Fundamentals of Programming
Languages I1

Model Checking

Guogiang Li

School of Software, Shanghai Jiao Tong University

Final Exam Policy

We will choose reports, instead of final exam!

Final Exam Policy

We will choose reports, instead of final exam!

A list of reports will be announced gradually throughout the course.

Final Exam Policy

We will choose reports, instead of final exam!
A list of reports will be announced gradually throughout the course.

Each report has maximal people requirements, first apply first achieve.

Final Exam Policy

We will choose reports, instead of final exam!
A list of reports will be announced gradually throughout the course.
Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

Final Exam Policy

We will choose reports, instead of final exam!
A list of reports will be announced gradually throughout the course.
Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

Final Exam Policy

We will choose reports, instead of final exam!
A list of reports will be announced gradually throughout the course.
Each report has maximal people requirements, first apply first achieve.

You can submit the report at any time before the end of 18th weekend.
Each one has at most TWO submission chance.

You need to read at least THREE relative references, which should be
listed at the end of the report.

A sample section titles of a report:
* Introduction
* The problem description
* Key theorems/techniques/algorithms
* An application
» Conclusion

Assignment

Assignment 1 is announced!

Bugs in Software

++(Database: : _stats.mem_used_u
_params.maxX_unrelevance = {int
if {_params.max_unrelevance <
_params.max_unrelevance =
params.min ause_lits_fo
if {_params.ni _clause_lit
_params. clause_lit
_params.m ~Clause_le
if (_par nflict_claus
_paranms. conflict_claus
CHECK(
cout << "Forc to reduce unre
cout <<"MaxUnrel: ™ << _params
<< " MinLenDel: ™ << _pa

}((" MaxLenCL : " << _pa

Testing VS. Verification

Testing!

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology?

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.

Can we gain a complete methodology? The answer is YES!

Testing VS. Verification

Testing!

Whenever no bugs are detected by testing, we cannot claim that there
are NO bugs!

Hence, testing is a sound methodology, but not a complete one.
Can we gain a complete methodology? The answer is YES!

This is so called formal verification.

Formal Verifications

Here are many formal verification techniques:

Formal Verifications

Here are many formal verification techniques:

* model checking

e theorem proving

* type systems

SAT, SMT, and string solving ...

Model Checking

Q: What is model checking?

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a
(non-trivial) data structure.

Model Checking

Q: What is model checking?

Basically, model checking is a (non-trivial) search problem over a
(non-trivial) data structure.

Sometimes it is called algorithmic formal verification.

Search Problem

Search Problem

Binary Search

Search Problem

Binary Search

Search on Trees

Search Problem

Binary Search
Search on Trees

Search on Graphs

The First Question

The First Question

==

Safety as Reachability

Safety as Reachability

Bad things will never happen!

The Second Question

The Second Question

Liveness

Liveness

Good things will eventually happen!

Data Structures

* Kripke structure: M = (S, So, R, L)
S, finite set of state @
* So C S, initial state / \
e R C S x S, transition relations —,@

o L:S — 24P gtatus label function

(AP: atomic propositions) |

* Finite automata: A = (3, 0, Qo, F, 0) @
* A, finite set of input alphabet

* Q, finite set of control location

* Oy C Q, initial control locations @
e F C (O, final control locations B
e .

* § C 0 x X x Q, transitions @ e \©

Finite Systems Vs. Infinite
Computation Tree

State Transition Graph or
Kripke Model

N

\/)

'

Infinite Computation Tree

(Unwind State Graph to obtain Infinite Tree)

An Microwave Oven Example

-start

~closed

-heat

-beep

SIER -start —start

~cl d
close closed closed

-heat “heat heat

-beep

beep -beep

start start start

closed

closed closed

heat

-heat

-heat
-beep

beep -beep

Logic-Based MC: Temporal

Operators
OK o o o >
e Next X(‘D{ NG e o 3 o o
OK o—o e
F
« Finally *{ NG o
{ OK e ° . . o >
« Globally PUNG oo o e o
OK 3 & m o o =
OKag o o o o ~
U
Pnen ot oe
NG [] []] (]] >
+ Until [

e, M Y, 0., O

Logic-Based MC: Path Operators, A,

i

@ true

—

® AG: safety, bad things will never happen.

