
Fundamentals of Programming
Languages II

Model Checking

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Final Exam Policy
We will choose reports, instead of final exam!

A list of reports will be announced gradually throughout the course.

Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

A sample section titles of a report:
• Introduction
• The problem description
• Key theorems/techniques/algorithms
• An application
• Conclusion

Final Exam Policy
We will choose reports, instead of final exam!

A list of reports will be announced gradually throughout the course.

Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

A sample section titles of a report:
• Introduction
• The problem description
• Key theorems/techniques/algorithms
• An application
• Conclusion

Final Exam Policy
We will choose reports, instead of final exam!

A list of reports will be announced gradually throughout the course.

Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

A sample section titles of a report:
• Introduction
• The problem description
• Key theorems/techniques/algorithms
• An application
• Conclusion

Final Exam Policy
We will choose reports, instead of final exam!

A list of reports will be announced gradually throughout the course.

Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

A sample section titles of a report:
• Introduction
• The problem description
• Key theorems/techniques/algorithms
• An application
• Conclusion

Final Exam Policy
We will choose reports, instead of final exam!

A list of reports will be announced gradually throughout the course.

Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

A sample section titles of a report:
• Introduction
• The problem description
• Key theorems/techniques/algorithms
• An application
• Conclusion

Final Exam Policy
We will choose reports, instead of final exam!

A list of reports will be announced gradually throughout the course.

Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

A sample section titles of a report:
• Introduction
• The problem description
• Key theorems/techniques/algorithms
• An application
• Conclusion

Assignment

Assignment 1 is announced!

Bugs in Software

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology?

The answer is YES!

This is so called formal verification.

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

Formal Verifications

Here are many formal verification techniques:

• model checking
• theorem proving
• type systems
• SAT, SMT, and string solving …

Formal Verifications

Here are many formal verification techniques:

• model checking
• theorem proving
• type systems
• SAT, SMT, and string solving …

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a
(non-trivial) data structure.

Sometimes it is called algorithmic formal verification.

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a
(non-trivial) data structure.

Sometimes it is called algorithmic formal verification.

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a
(non-trivial) data structure.

Sometimes it is called algorithmic formal verification.

Search Problem

Binary Search

Search on Trees

Search on Graphs

Search Problem

Binary Search

Search on Trees

Search on Graphs

Search Problem

Binary Search

Search on Trees

Search on Graphs

Search Problem

Binary Search

Search on Trees

Search on Graphs

The First Question

The First Question

Safety as Reachability

Bad things will never happen!

Safety as Reachability

Bad things will never happen!

The Second Question

The Second Question

Liveness

Good things will eventually happen!

Liveness

Good things will eventually happen!

Data Structures

• Kripke structure: M = (S, S0,R,L)
• S, finite set of state
• S0 ⊆ S, initial state
• R ⊆ S × S, transition relations
• L : S → 2AP, status label function

(AP: atomic propositions)
• Finite automata: A = (Σ,Q,Q0,F, δ)

• A, finite set of input alphabet
• Q, finite set of control location
• Q0 ⊆ Q, initial control locations
• F ⊆ Q, final control locations
• δ ⊆ Q× Σ× Q, transitions

a b

b c c

1

a b

b c

b c

c

c

c

1

Finite Systems Vs. Infinite
Computation Tree

An Microwave Oven Example

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

Logic-Based MC: Temporal
Operators

• Next

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

• Finally

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

• Globally

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

• Until

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

Basic Temporal Operators on Paths
• Next

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ= Uψ∨G

Logic-Based MC: Path Operators, A,
E

Path Quantifier: A (for all), E (some)

Note: Aψ=¬E¬ψ
• AG: safety, bad things will never happen.

• AF: liveness, good things will eventually happen.

State Formula & path formulas

Let AP be the set of atomic proposition names. The syntax of state
formulas is given by the following rules:

• If p ∈ AP, then p is a state formula.
• If f and g are state formulas, then ¬f , f ∨ g and f ∧ g are state

formulas.
• If f is a path formula, then E f and A f are state formulas.
• If f is a state formula, then f is also a path formula.
• If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, X f , F f , G f

and f U g are path formulas.

Formal Description

Example Specification

• EF(Start ∧ ¬Ready)

• It is possible to get to a state where Start holds but Ready does
not hold.

• AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

• AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on
every computation path.

• AG(EF Restart)

• From any state it is possible to get to the Restart.

