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Finite Automata



Finite Automata
Finite Automaton A = (S,Σ, δ, q0,F), where

• S: a finite set of states
• Σ: alphabet
• δ ⊆ S × (σ ∪ {ε})× S: transition
• q0 ∈ S: initial state
• F ⊆ S: a set of final states

Word w = a0a1 . . . an ∈ Σ∗ is accepted if there exists

q0
a1−→ q1

a2−→ . . .
an−→ qn ∈ F

for (qi−1, ai, qi) ∈ δ

L(A) is the set of accepted words.
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Examples of Regular Languages

{(ab)n | ∀n ≥ 0}

{(anbn | ∀n ≥ 0}

{ab, a2b2, . . . anbn}
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Notation

q a−→ q′ ⇔ (q, a, q′) ∈ δ

q u−→ q′ ⇔ q = q1
a1−→ q2

a2−→ . . .
an−1−−→ qn = q′

where u = a1a2 . . . an−1 ∈ Σ∗



Intersection of Automata

A = (S,Σ, δ, q0,F),B = (S′,Σ, δ′, q′0,F
′)

An Automaton that accepts L(A) ∩ L(B)

(S × S′,Σ, δ × δ′, (q0, q′0),F × F ′)

Intersection of automata
For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’), 
• automaton that accepts L(A)∩L(B)

(S×S’, Σ, δ×δ’, (q0, q’0), F×F’)

q0,q’0

q1,q’1 q2,q’0

q2,q’1

b b

q0,q’1
b

q1,q’0b

a

a

ca

ba
q0

q1 q2
c

b c
q’0 q’1

b

a,b
=∩
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Union of Automata

A = (S,Σ, δ, q0,F),B = (S′,Σ, δ′, q′0,F
′)

An Automaton that accepts L(A) ∪ L(B)

(S ∪ S′ ∪ {q},Σ, δ ∪ δ′ ∪ {(q, ε, q0), (q, ε, q′0)}, q,F ∪ F ′)

Union of automata (non-deterministic)

For automata A =(S,Σ,δ,q0,F), B =(S’,Σ,δ’,q’0,F’), 
• automaton that accepts L(A)∪L(B)
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Removing ε-transitions

A = (S,Σ, δ, q0,F)

A′ = (S,Σ, {(q, a, q′) | q ε∗aε∗−−−→ q′}, q0,F ′)

where F ′ =

{
F ∪ {q0} if q0

ε∗−→ qf for qf ∈ F
F otherwise



Example of ε-transition RemovalExample of ε-transition removal
0 21

ε εq0 q2q1

0 21

1,20,1q0 q2q1

0,1,2

Put a new transition a−→ where ε∗aε∗−−−→

If q0
ε∗−→ qf for qf ∈ F, add q0 to F
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Complement of Automata

A = (S,Σ, δ, q0,F)

• if A is deterministic, Ac = (S,Σ, δ, q0, S − F).
• if A is non-deterministic, make A deterministic first

Assume that A is without ε-transition. Then

(P(S),Σ, {(X, a, {y | x a−→ y for x ∈ X})}, {q0}, {X | X∩F 6= ∅})



Example of Complement
Example of complement

a a

b c

q0

q1

q3

q2

q4

b c

a

cb

{q0}

b c

{q1,q2}

{q4}{q3} φ

a,c

a,b

a

b,c

a

cb

{q0}

b c

{q1,q2}

{q4}{q3} φ

a,c

a,b

a

b,c

make it 
deterministic

invert 
final states

a,b,ca,b,c

For Buchi automata,  deterministic ⊂ non-deterministic; 
Thus, this technique does not work.



Emptiness

Pumping Lemma
Let A = (S,Σ, δ, q0,F) be a finite automaton. For each z ∈ L(A) with
|z| ≥ |S|, ∃u, v,w such that z = uvw, |uw| < |S|, |v| ≥ 1, uviw ∈ L(A).

L(A) 6= ∅ iff ∃z with |z| < |S| and z ∈ L.
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Idea of Pumping Lemma

Pumping Lemma
Let A = (S,Σ, δ, q0,F) be a finite automaton. For each z ∈ L(A) with
|z| ≥ |S|, ∃u, v,w such that z = uvw, |uw| < |S|, |v| ≥ 1, uviw ∈ L(A).

Idea of pumping lemma

• Pumping Lemma: For each z ∈L(A) with |z|≧|S|,
∃u,v,w s.t. z = uvw, |uw|＜|S|, |v|≧1, uviw∈L(A). 

q0 q qf
u

v

w

First state that is visited twice
(pigeon hole principle)

Pigeon hole principle!
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Subset

A = (S,Σ, δ, q0,F),B = (S′,Σ, δ′, q′0,F
′)

Ask L(A) ⊆ L(B)?