® AF': liveness, good things will eventually happen.

State Formula & path formulas

Let AP be the set of atomic proposition names. The syntax of state
formulas is given by the following rules:

» If p € AP, then p is a state formula.

e If f and g are state formulas, then —f, f V g and f A g are state
formulas.

» If f is a path formula, then E f and A f are state formulas.
» If f is a state formula, then f is also a path formula.

» If f and g are path formulas, then —f, f V g, f AN g, Xf, Ff,Gf
and f U g are path formulas.

cE Bl o o S

e el et ~ 4
Lol ool =G

Formal Description

M.,skEp
M,s ==/
M.S?fl\r"f?,
MskEfinf
M.s=E g
M,skE=A g
M"ﬂ" %fl
M, =—g
MrlEgVe
MregnArg
M.m=Xg
M, m |=Fgl
M rE=Gg
M,r=g Ug

A I 2 2 2R O R O R

p e L(s).
M,Sb‘:fl.
M,skE=fi oo M,skEfi
M,Shf[and M,shfg‘

there is a path 7 from s such that M, @ |= g;.
for every path & starting from s, M, 7 }= g,.
5 is the first state of w and M, 5 = fi.

M, 7 b 8.
M,rke=g o MmkEg.
Makeg and M,7mEg.
M7= g

there exists a k > 0 such that M, n* |= g;.
foralli >0, M, n' = g.

there exists a k > 0 such that M, % |= g, and
forall0<j <k, M, n/ =g

Example Specification

* EF(Start A ~Ready)

* AG(Reg — AF Ack)

* AG(AF DeviceEnabled)

* AG(EF Restart)

Example Specification

* EF(Start A ~Ready)

* Itis possible to get to a state where Start holds but Ready does
not hold.

* AG(Req — AF Ack)

* AG(AF DeviceEnabled)

* AG(EF Restart)

Example Specification

* EF(Start A ~Ready)

* Itis possible to get to a state where Start holds but Ready does
not hold.

* AG(Reg — AF Ack)
* If a request occurs, then it will be eventually acknowledged.

* AG(AF DeviceEnabled)

* AG(EF Restart)

Example Specification

* EF(Start A ~Ready)

* Itis possible to get to a state where Start holds but Ready does
not hold.

* AG(Reg — AF Ack)
* If a request occurs, then it will be eventually acknowledged.
* AG(AF DeviceEnabled)

 The proposition DeviceEnabled holds infinitely often on
every computation path.

* AG(EF Restart)

Example Specification

* EF(Start A ~Ready)

* Itis possible to get to a state where Start holds but Ready does
not hold.

* AG(Reg — AF Ack)
* If a request occurs, then it will be eventually acknowledged.
* AG(AF DeviceEnabled)

 The proposition DeviceEnabled holds infinitely often on
every computation path.

* AG(EF Restart)

* From any state it is possible to get to the Restart.

Example Specification

* AG (request — F grant)
* AG(—(—request U grant))

* AGF request

Example Specification

* AG (request — F grant)
* each request will be finally grant (ed).
* AG(—(—request U grant))

* AGF request

Example Specification

* AG (request — F grant)

* each request will be finally grant (ed).
* AG(—(—request U grant))

* each grant follows some request.
* AGF request

Example Specification

* AG (request — F grant)

* each request will be finally grant (ed).
* AG(—(—request U grant))

* each grant follows some request.

* AGF request
* request occurs infinitely often.

CTL and LTL

* CTL: temporal operators must be immediately followed by path
quantifiers.

* e.g., AFp, EGp, AXEGp, EXA(pU)
» LTL: path quantifiers are allowed only at the outermost position.
* e.g., AGFp, EX(oU%),A(Fp V GY)

» Except for fairness, most properties are expressed in CTL N LTL.