Example Specification

• EF(Start ∧ ¬Ready)

• It is possible to get to a state where Start holds but Ready does
not hold.

• AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

• AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on
every computation path.

• AG(EF Restart)

• From any state it is possible to get to the Restart.

Example Specification

• EF(Start ∧ ¬Ready)

• It is possible to get to a state where Start holds but Ready does
not hold.

• AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

• AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on
every computation path.

• AG(EF Restart)

• From any state it is possible to get to the Restart.

Example Specification

• EF(Start ∧ ¬Ready)

• It is possible to get to a state where Start holds but Ready does
not hold.

• AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

• AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on
every computation path.

• AG(EF Restart)

• From any state it is possible to get to the Restart.

Example Specification

• EF(Start ∧ ¬Ready)

• It is possible to get to a state where Start holds but Ready does
not hold.

• AG(Req→ AF Ack)

• If a request occurs, then it will be eventually acknowledged.

• AG(AF DeviceEnabled)

• The proposition DeviceEnabled holds infinitely often on
every computation path.

• AG(EF Restart)

• From any state it is possible to get to the Restart.

Example Specification

• AG (request→ F grant)

• each request will be finally grant(ed).

• AG(¬(¬request U grant))

• each grant follows some request.

• AGF request

• request occurs infinitely often.

Example Specification

• AG (request→ F grant)
• each request will be finally grant(ed).

• AG(¬(¬request U grant))

• each grant follows some request.

• AGF request

• request occurs infinitely often.

Example Specification

• AG (request→ F grant)
• each request will be finally grant(ed).

• AG(¬(¬request U grant))
• each grant follows some request.

• AGF request

• request occurs infinitely often.

Example Specification

• AG (request→ F grant)
• each request will be finally grant(ed).

• AG(¬(¬request U grant))
• each grant follows some request.

• AGF request
• request occurs infinitely often.

CTL and LTL

• CTL: temporal operators must be immediately followed by path
quantifiers.

• e.g., AFϕ,EGϕ,AXEGϕ,EXA(ϕUψ)

• LTL: path quantifiers are allowed only at the outermost position.
• e.g., AGFϕ,EX(ϕUψ),A(Fϕ ∨ Gψ)

• Except for fairness, most properties are expressed in CTL ∩ LTL.

CTL Vs. LTL

• LTL can, but CTL cannot.

• A(GFϕ) infinitely often (fairness)
• A(FGϕ) almost everywhere

• CTL can, but LTL cannot.

• AG(EFϕ)
• AF(EGϕ)

CTL Vs. LTL

• LTL can, but CTL cannot.
• A(GFϕ) infinitely often (fairness)
• A(FGϕ) almost everywhere

• CTL can, but LTL cannot.

• AG(EFϕ)
• AF(EGϕ)

CTL Vs. LTL

• LTL can, but CTL cannot.
• A(GFϕ) infinitely often (fairness)
• A(FGϕ) almost everywhere

• CTL can, but LTL cannot.
• AG(EFϕ)
• AF(EGϕ)

CTL Vs. LTL

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

• AG(start → AF heat)

• NG!

• Constraint: AGFstart ∧
close ∧ ¬beep
(operate correctly infinitely

often)

• AG(start → AF heat)

• OK!

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

• AG(start → AF heat)

• NG!

• Constraint: AGFstart ∧
close ∧ ¬beep
(operate correctly infinitely

often)

• AG(start → AF heat)

• OK!

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

• AG(start → AF heat)
• NG!

• Constraint: AGFstart ∧
close ∧ ¬beep
(operate correctly infinitely

often)

• AG(start → AF heat)

• OK!

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

• AG(start → AF heat)
• NG!

• Constraint: AGFstart ∧
close ∧ ¬beep
(operate correctly infinitely

often)

• AG(start → AF heat)

• OK!

Fairness

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

�
�
�

��

Completeness of
Bounded Model Checking

Completeness of
Bounded Model Checking

From Finding Bugs to Proving Correctness

Edmund Clarke – Daniel Kroening – Joël Ouaknine – Ofer Strichman

0 0

1 1

0 1

1 0

Diameters and Recurrence Diameters:
A Two-Bit Loadable (RAM) Counter

¬start

¬closed

¬heat

¬beep

start

closed

¬heat

beep

start

closed

heat

¬beep

start

closed

¬heat

¬beep

¬start

closed

heat

¬beep

¬start

closed

¬heat

¬beep

start

¬closed

¬heat

beep

The oven has four attributes: start(ed), (door) closed, heat(ing), and
beep(ing). The diagram above shows how the oven can move from
state to state.