L(A) ⊆ L(B)⇔ L(A) ∩ L(Bc) = ∅



Subset

A = (S,Σ, δ, q0,F),B = (S′,Σ, δ′, q′0,F
′)

Ask L(A) ⊆ L(B)?

L(A) ⊆ L(B)⇔ L(A) ∩ L(Bc) = ∅



Congruence

u R v is a congruence iff R is an equivalence and preserved under
concatenation

u R v⇒ wuw′ R wvw′ for each w,w′ ∈ Σ∗

.



Myhill-Nerode Theorem

Myhill-Nerode Theorem
The following three statements are equivalent.

1 L is regular.

2 L is a union of congruence classes of finite index.

3 RL is a congruence of finite index, where

u RL v iff uw ∈ L ⇔ vw ∈ L for each w ∈ Σ∗



Proof: 3⇒ 1

Let RL be a congruence of finite index, where

u RL v iff uw ∈ L ⇔ vw ∈ L for each w ∈ Σ∗

Let an automaton A = (S,Σ, δ, q0,F) be
• S = Σ∗/RL (finite congruence classes of RL)
• δ = {([u], a, [ua]) | u ∈ Σ∗, a ∈ Σ}
• q0 = [ε]

• F = {[u] | u ∈ L}

L = L(A) and L is regular.
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Proof: 1⇒ 2

Let L = L(A) with A = (S,Σ, δ, q0,F)

u RA v iff q u−→ q′ ⇔ q v−→ q′ for q, q′ ∈ S

RA is a congruece of finite index, (at most 2|S|×|S|).
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Another Technique for Complement

Myhill-Nerode Theorem says that L is regular⇔ L is a union of
congruence classes of finite index.

L =
⋃

Ui∩L 6=∅

Ui

Note that each Ui is regular! Thus,

Lc =
⋃

Ui∩L=∅

Ui
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Büchi Automata



Büchi Automata

Accept ω-words, instead of finite words.

Acceptance condition is different.

For a Büchi automaton A = (S,Σ, δ, q0,F), ω-word
w = a0a1 . . . ∈ Σω is accepted if there exists q0

a0−→ q1
a1−→ . . . for

(qi, ai, qi+1) ∈ δ across F infinitely often. L(A) is the set of accepted
ω-words.

L(A) is called regular (ω-language).
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Deterministic VS. Non-deterministic
Accepted by deterministic Büchi automata?

• (b∗a)ω

• a appears infinitely many
• Yes!

• (b∗a)∗bω

• {a, b}ω − (b∗a)ω

• No!

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB
(b∗a)ω

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB

(b∗a)∗bω



Deterministic VS. Non-deterministic
Accepted by deterministic Büchi automata?

• (b∗a)ω

• a appears infinitely many
• Yes!

• (b∗a)∗bω

• {a, b}ω − (b∗a)ω

• No!

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB
(b∗a)ω

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB

(b∗a)∗bω



Deterministic VS. Non-deterministic
Accepted by deterministic Büchi automata?

• (b∗a)ω

• a appears infinitely many
• Yes!

• (b∗a)∗bω

• {a, b}ω − (b∗a)ω

• No!

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB
(b∗a)ω

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB

(b∗a)∗bω



Deterministic VS. Non-deterministic
Accepted by deterministic Büchi automata?

• (b∗a)ω

• a appears infinitely many
• Yes!

• (b∗a)∗bω

• {a, b}ω − (b∗a)ω

• No!

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB
(b∗a)ω

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB

(b∗a)∗bω



Deterministic VS. Non-deterministic
Accepted by deterministic Büchi automata?

• (b∗a)ω

• a appears infinitely many
• Yes!

• (b∗a)∗bω

• {a, b}ω − (b∗a)ω

• No!

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB
(b∗a)ω

Deterministic v.s. non-deterministic

• Accepted by deterministic Buchi automata?
(b*a)ω :  yes!
(b*a)*bω = {a,b}ω－(b*a)ω :  no!

“a” appears infinitely many

b

a
q2q1

ba a,b

q2q1
b

b

If interested, check 4.1,4.2 in Ch.4 in TCSB

(b∗a)∗bω



Variation on Automata for ω-Words
Let Inf (σ) be the set of states that a path σ across infinitely often. Let
α ∈ Σω

Büchi automata A = (S,Σ, δ, q0,F)

• α has a path σ such that Inf (σ) ∩ F 6= ∅.

Muller automata A = (S,Σ, δ, q0, {F1, . . . ,Fm})
• α has a path σ such that Inf (σ) = Fi.