CTL Vs. LTL

e LTL can, but CTL cannot.

e CTL can, but LTL cannot.

CTL Vs. LTL

e LTL can, but CTL cannot.

* A(GF) infinitely often (fairness)
* A(FGy) almost everywhere

e CTL can, but LTL cannot.

CTL Vs. LTL

* LTL can, but CTL cannot.
* A(GF) infinitely often (fairness)
* A(FGy) almost everywhere
e CTL can, but LTL cannot.
- AG(EF)
. AF(EGy)

CTL Vs. LTL

A(FGY) AF(EGY)

Fairness

-start
~closed
—heat

-beep

start
~closed
-heat
beep

Fairness

-start
~closed
—heat

-beep

start
~closed
-heat
beep

* AG(start — AF heat)

Fairness

-start
~closed
—heat

-beep

start
~closed
-heat
beep

* AG(start — AF heat)
* NG!

Fairness

-start
~closed
—heat

-beep

* AG(start — AF heat)
* NG!

e Constraint: AGF'start A
close N\ —beep

start
-closed
=heat
Rt (operate correctly infinitely

often)

Fairness

-start
~closed
—heat

-beep

start
~closed
—heat
beep

* AG(start — AF heat)
* NG!
* Constraint: AGFstart /\
close N\ —beep
(operate correctly infinitely
often)
* AG(start — AF heat)
* OK!

Fairness

* More Examples...
* Protocols operated over reliable channels, to check no message is
ever transmitted but never received.
* Scheduler that schedules released tasks, to check all released
tasks will be finally scheduled.

* How to check fairness
- LTL: A(GFy)
e.g. AG(start — AF heat) N\ A(GF start A close N\ —beep)
* CTL: NG!

Quiz I: Crossing River

* Group {Man, Sheep, Wolf, Cabbage} trying across river.
* Constraints:

Quiz I: Crossing River

* Group {Man, Sheep, Wolf, Cabbage} trying across river.
* Constraints:

* Man can carry one item at a time by boat.
* If Sheep and Wolf only, Wolf will eat Sheep.
 If Sheep and Cabbage only, Sheep will eat Cabbage.

Quiz I: Crossing River

* Group {Man, Sheep, Wolf, Cabbage} trying across river.
* Constraints:

* Man can carry one item at a time by boat.
* If Sheep and Wolf only, Wolf will eat Sheep.
 If Sheep and Cabbage only, Sheep will eat Cabbage.

* Find way by model checking!

Quiz II. Hamilton Path

* Find out whether a graph occurs a Hamilton path.

Quiz II. Hamilton Path

* Find out whether a graph occurs a Hamilton path.

* M,qo):E(Fpl/\.../\Fpn/\G(Pl —
XG—p)N...NG(P, = XG—p,))

* M= ({610,%"} U V(G)v{QO}a {(qovv)v (V’Qf)7 (vaqf) | v E
V(G)} UE(G),L)

* L(vi) = {pi}

CTL Model Checking

* AX and EX
* AF and EF
* AG and EG
* AG and EG

CTL Formula

Properties

AX$ = ~EX(~¢)

EF¢ = E(True U ¢)

AG = ~EF (~9)

AF$ = ~EG(~9)

A(pU) = —E[-p U (=¢ A ~¢p)] A ~EG~¢

Properties

AX¢p = —EX(—¢)

EF¢ = E(True U ¢)

AG = ~EF (~9)

AF¢ = ~EG(—¢)

A(pU) = —E[-p U (=¢ A ~¢p)] A ~EG~¢

* EX, EG, EU are enough!