The specification is:
 “Whenever is on, the door must be ”.Heat Closed

Example: A Microwave Oven

k = 0

BMC(M,ϕ,k)

k = 0

BMC(M,ϕ,k)BMC(M,ϕ,k)

k++

k ¸ CTk ¸ CT
no yes

counterexample

n
o

co
u

n
terex

.

Bug found

Design correct

Bounded Model Checking (BMC) is a technique for finding bugs
of fixed depth in hardware and software systems. It has
successfully been applied to chip designs, embedded controllers,
communication protocols, and several other areas. Based on fast
SAT-solving algorithms, BMC is often found to be orders of
magnitude faster than conventional model checking techniques
(cf. sample tables below). It has been widely adopted by the chip-
design industry in the last 3 years.

As an example, consider this simplified model of a microwave oven.
The requirement is that the door should always be closed when the
heat is on. Starting in the topmost state, one easily sees that this
specification holds for all paths on length 1,2,3,... When do we know
to stop? Since the DIAMETER (longest shortest path) has length 4,
and since the specification is a reachability temporal property, if no
bug of depth at most 4 is found, then no bug will ever be found, and
the system therefore provably meets its specification.

“The Ariane 5 disaster highlighted the urgent
need for formal methods that PROVE systems

correct, rather than merely find bugs.”

HOW DEEP IS DEEP
ENOUGH?

For high-confidence embedded software, however, finding bugs
is not enough: equally important is the ability to prove systems
correct. In order for BMC to guarantee correctness, the search
depth must exceed some pre-computed value, known as the
COMPLETENESS THRESHOLD (CT). The Complete
Bounded Model Checking algorithm then works as follows:

0 0

1 1

0 1

1 0

Computing the
Completeness Threshold

We have developed algorithms to compute the completeness
threshold of a temporal property , expressed as an LTL formula.
These algorithms are based on standard translation of into an
equivalent Buchi automaton, and on analysis of this automaton.
(cf. VMCAI 2003 paper, CONCUR 2003 paper).

For more complex temporal logic formulas, the value of CT is
based on the diameter and recurrence diameter (longest loop-free
path) of the model:

ϕ
¬ϕ

FUTURE WORK
Applying the Complete Bounded Model Checking Algorithm to
further case studies, in particular to embedded controllers such as
the Casting Plant.

BOUNDED MODEL
CHECKING

The diameter, d, is 1, since any
value can at any time be
loaded. In other words, from
any node you can reach any
other node in one step.

The recurrence diameter, rd, is
3, since the longest loop-free
p a t h h a s t h r e e e d g e s .

• AG(start → AF heat)
• NG!

• Constraint: AGFstart ∧
close ∧ ¬beep
(operate correctly infinitely

often)

• AG(start → AF heat)
• OK!

Fairness

• More Examples...
• Protocols operated over reliable channels, to check no message is

ever transmitted but never received.
• Scheduler that schedules released tasks, to check all released

tasks will be finally scheduled.
• How to check fairness

• LTL: A(GFϕ)
e.g. AG(start → AF heat) ∧ A(GF start ∧ close ∧ ¬beep)

• CTL: NG!

Quiz I: Crossing River

• Group {Man, Sheep, Wolf, Cabbage} trying across river.
• Constraints:

• Man can carry one item at a time by boat.
• If Sheep and Wolf only, Wolf will eat Sheep.
• If Sheep and Cabbage only, Sheep will eat Cabbage.

• Find way by model checking!

Quiz I: Crossing River

• Group {Man, Sheep, Wolf, Cabbage} trying across river.
• Constraints:

• Man can carry one item at a time by boat.
• If Sheep and Wolf only, Wolf will eat Sheep.
• If Sheep and Cabbage only, Sheep will eat Cabbage.

• Find way by model checking!

Quiz I: Crossing River

• Group {Man, Sheep, Wolf, Cabbage} trying across river.
• Constraints:

• Man can carry one item at a time by boat.
• If Sheep and Wolf only, Wolf will eat Sheep.
• If Sheep and Cabbage only, Sheep will eat Cabbage.

• Find way by model checking!

Quiz II. Hamilton Path

• Find out whether a graph occurs a Hamilton path.