Rabin automata A = (S,Σ, δ, q0, {(L1,M1), . . . , (Lm,Mm)})

• α has a path σ such that Inf (σ) ∩ Li = ∅, Inf (σ) ∩Mi 6= ∅.

If nondeterministic, they are all equivalent.
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Algorithm Reuse

Q: Which algorithms of finite automata can be reused in Büchi
automata?

• Intersection?
• Union?
• Complement?
• Emptiness?
• Subset?
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Boolean Closure of Büchi Automata

A = (S,Σ, δ, q0,F),B = (S′,Σ, δ′, q′0,F
′),

Büchi automaton that accepts L(A) ∩ L(B)
(S × S′ × {0, 1},Σ, δ′′, (q0, q′0, 0),F × S′ × {0} ∪ S × F ′ × {1})

where δ′′ = {((s, s′, i), (a, a′), (t, t′, j)) | (s, a, t) ∈ δ, (s′, a′, t′) ∈ δ′,
• j = 1 if either i = 0 and t ∈ F, or i = 1 and t′ /∈ F ′,
• j = 0 if either i = 0 and t /∈ F, or i = 1 and t′ ∈ F ′

}

Büchi automaton that accepts L(A) ∪ L(B)
(S ∪ S′ ∪ {q},Σ, δ ∪ δ′ ∪ {(q, ε, q0), (q, ε, q′0)}, q,F ∪ F ′)
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Emptiness

For a Büchi automaton A = (S,Σ, δ, q0,F), L(A) 6= ∅ implies
∃u, v ∈ Σ∗ such that |u|, |v| ≤ |S| and uvω ∈ L(A).

Emptiness is decidable
• For Buchi automaton A= (S,Σ,δ,q0,F),  L(A) ≠φ

implies ∃u,v∈∑* s.t. |u|,|v|≦|S| and uvω∈L(A). 

q0 qf

u

v

First final state that is visited infinitely often
(pigeon hole principle)
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Complement of Büchi Automata

For a Büchi automaton A = (S,Σ, δ, q0,F),

Even if A is deterministic, Ac may be non-deterministic.
• (b∗a)ω

But, deterministic ⊂ non-deterministic …

The Büchi automaton version of Myhill-Nerode Theorem discussion
is required.
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Several ways for Complement

Via Muller Automata

Via Alternating Automata

Miyano, S., Hayashi, T., Alternating Finite Automata on omega-Words. TCS 32,

pp.321-330, 1984

Explicit representation by congruence classes (this also gives
minimization)

Many many new techniques recently, which is still a hot topic
nowadays.
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Notations

For a Büchi automaton A = (S,Σ, δ, q0,F),

q u−→F q′ ⇔ q u−→ q′ across some qf ∈ F

u ∼A v iff ∀q, q′ ∈ S,

(q u−→ q′ ⇔ q v−→ q′) ∧ (q u−→F q′ ⇔ q v−→F q′)



Finite Congruence of Büchi
Automata

∼A is a finite congruence over Σ

∼A classes U,Vare regular

U.Vω is regular ω-languages.



L(A) as a Union of U.Vω

Lemma
For a Büchi automaton A = (S,Σ, δ, q0,F),

L(A) =
⋃

U.Vω∩L(A) 6=∅

U.Vω

L(A) ⊇
⋃

U.Vω∩L(A)6=∅U.Vω is easy, since

U.Vω ∩ L(A) 6= ∅ ⇒ U.Vω ⊆ L(A)

L(A) ⊆
⋃

U.Vω∩L(A)6=∅U.Vω needs Ramsey’s Theorem.
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Ramsey’s Theorem

General Version
Let G be an infinite complete graph. Put a label from {1, 2, . . . , k} on
each edge. Then, there exists an infinite complete sub-graph such that
its each edge has the same label.



L(A) ⊆
⋃

U.Vω∩L(A)6=∅U.Vω

For each α ∈ Σω, there exist ∼A -classes U,V such that α ∈ U.Vω.

Let α(m, n) = amam+1 . . . an−1 for α = a1a2a3 . . .

Regarding α(m, n) ∈ V as a label V , by Ramsey’s Theorem,
α(n1, n2), (n2, n3), . . . ∈ V . If α(0, n1) ∈ U, then α ∈ U.Vω.



Complement of L(A)

For a Büchi automaton A = (S,Σ, δ, q0,F),

L(A) =
⋃

U.Vω∩L(A) 6=∅

U.Vω

Then,
Lc(A) =

⋃
U.Vω∩L(A)=∅

U.Vω

U,V are regular; thus, Lc(A) is regular.



Reports

Rep4. Antichain for Universality, subset of automata (Maximal 3
students).