~ + Triviall

EU

procedure CheckEU(fi, f2)
T :={s| f2 € label(s) };
for all s € T do label(s) :=label(s) U{E[fi U f21 };
while T # @ do
chooses € T
T:=T\({s}
for all ¢ such that R(z, s) do
if Ef f1 U f] & label(t) and f| € label(t) then
label(t) := label(t) U{E[fi U f3]}
T :=TU({t};
end if;
end for all,
end while;
end procedure

EG

procedure CheckEG(fy)
S :={s| fi €label(s) };
SCC :={C | Cisanontrivial SCC of 5’ };
T:=UcescclsiseCl
for all s € T do label(s) := label(s) U { EG f| };
while T # @ do
chooses € T,
T:=T\{s};
for all ¢ such thatr € S’ and R(¢, s) do
il EG f, ¢ label(?) then
label(t) := label(t) U {EG f, };
T:=TU{t}
end if;
end for all;
end while;
end procedure

LTL Model Checking

Complicity of LTL Model Checking

Tableau method: O((|S| + |R|) x 2O(|‘P‘))

Complicity of LTL Model Checking

Tableau method: O((|S| + |R|) x 2O(|‘P‘))

At least NP-hard: consider Hamilton path of G

* M, qo):E(Fpl/\.../\Fpn/\G(Pl%
XG—p)A...ANG(P, = XG—py))

* M = ({90, 9r} U V(G), {q0}, {(q0,v), (v: 4r), (41, 9r) [v €
V(G)} VE(G),L)

* L(vi) = {pi}

Scenario of LTL Model Checking

* Apis aLTL, then the only state sub-formulas in ¢ are atomic
propositions.

*M,sEAp <= M,s =—-E-p

*M,sEFp<—=M,sE=truelUy

s = Gpo<— M,s =—F~-p

* It is sufficient to only consider the temporal operators X, U with
-, V wrapped by E.

Scenario of LTL Model Checking

* Apis aLTL, then the only state sub-formulas in ¢ are atomic
propositions.

= A0 <— M,s = E—p

*M,sEFp<—=M,sE=truelUy

*M,sEGp<= M,s =-F-yp

* It is sufficient to only consider the temporal operators X, U with
-, V wrapped by E.

* Construct closure cl(p) of ¢, which is the set of formulae related
to the truth value of ¢.

* Construct graph of atoms (transition graph on truth table of
cl(p))

* M,s = E ¢ is equivalent to existence of an eventuality sequence,
which is detected as a SCC.

Closure of LTL formula

The smallest set of formulae containing ¢, where

To keep finite (linear to |¢

—¢ € cl(p) iff ¢ € cl(p);

if V¢ e cl(p), then ¢, ¢ € cl(p);
if X ¢ € cl(p), then ¢ € cl(p);

if =X 1 € cl(p), then X) € cl(ip);

ifyp Uo € cl(p), then ¢, ¢, X (¢ U @) € cl(p).

), - 1s eliminated.

By construction, at most one X would be added.

Size of cl(f) is linear in the size of f.
e.g cl(dUy) =

Closure of LTL formula

The smallest set of formulae containing ¢, where

To keep finite (linear to |¢

—¢ € cl(p) iff ¢ € cl(p);

ifyp V¢ € cl(p), then 9, ¢ € cl(p);
if X ¢ € cl(p), then ¢ € cl(p);

if =X 1 € cl(p), then X) € cl(ip);

ifyp Uo € cl(p), then ¢, ¢, X (¢ U @) € cl(p).

), - 1s eliminated.

By construction, at most one X would be added.

Size of cl(f) is linear in the size of f.
e.g cl(dUy) =

{67 =4, 1, b,
U, ~(0U),X(0Up), ~X(5U),

* X-(6U)}

Atoms (wrt.)

* Atom (s,K) with s € Sand K C cl(p) UAP,
where

» foreachp € AP,p € K, iff p € L(s);

* forevery 0 € cl(p), 6 € K, iff =6 ¢ K;

 forevery d Vi € cl(p), 6 V) € Kiff 6 € K
ory € K;

* for every =X d € cl(p), X ¢ € K iff
X (—9) €K;

s forevery U ¢ € cl(p), 0 Uy € K iffyp € K
or6,X(6Uv) € K.