• M, q0 |= E(F p1 ∧ . . . ∧ F pn ∧ G(P1 →
X G¬p1) ∧ . . . ∧ G(Pn → X G¬pn))

• M = ({q0, qf } ∪ V(G), {q0}, {(q0, v), (v, qf), (qf , qf) | v ∈
V(G)} ∪ E(G),L)

• L(vi) = {pi}

Quiz II. Hamilton Path

• Find out whether a graph occurs a Hamilton path.

• M, q0 |= E(F p1 ∧ . . . ∧ F pn ∧ G(P1 →
X G¬p1) ∧ . . . ∧ G(Pn → X G¬pn))

• M = ({q0, qf } ∪ V(G), {q0}, {(q0, v), (v, qf), (qf , qf) | v ∈
V(G)} ∪ E(G),L)

• L(vi) = {pi}

CTL Model Checking

CTL Formula

• AX and EX
• AF and EF
• AG and EG
• AG and EG

Properties

AXφ = ¬EX(¬φ)
EFφ = E(True U φ)
AGφ = ¬EF(¬φ)
AFφ = ¬EG(¬φ)
A(φU ψ) = ¬E[¬ψU (¬φ ∧ ¬ψ)] ∧ ¬EG¬φ

• EX, EG, EU are enough!

Properties

AXφ = ¬EX(¬φ)
EFφ = E(True U φ)
AGφ = ¬EF(¬φ)
AFφ = ¬EG(¬φ)
A(φU ψ) = ¬E[¬ψU (¬φ ∧ ¬ψ)] ∧ ¬EG¬φ

• EX, EG, EU are enough!

EX

• Trivial!

EX

• Trivial!

EU

EU

EG

EG

LTL Model Checking

Complicity of LTL Model Checking

Tableau method: O((|S|+ |R|)× 2O(|ϕ|))

At least NP-hard: consider Hamilton path of G

• M, q0 |= E(F p1 ∧ . . . ∧ F pn ∧ G(P1 →
X G¬p1) ∧ . . . ∧ G(Pn → X G¬pn))

• M = ({q0, qf } ∪ V(G), {q0}, {(q0, v), (v, qf), (qf , qf) | v ∈
V(G)} ∪ E(G),L)

• L(vi) = {pi}

Complicity of LTL Model Checking

Tableau method: O((|S|+ |R|)× 2O(|ϕ|))

At least NP-hard: consider Hamilton path of G

• M, q0 |= E(F p1 ∧ . . . ∧ F pn ∧ G(P1 →
X G¬p1) ∧ . . . ∧ G(Pn → X G¬pn))

• M = ({q0, qf } ∪ V(G), {q0}, {(q0, v), (v, qf), (qf , qf) | v ∈
V(G)} ∪ E(G),L)

• L(vi) = {pi}

Scenario of LTL Model Checking

• Aϕ is a LTL, then the only state sub-formulas in ϕ are atomic
propositions.

• M, s |= Aϕ⇐⇒ M, s |= ¬E ¬ϕ
• M, s |= F ϕ⇐⇒ M, s |= true U ϕ

• M, s |= Gϕ⇐⇒ M, s |= ¬F ¬ϕ
• It is sufficient to only consider the temporal operators X,U with
¬,∨ wrapped by E.

• Construct closure cl(ϕ) of ϕ, which is the set of formulae related
to the truth value of ϕ.

• Construct graph of atoms (transition graph on truth table of
cl(ϕ))

• M, s |= E ϕ is equivalent to existence of an eventuality sequence,
which is detected as a SCC.

Scenario of LTL Model Checking

• Aϕ is a LTL, then the only state sub-formulas in ϕ are atomic
propositions.

• M, s |= Aϕ⇐⇒ M, s |= ¬E ¬ϕ
• M, s |= F ϕ⇐⇒ M, s |= true U ϕ

• M, s |= Gϕ⇐⇒ M, s |= ¬F ¬ϕ
• It is sufficient to only consider the temporal operators X,U with
¬,∨ wrapped by E.

• Construct closure cl(ϕ) of ϕ, which is the set of formulae related
to the truth value of ϕ.

• Construct graph of atoms (transition graph on truth table of
cl(ϕ))

• M, s |= E ϕ is equivalent to existence of an eventuality sequence,
which is detected as a SCC.

