢1, 2){
case

* 1 18 P11 A P1p: return Dist(11, v2) A Dist(12, p2)
© @y 18 1/121 A ¢222 return Dist(gal, ’lﬁ21) AN Disl‘((pl, 1,[)22)

Converting to CNF: the Exponential Way

Consider the formula ¢ = (x; Ay1) V (x2 A y2)

Converting to CNF: the Exponential Way

Consider the formula ¢ = (x; Ay1) V (x2 A y2)

CNF(¢) = (x1 VX)) A1 Vy2) Ayt Vxz) A (n V)

Converting to CNF: the Exponential Way

Consider the formula ¢ = (x; Ay1) V (x2 A y2)

CNF(¢) = (x1 Vx2) A (x1 Vy2) A (31 Vx2) A (31 V y2)

Now consider: ¢, = (x; Ay1) V(2 Ay2) V...V (xn AYn)

Converting to CNF: the Exponential Way

Consider the formula ¢ = (x; Ay1) V (x2 A y2)

CNF(¢) = (x1 VX)) A1 Vy2) Ayt Vxz) A (n V)

Now consider: ¢, = (x; Ay1) V(2 Ay2) V...V (xn AYn)

Q: How many clauses CNF (¢,) returns?

Converting to CNF: the Exponential Way

Consider the formula ¢ = (x; Ay1) V (x2 A y2)

CNF(¢) = (x1 VX)) A1 Vy2) Ayt Vxz) A (n V)

Now consider: ¢, = (x; Ay1) V(2 Ay2) V...V (xn AYn)
Q: How many clauses CNF (¢,) returns?

A: 2"

Tseitin’s Encoding

Consider the formula (A — (B A C))

Tseitin’s Encoding

Consider the formula (A — (B A C))

The parse tree:

Tseitin’s Encoding

Consider the formula (A — (B A C))

Associate a new auxiliary variable with each gate.

The parse tree:

Add constraints that define these new variables.

Finally, enforce the root node.

Tseitin’s Encoding
op
((11 — (A —> az)) A (a2 St 5
BAO) A (@) QNN O\

Tseitin’s Encoding

o8
acyatg " RO«

Each such constraint has a CNF representation with 3 or 4 clauses.

Tseitin’s Encoding

(a1 — (A — az)) N (a2 — 5
(BAC)HA (@) OO,

Each such constraint has a CNF representation with 3 or 4 clauses.
First: (a;j VA) A (a1 V —a2) A (—a; VAV ap)

Second: (—az V B) A (may V C) A (a2 V =BV —=C)

Tseitin’s Encoding

dn=(xIAY)V (2 AY) V...V (Xy AYn)

Tseitin’s Encoding

dn=(xIAY)V (2 AY) V...V (Xy AYn)

With Tseitin’s encoding we need:
* pn auxiliary variables ay, . . ., a,.
* Each adds 3 constraints.

* Top clause: (a1 V...V ay,)

Tseitin’s Encoding

dn=(xIAY)V (2 AY) V...V (Xy AYn)

With Tseitin’s encoding we need:
* pn auxiliary variables ay, . . ., a,.
* Each adds 3 constraints.

* Top clause: (a1 V...V ay,)

Hence, we have
e 3n + 1 clauses, instead of 2".

e 3n variables rather than 2n.

SAT Problem and SAT Solver

SAT problem is: Given a Boolean formula in CNF, asking whether
there exists an assignment to each variable so that the value of the
formula is t rue.

SAT Problem and SAT Solver

SAT problem is: Given a Boolean formula in CNF, asking whether
there exists an assignment to each variable so that the value of the
formula is t rue.

It is a NPC problem, which means that there is only exponential
algorithm so far. A SAT solver is a tool that solves the SAT problem.

SAT Problem and SAT Solver

SAT problem is: Given a Boolean formula in CNF, asking whether
there exists an assignment to each variable so that the value of the
formula is t rue.

It is a NPC problem, which means that there is only exponential
algorithm so far. A SAT solver is a tool that solves the SAT problem.
However,

SAT solver is to be said as the ’most successful formal tools, which
can handle 100,000 variables with millions of clauses in less than one
SEC.

	Instructor