* Intuitively, K is the maximum consistent truth
valuation at s.

Atoms (wrt.)

* Atom (s,K) with s € Sand K C cl(p) UAP,
where

foreachp € AP, p € K, iff p € L(s);

forevery d € cl(p), § € K, iff =6 ¢ K;
forevery 6 Vo € cl(p), 6 Vi € Kiff§ € K

s A(FUP) =

for every =X ¢ € cl(yp), 7X 6 € K iff (6,,8 U, X(6 U),
foﬁ_e‘\(jgrjngb € cllg), sUpEKiffp ek ?;”’ i@ U@S’

or 6, X(0 Uv) € K. ~X(6U), X~(0U)}

* Intuitively, K is the maximum consistent truth
valuation at s.

Example of Atoms

* Tableau:

* [TLTT], [T T, TF], [TTET], [T.TEF]
* [CETT], [TETF], [TLEET], [TLEEF]
* [ET,TT], [ET,TF], [ETET], [ETEF]
o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R) &

Example of Atoms

* Tableau:

* [TLTT], [T T, TF], [TTET], [T.TEF]
* [CETT], [TETF], [TLEET], [TLEEF]
* [ET,TT], [ET,TF], [ETET], [ETEF]
o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R) &

[
* 50 : (L(so) = —6 A —¢))
- [EET,T], [EETF], [ERET], [EEEF]

Example of Atoms

* Tableau:

* [LTTT] [TTTF], [TTET], [T,TEF]

* [LETT], [TETF], [TEET], [TEEF]

* [ET,TT], [ET,TF], [ETET], [ETEF]

o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R) &
* 50 : (L(s0) = =6 A =)

* [EETT], [EETF], [EEET], [EEEF]
SN (s1) =0 A)

* [LETT], [TETF], [TEET], [TLEEF]

Example of Atoms

Tableau:

S0

S1

$2

* [TLTT], [T T, TF], [TTET], [T.TEF]
* [CETT], [TETF], [TLEET], [TLEEF]
* [ET,TT], [ET,TF], [ETET], [ETEF]
o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R) &

[
t (L(so) = =6 A —¢)
[

* [EETT], [EETF], [EEET], [EEEF]

(L(s1) = 6 A)

* [LETT], [TETF], [TEET], [TLEEF]

: (L(s2) = 0 A)

SETTT], [ETT.F], [ETET], [ET.EF]

Graph of Atoms

* For Kripke structure M = (S, So, R, L), formula ¢, define a graph
of atoms where nodes are atoms and edged are:

{((s,K), (s, K")) | (s,8) ERAV(XS) €cl(p),X6 EK <= S €K'}

85,0, 6 U, X(5U)
(so» [F.F.F. TD)—(s., [T,F.T,T] (32, [F.T,T,T])
IR E =, (s, [T.FF, F])—=(s, A ERMINED

Eventuality Sequence

* An eventuality sequence is an infinite path 7 in a graph of atoms,
satisfying:
* If § Uy € K for an atom (s, K) on 7, then there exists an atom
(s, K') on 7 after (s, K) with ¢ € K'.

O=0=0

8,3, 8 U, X(8 U)
(S [F.F.F, T])—(sy, [T,F, T, T] (32, [F,T,T.7])
(So: [F.F.F,FI)— (s, [T,F.F,F])«—2(s,, [F,T,T,F])

Eventuality Sequence

* An eventuality sequence is an infinite path 7 in a graph of atoms,
satisfying:
* If § Uy € K for an atom (s, K) on 7, then there exists an atom
(s, K') on 7 after (s, K) with ¢ € K'.
 Don’t care on § between (s, K) and (s',K"), why?

O=0=0

8,3, 8 U, X(8 U)
(S [F.F.F, T])—(sy, [T,F, T, T] (SZ, [F,T,T.7])
(So: [F.F.F,FI)— (s, [T,F.F,F])«—2(s,, [F,T,T,F])

Key Lemma

Lemma:
M, s |= E o iff there exists an eventuality sequence starting from an
atom (s, K) with ¢ € K.