Closure of LTL formula

• The smallest set of formulae containing ϕ, where
• ¬φ ∈ cl(ϕ) iff φ ∈ cl(ϕ);
• if ψ ∨ φ ∈ cl(ϕ), then ψ, φ ∈ cl(ϕ);
• if X ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ);
• if ¬X ψ ∈ cl(ϕ), then X ¬ψ ∈ cl(ϕ);
• if ψU φ ∈ cl(ϕ), then ψ, φ,X(ψU φ) ∈ cl(ϕ).

• To keep finite (linear to |ϕ|), ¬¬ is eliminated.
• By construction, at most one X would be added.
• Size of cl(f) is linear in the size of f .
• e.g. cl(δU ψ) =

• {δ,¬δ, ψ,¬ψ,
• δU ψ,¬(δU ψ),X(δU ψ),¬X(δU ψ),
• X¬(δU ψ)}

Closure of LTL formula

• The smallest set of formulae containing ϕ, where
• ¬φ ∈ cl(ϕ) iff φ ∈ cl(ϕ);
• if ψ ∨ φ ∈ cl(ϕ), then ψ, φ ∈ cl(ϕ);
• if X ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ);
• if ¬X ψ ∈ cl(ϕ), then X ¬ψ ∈ cl(ϕ);
• if ψU φ ∈ cl(ϕ), then ψ, φ,X(ψU φ) ∈ cl(ϕ).

• To keep finite (linear to |ϕ|), ¬¬ is eliminated.
• By construction, at most one X would be added.
• Size of cl(f) is linear in the size of f .
• e.g. cl(δU ψ) =

• {δ,¬δ, ψ,¬ψ,
• δU ψ,¬(δU ψ),X(δU ψ),¬X(δU ψ),
• X¬(δU ψ)}

Atoms (wrt. ϕ)

• Atom (s,K) with s ∈ S and K ⊆ cl(ϕ) ∪ AP,
where

• for each p ∈ AP, p ∈ K , iff p ∈ L(s);
• for every δ ∈ cl(ϕ), δ ∈ K , iff ¬δ /∈ K ;
• for every δ ∨ ψ ∈ cl(ϕ), δ ∨ ψ ∈ K iff δ ∈ K

or ψ ∈ K ;
• for every ¬X δ ∈ cl(ϕ), ¬X δ ∈ K iff

X (¬δ) ∈ K ;
• for every δU ψ ∈ cl(ϕ), δU ψ ∈ K iff ψ ∈ K

or δ,X(δU ψ) ∈ K .

• Intuitively, K is the maximum consistent truth
valuation at s.

e.g.

δ ψ

1

cl(δU ψ) =
{δ, ψ, δU ψ,X(δU ψ),
¬δ,¬ψ,¬(δU ψ),
¬X(δU ψ),X¬(δU ψ)}

Atoms (wrt. ϕ)

• Atom (s,K) with s ∈ S and K ⊆ cl(ϕ) ∪ AP,
where

• for each p ∈ AP, p ∈ K , iff p ∈ L(s);
• for every δ ∈ cl(ϕ), δ ∈ K , iff ¬δ /∈ K ;
• for every δ ∨ ψ ∈ cl(ϕ), δ ∨ ψ ∈ K iff δ ∈ K

or ψ ∈ K ;
• for every ¬X δ ∈ cl(ϕ), ¬X δ ∈ K iff

X (¬δ) ∈ K ;
• for every δU ψ ∈ cl(ϕ), δU ψ ∈ K iff ψ ∈ K

or δ,X(δU ψ) ∈ K .

• Intuitively, K is the maximum consistent truth
valuation at s.

e.g.

δ ψ

1

cl(δU ψ) =
{δ, ψ, δU ψ,X(δU ψ),
¬δ,¬ψ,¬(δU ψ),
¬X(δU ψ),X¬(δU ψ)}

Example of Atoms

δ ψ

1

• Tableau:
• [T,T,T,T], [T,T,T,F], [T,T,F,T], [T,T,F,F]
• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]
• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s0 : (L(s0) = ¬δ ∧ ¬ψ)

• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s1 : (L(s1) = δ ∧ ¬ψ)

• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]

• s2 : (L(s2) = ¬δ ∧ ψ)

• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]

Example of Atoms

δ ψ

1

• Tableau:
• [T,T,T,T], [T,T,T,F], [T,T,F,T], [T,T,F,F]
• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]
• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s0 : (L(s0) = ¬δ ∧ ¬ψ)
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s1 : (L(s1) = δ ∧ ¬ψ)

• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]

• s2 : (L(s2) = ¬δ ∧ ψ)

• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]

Example of Atoms

δ ψ

1

• Tableau:
• [T,T,T,T], [T,T,T,F], [T,T,F,T], [T,T,F,F]
• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]
• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s0 : (L(s0) = ¬δ ∧ ¬ψ)
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s1 : (L(s1) = δ ∧ ¬ψ)
• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]

• s2 : (L(s2) = ¬δ ∧ ψ)

• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]

Example of Atoms

δ ψ

1

• Tableau:
• [T,T,T,T], [T,T,T,F], [T,T,F,T], [T,T,F,F]
• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]
• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s0 : (L(s0) = ¬δ ∧ ¬ψ)
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s1 : (L(s1) = δ ∧ ¬ψ)
• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]

• s2 : (L(s2) = ¬δ ∧ ψ)
• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]

Graph of Atoms

• For Kripke structure M = (S, S0,R,L), formula ϕ, define a graph
of atoms where nodes are atoms and edged are:

{((s,K), (s′,K ′)) | (s, s′) ∈ R ∧ ∀ (X δ) ∈ cl(ϕ),X δ ∈ K ⇐⇒ δ ∈ K ′}

δ ψ

1

δ, ψ, δU ψ,X(δU ψ)

Graph of atoms
• For transition graph M= (S,S0,R,L), formula ψ,

define a graph of atoms (wrtψ) where nodes are
atoms and edged are

{ ((s,K), (s’,K’)) | XΦ∈K ⇔Φ∈K’ for ∀Φ∈CL(ψ) }

s0 s1
Φδ

(s0, [F,F,F,T])

(s0, [F,F,F,F]) (s1, [T,F,F,F])

(s1, [T,F,T,T])

(s2, [F,T,T,F])

(s2, [F,T,T,T])

CL(δUΦ) = {δ，Φ，δUΦ，X(δUΦ), X(¬(δUΦ)),
¬δ，¬Φ，¬(δUΦ)，¬X(δUΦ), ¬X(¬(δUΦ)) }

Example:

s2

Eventuality Sequence

• An eventuality sequence is an infinite path π in a graph of atoms,
satisfying:

• If δU ψ ∈ K for an atom (s,K) on π, then there exists an atom
(s′,K ′) on π after (s,K) with ψ ∈ K ′.

• Don’t care on δ between (s,K) and (s′,K ′), why?

δ ψ

1

δ, ψ, δU ψ,X(δU ψ)

Graph of atoms
• For transition graph M= (S,S0,R,L), formula ψ,

define a graph of atoms (wrtψ) where nodes are
atoms and edged are

{ ((s,K), (s’,K’)) | XΦ∈K ⇔Φ∈K’ for ∀Φ∈CL(ψ) }

s0 s1
Φδ

(s0, [F,F,F,T])

(s0, [F,F,F,F]) (s1, [T,F,F,F])

(s1, [T,F,T,T])

(s2, [F,T,T,F])

(s2, [F,T,T,T])

CL(δUΦ) = {δ，Φ，δUΦ，X(δUΦ), X(¬(δUΦ)),
¬δ，¬Φ，¬(δUΦ)，¬X(δUΦ), ¬X(¬(δUΦ)) }

Example:

s2

Eventuality Sequence

• An eventuality sequence is an infinite path π in a graph of atoms,
satisfying:

• If δU ψ ∈ K for an atom (s,K) on π, then there exists an atom
(s′,K ′) on π after (s,K) with ψ ∈ K ′.

• Don’t care on δ between (s,K) and (s′,K ′), why?

δ ψ

1

δ, ψ, δU ψ,X(δU ψ)

Graph of atoms
• For transition graph M= (S,S0,R,L), formula ψ,

define a graph of atoms (wrtψ) where nodes are
atoms and edged are

{ ((s,K), (s’,K’)) | XΦ∈K ⇔Φ∈K’ for ∀Φ∈CL(ψ) }

s0 s1
Φδ

(s0, [F,F,F,T])

(s0, [F,F,F,F]) (s1, [T,F,F,F])

(s1, [T,F,T,T])

(s2, [F,T,T,F])

(s2, [F,T,T,T])

CL(δUΦ) = {δ，Φ，δUΦ，X(δUΦ), X(¬(δUΦ)),
¬δ，¬Φ，¬(δUΦ)，¬X(δUΦ), ¬X(¬(δUΦ)) }

Example:

s2

Key Lemma

Lemma:
M, s |= E ϕ iff there exists an eventuality sequence starting from an
atom (s,K) with ϕ ∈ K .