Proof Sketch (=)

* M, sy = E o, if there exists an eventuality sequence
i (S(),K()), (Sl,Kl), (Sz,Kz) ... with ¢ € K.

s let‘ﬂ'i = (Si, Ki), (Si+1,Ki+1), (SH_z, KH—Z) ..., WE will prove
“m' =0 < § € K;, for each § € cl(¢)” by induction on the
structure of formula.

» Case § = X : By construction of a graph of atoms,
((si,Ki), (Sit1,Kit1)) implies X v € K; <= 7 € Ki41.
Thus, Xy €Ki <= yeK 1 <=l Ey <= =Xy
* Case 6 =y U
* By definition of 7, there exists (first) j > i with ¢ € K.
e Then 6 € K; (by definition of atom), and o = 4 (by induction
hypothesis); thus 7/ = 4.
* Notethat) € Ki A ... A € Kj_1;theny,X d € K;
<~ yEKANIEKL <= YEKAN...AYEK_; < T =
TR aaai =7 = = O

Proof Sketch (<)

* M,so = E o only if there exists an eventuality sequence starting
from an atom (s, K) with ¢ € K.

EWEl T 50,51,5),- .-, 8.t. M, = . Then,
(s0,Ko), (s1,K1), (s2,K2), . . . is an eventuality sequence where
Ky = {5 ‘ 0 € Cl(gO) /\M,ﬂ'i ': (5} for i = O ALl LR < o oo

Self-fulfilling SCC in Graph of
Atoms
A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every

atom (s, K) in C with § U v € K, there exists an atom (s, K’) in C
such that ¢ € K'.

(i.e., there is an eventuality sequence that covers SCC C).
0,0, 06U, X(6U)

(S, [F.F,F, T])——(sy, [T,F,T.T] (82, [F, T lesisl
(So: [F.F.F,FI)— (s, [T,F,F,F])«—2(s,, [F,T,T,F])

Self-fulfilling SCC in Graph of
Atoms

A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every
atom (s, K) in C with 6 U ¢ € K, there exists an atom (s', K’) in C
such that ¢ € K'.

(i.e., there is an eventuality sequence that covers SCC C).

Lemma:

There exists an eventuality sequence starting at an atom (s, K) iff
there exists a path from (s, K) to a self-fulfilling SCC.

Proof

=: Assume that there is an eventuality sequence starting at (s, K).
Consider the set C’ of all atoms that appear infinitely often in this
sequence. The set C’ is a subset of a (maximal) strongly connected
component C of G. Consider a subformula U, and an atom

(s,K) € C such that Uy € K. Because C is strongly connected,
there is a finite path in C from (s, K) into C’. If ¢ appears on the path,
we are done! Otherwise, since C’ comes from an eventuality
sequence, and ¢ is in some atom of C’.

«: Trivial.

LTL Model Checking

M, s |= E ¢ iff there exists atom A = (s, K) such that ¢ € K and there
exists a path from A to a self-fulfilling strongly connected component.

Summary of Algorithm

Construct a graph of atoms for a formula ¢, and compute
self-fulfilling SCCs.

Finding an eventuality sequence to self-fulfilling SCC by
depth-first search.

Atoms may multiplicand at most the exponential of the size of
closure, (which is linear to |¢|).

Complexity: O((|S| + |R]) x 20(¢D)

The Reality of Model Checking

The Reality of Model Checking

State explosion!

The Reality of Model Checking

State explosion!

The target system is huge!

The Reality of Model Checking

State explosion!
The target system is huge!

The software model checking is infinite!

The Reality of Model Checking

State explosion!
The target system is huge!
The software model checking is infinite!

The search algorithm itself is exponential!

Milestones

Milestones

» symbolic model checking SMV

Milestones

» symbolic model checking SMV

* partial reduction Spin

Milestones

» symbolic model checking SMV
* partial reduction Spin
* on-the-fly model checking SMV v.2

Milestones

symbolic model checking SMV
partial reduction Spin

on-the-fly model checking SMV v.2
bounded model checking NuSMV

Milestones

symbolic model checking SMV

partial reduction Spin

on-the-fly model checking SMV v.2

bounded model checking NuSMV

counter-example guided abstract refinement (CEGAR) BLAST

Milestones

symbolic model checking SMV

partial reduction Spin

on-the-fly model checking SMV v.2

bounded model checking NuSMV

counter-example guided abstract refinement (CEGAR) BLAST
Craig interpolation NuSMV v.?

Milestones

symbolic model checking SMV

partial reduction Spin

on-the-fly model checking SMV v.2

bounded model checking NuSMV

counter-example guided abstract refinement (CEGAR) BLAST
Craig interpolation NuSMV v.?

antichain

Further Topics

Infinite Structures: Unbounded
Stack

function parse Shandle

Get the file
$contents = $this->FILES|S$handle];
If there's no template variables in the file,
if strpos §contents, OPEN_WVAR, === false

n't bother

echo Scontents;
retl

Substitute global wvars. This is the easy part
each Sthis->VARS jvar_name => §var_walue

jcontents = str_replace (OPEN_VAR . §var_name . CLOSE_VAR,

If there's no block vars, don't &
if strpos §contents, '<!-- BEGIN '

ssing them

echo §contents;

Now the tricky

stituting an HTHML block for multip
foreach §this—->BLOCK_VARS as

§block name => $hlock array

Get all the bloc
focount = preqg match all ("#<!-

ks matching §hlock name
BEGIN $block nams ——>(."%?)<

Pushdown Automata

A pushdown system P = (Q, qo, ', wp, A) is a

transition system with carrying an unbounded stack.

* (s a set of control locations, and gg € Q is
the initial location.

 I' is a finite set of stack alphabet, and wg € I'*
is the initial stack contents.

* A:(QxT) x(Q xTI™)is a finite subset of
transitions with the form (g,) < (¢’,w),
where ¢,q' € O,y € T and w € T*.

finite —
control | &

Infinite Structures: Real-Time

Timed Automata

ATA (Q,qo0,F,X,A), where

* (O is a finite set of locations,

z € (nav, +00)?

* initial location g9 € Q,
A . z + [0,4.5] z € (0, nav]?
* ' C Qis the set of final locations, i 5 °
= N~ L
* X is a finite set of clocks, ¢ 0,65 |y [0,0]

A C QO x O x Q. A transition
q1 ﬂ g2, where ¢ is either of

o

o0l ==

y € (0, data]?

Local e, I o € (0, data)? S

Test x € 17,
Assignment x < I.

Infinite Structures: Multi-Threa

<summary>
This method will always run in a thread separate from the main thread.
</summary>

private void doStuffAsync()

[
//this if statement makes sure that this method is running in a thread
//separate from the main thread.
if (Dispatcher.Thread == System.Threading.
[

ad.CurrencThread)

tart threadStart = new System.Threading. doStuffAsync);
newThread = new System.Threading cad (threadStare)

newThread.Start () ;
recurn;

//code beyond here is running in a thread separate from the main thread

setText ("I can c to 1007y ;
System.Threading 26.51eep (1000) ;
for (int x = 1; x <= 10; x++)

[

System.Threading c2d.Sleep(500);
setText (x.ToString());

System.Threading ead.Sleep(1000) ;

setText (

S

Petr1 Net

A Petrinetis atriple N = (P,T,F)
where:

e Pand T are disjoint finite sets of
places and transitions,
respectively.

* FC(PxT)U(T x P)isasetof
arcs.

Reports

Repl. Probabilistic model checking (Maximal 3 students).
Rep2. Stochastic model checking (Maximal 3 students).

Rep3. Model checking in a specific field (Maximal 5 students).