Proof Sketch (=⇒)

• M, s0 |= E ϕ, if there exists an eventuality sequence
π = (s0,K0), (s1,K1), (s2,K2) . . . with ϕ ∈ K0.

• let πi = (si,Ki), (si+1,Ki+1), (si+2,Ki+2) . . ., we will prove
“πi |= δ ⇐⇒ δ ∈ Ki, for each δ ∈ cl(ϕ)” by induction on the
structure of formula.

• Case δ = X γ: By construction of a graph of atoms,
((si,Ki), (si+1,Ki+1)) implies X γ ∈ Ki ⇐⇒ γ ∈ Ki+1.
Thus, X γ ∈ Ki ⇐⇒ γ ∈ Ki+1 ⇐⇒ πi+1 |= γ ⇐⇒ πi |= X γ.

• Case δ = γ U ψ:
• By definition of π, there exists (first) j ≥ i with ψ ∈ Kj.
• Then δ ∈ Kj (by definition of atom), and πj |= ψ (by induction

hypothesis); thus πj |= δ.
• Note that ψ 6∈ Ki ∧ . . . ∧ ψ 6∈ Kj−1; then γ,X δ ∈ Ki

⇐⇒ γ ∈ Ki ∧ δ ∈ Ki+1 ⇐⇒ γ ∈ Ki ∧ . . . ∧ γ ∈ Kj−i ⇐⇒ πi |=
γ ∧ . . . πj−1 |= γ ⇐⇒ πi |= δ.

Proof Sketch (⇐=)

• M, s0 |= E ϕ only if there exists an eventuality sequence starting
from an atom (s,K) with ϕ ∈ K .

• Let π = s0, s1, s2, . . ., s.t. M, π |= ϕ. Then,
(s0,K0), (s1,K1), (s2,K2), . . . is an eventuality sequence where
Ki = {δ | δ ∈ cl(ϕ) ∧M, πi |= δ} for πi = si, si+1, si+2,

Self-fulfilling SCC in Graph of
Atoms

A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every
atom (s,K) in C with δU ψ ∈ K , there exists an atom (s′,K ′) in C
such that ψ ∈ K ′.
(i.e., there is an eventuality sequence that covers SCC C).

δ ψ

1

δ, ψ, δU ψ,X(δU ψ)

Graph of atoms
• For transition graph M= (S,S0,R,L), formula ψ,

define a graph of atoms (wrtψ) where nodes are
atoms and edged are

{ ((s,K), (s’,K’)) | XΦ∈K ⇔Φ∈K’ for ∀Φ∈CL(ψ) }

s0 s1
Φδ

(s0, [F,F,F,T])

(s0, [F,F,F,F]) (s1, [T,F,F,F])

(s1, [T,F,T,T])

(s2, [F,T,T,F])

(s2, [F,T,T,T])

CL(δUΦ) = {δ，Φ，δUΦ，X(δUΦ), X(¬(δUΦ)),
¬δ，¬Φ，¬(δUΦ)，¬X(δUΦ), ¬X(¬(δUΦ)) }

Example:

s2

Self-fulfilling SCC in Graph of
Atoms

A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every
atom (s,K) in C with δU ψ ∈ K , there exists an atom (s′,K ′) in C
such that ψ ∈ K ′.
(i.e., there is an eventuality sequence that covers SCC C).

δ ψ

1

Lemma:
There exists an eventuality sequence starting at an atom (s,K) iff
there exists a path from (s,K) to a self-fulfilling SCC.

Proof

⇒: Assume that there is an eventuality sequence starting at (s,K).
Consider the set C′ of all atoms that appear infinitely often in this
sequence. The set C′ is a subset of a (maximal) strongly connected
component C of G. Consider a subformula δUϕ, and an atom
(s,K) ∈ C such that δUϕ ∈ K . Because C is strongly connected,
there is a finite path in C from (s,K) into C′. If ϕ appears on the path,
we are done! Otherwise, since C′ comes from an eventuality
sequence, and ϕ is in some atom of C′.
⇐: Trivial.

LTL Model Checking

M, s |= E φ iff there exists atom A = (s,K) such that φ ∈ K and there
exists a path from A to a self-fulfilling strongly connected component.

Summary of Algorithm

• Construct a graph of atoms for a formula ϕ, and compute
self-fulfilling SCCs.

• Finding an eventuality sequence to self-fulfilling SCC by
depth-first search.

• Atoms may multiplicand at most the exponential of the size of
closure, (which is linear to |ϕ|).

• Complexity: O((|S|+ |R|)× 2O(|ϕ|))

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

The Reality of Model Checking

State explosion!

The target system is huge!

The software model checking is infinite!

The search algorithm itself is exponential!

Milestones

• symbolic model checking SMV
• partial reduction Spin
• on-the-fly model checking SMV v.2
• bounded model checking NuSMV
• counter-example guided abstract refinement (CEGAR) BLAST
• Craig interpolation NuSMV v.?
• antichain

Milestones

• symbolic model checking SMV

• partial reduction Spin
• on-the-fly model checking SMV v.2
• bounded model checking NuSMV
• counter-example guided abstract refinement (CEGAR) BLAST
• Craig interpolation NuSMV v.?
• antichain

Milestones

• symbolic model checking SMV
• partial reduction Spin

• on-the-fly model checking SMV v.2
• bounded model checking NuSMV
• counter-example guided abstract refinement (CEGAR) BLAST
• Craig interpolation NuSMV v.?
• antichain

Milestones

• symbolic model checking SMV
• partial reduction Spin
• on-the-fly model checking SMV v.2

• bounded model checking NuSMV
• counter-example guided abstract refinement (CEGAR) BLAST
• Craig interpolation NuSMV v.?
• antichain

Milestones

• symbolic model checking SMV
• partial reduction Spin
• on-the-fly model checking SMV v.2
• bounded model checking NuSMV

• counter-example guided abstract refinement (CEGAR) BLAST
• Craig interpolation NuSMV v.?
• antichain

Milestones

• symbolic model checking SMV
• partial reduction Spin
• on-the-fly model checking SMV v.2
• bounded model checking NuSMV
• counter-example guided abstract refinement (CEGAR) BLAST

• Craig interpolation NuSMV v.?
• antichain

Milestones

• symbolic model checking SMV
• partial reduction Spin
• on-the-fly model checking SMV v.2
• bounded model checking NuSMV
• counter-example guided abstract refinement (CEGAR) BLAST
• Craig interpolation NuSMV v.?

• antichain

Milestones

• symbolic model checking SMV
• partial reduction Spin
• on-the-fly model checking SMV v.2
• bounded model checking NuSMV
• counter-example guided abstract refinement (CEGAR) BLAST
• Craig interpolation NuSMV v.?
• antichain

Further Topics

Infinite Structures: Unbounded
Stack

Pushdown Automata

A pushdown system P = (Q, q0,Γ,w0,∆) is a
transition system with carrying an unbounded stack.

• Q is a set of control locations, and q0 ∈ Q is
the initial location.

• Γ is a finite set of stack alphabet, and w0 ∈ Γ∗

is the initial stack contents.
• ∆ : (Q× Γ)× (Q× Γ∗) is a finite subset of

transitions with the form 〈q, γ〉 ↪→ 〈q′,w〉,
where q, q′ ∈ Q, γ ∈ Γ and w ∈ Γ∗.

Infinite Structures: Real-Time

Timed Automata

A TA (Q, q0,F,X,∆), where
• Q is a finite set of locations,
• initial location q0 ∈ Q,
• F ⊆ Q is the set of final locations,
• X is a finite set of clocks,
• ∆ ⊆ Q×O × Q. A transition

q1
φ−→ q2, where φ is either of

Local ε,
Test x ∈ I?,

Assignment x ← I .

x← [0, 4.5] x ∈ (0, nav]?

x← [0, 6.5]

x ∈ (nav,+∞)?

y ← [0, 0]

y ∈ (0, data]?

x ∈ (data,+∞)?

x
←

[0
,0
]

x ∈ (0, data]?

Infinite Structures: Multi-Threads

Petri Net

A Petri net is a triple N = (P,T ,F)
where:

• P and T are disjoint finite sets of
places and transitions,
respectively.

• F ⊆ (P× T)∪ (T × P) is a set of
arcs.

Reports

Rep1. Probabilistic model checking (Maximal 3 students).

Rep2. Stochastic model checking (Maximal 3 students).

Rep3. Model checking in a specific field (Maximal 5 students).

