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Finite Automata

Finite Automaton A = (S, X, , qo, F), where
» §: afinite set of states
e Y: alphabet

d C S x (ocU{e}) x S: transition

* go € S: initial state

* F C S: aset of final states
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Finite Automata

Finite Automaton A = (S, X, J, qo, F), where
» §: afinite set of states
e Y: alphabet

d C S x (ocU{e}) x S: transition

* go € S: initial state

* F C S: aset of final states

Word w = apa; . . .a, € ¥* is accepted if there exists
q()a—1>ql ﬂ)...a—n)anF
for (gi-1,ai,q;) €6

L(A) is the set of accepted words.
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Examples of Automata

0 1

\

Accepts {0*1*2*}

Accepts {abt,act}
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Examples of Regular Languages

{(ab)" | Vn > 0}
{(a"b" | ¥n > 0}

{ab,a’p?,...d"b"}



Notation

g4 < (q,a,4)€d

u / L ay a) an—1 /
9—q <q9=4q1 —q2 — ... — 7 qp=(¢
where u = ajay ...a, 1 € ¥*



Intersection of Automata

A: (572757%, )7 (S, 276,5q07 )
An Automaton that accepts L(A) N L(B)

SPast > 5 > 8 i(q0,q0 s o)
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Intersection of Automata

A = (S7 27 67 q07 F)7 B e (S/7 E? 5/7 q/07 F/)
An Automaton that accepts L(A) N L(B)

Sest ¥ 5 x 8, (qo,q0), Bk




Union of Automata

A= (572757QO7F)7B = (S,7E75,7Q67F,)
An Automaton that accepts L(A) U L(B)

(SuS'U{q},Z,6U8 U{(q,¢,90),(9:€,90)},9. F UF')

S, oy e



Union of Automata

A= (S72757 QOaF)7B = (S,7275,7Q67F,)
An Automaton that accepts L(A) U L(B)

(SuS'U{q},Z,6U8 U{(q,¢,90),(9:€,90)},9. F UF')

b

@




Removing e-transitions

A: (S72,67q0’F)

A'=(5,2{(9,0,4) |4 = ¢'},q0, F")

.f & f F
where F' = FU{qo} ifqo —.>Qf orqgr
" otherwise



Example of e-transition Removal

0 1 2

L, a e*ae*
Put a new transition — where ———

If g0 iqf for gr € F,add go to F



Example of e-transition Removal

0 1 2

L, a e*ae*
Put a new transition — where ———

If g0 i>qf for gr € F,add go to F

1

0 2
—((do 0,1 @ 12 a,

1,2

o



Complement of Automata

A= (572767q07F)

* if A is deterministic, A° = (S, X, d,q0,S — F).

e if A is non-deterministic, make A deterministic first

Assume that A is without e-transition. Then

(P(S),Z,{(X,a,{y | x = yforx € X})}, {q0}, {X | XOF # 0})



make it
deterministic

Example of Complement
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Emptiness

Pumping Lemma
LetA = (S, X, 9, qo, F) be a finite automaton. For each z € L(A) with
|z| > |S|, 3u, v, w such that z = uvw, luw| < |S],|v| > 1,u'w € L(A).



Emptiness

Pumping Lemma
LetA = (S, %, 4, qo, F) be a finite automaton. For each z € L(A) with
|z| > |S|, 3u, v, w such that z = uvw, luw| < |S],|v| > 1,u'w € L(A).

L(A) # 0 iff 3z with |z] < |S| and z € L.



Idea of Pumping Lemma

Pumping Lemma
LetA = (S, %, 6, qo, F) be a finite automaton. For each z € L(A) with
|z| > |S], 3u, v, w such that z = uvw, luw| < |S|,|v] > 1,uv'w € L(A).




Idea of Pumping Lemma

Pumping Lemma
LetA = (S, %, 6, qo, F) be a finite automaton. For each z € L(A) with
|z| > |S], 3u, v, w such that z = uvw, luw| < |S|,|v] > 1,uv'w € L(A).

Pigeon hole principle!



Subset

A e (572757 q()u )7 (S, 275,761(); )

Ask L(A) C L(B)?



Subset

A= (572757q07F)7B : (5,7275,7616717,)

Ask L(A) C L(B)?

L(A) C L(B) < L(A) N L(B%) = 0



Congruence

u R v is a congruence iff R is an equivalence and preserved under
concatenation

uRv = wuw' Rwww' for each w,w’ € ©*



Myhill-Nerode Theorem

Myhill-Nerode Theorem
The following three statements are equivalent.

©® L isregular.
® L is a union of congruence classes of finite index.

©® Ry is a congruence of finite index, where

uRpviffuw € L & vw € L foreachw € X*
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Erool: ' =TI

Let Ry, be a congruence of finite index, where

uRpviffuw € L & vw € L foreachw € X*

Let an automaton A = (S, X, 4, qo, F) be
» § = ¥*/Ry. (finite congruence classes of Ry)
e 0 ={([u],a,ua)) |u € x*ac X}
* qo = [¢]
* F={[ul |uelL}



Erool: ' =TI

Let Ry, be a congruence of finite index, where

uRpviffuw € L & vw € L foreachw € X*

Let an automaton A = (S, X, 4, qo, F) be

» S = ¥*/R; (finite congruence classes of Ry)
W ) e T a e T)

* qo0 = [¢]
* F={[u|ucL}

L =L(A) and L is regular.
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LetL = L(A) with A = (S, %, 5, g0, F)
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uRAviffg 5 q < g5 g forg,qd €8



Erool: I"'="2

Let L = L(A) with A = (S, %, 8, o, F)
uRAviffg 5 q < g5 g forg,qd €8

R, is a congruece of finite index,



Erool: I"'="2

Let L = L(A) with A = (S, %, 8, o, F)
uRAviffg 5 q < g5 g forg,qd €8

R, is a congruece of finite index, (at most 2|S|X|S‘).



Proof: 2 = 3

Let R be a congruence of finite index and let L be a union of
congruence classes.



Proof: 2 = 3

Let R be a congruence of finite index and let L be a union of
congruence classes.

LetuRyviffuw € L < vw € L for eachw € X*.



Proof: 2 = 3

Let R be a congruence of finite index and let L be a union of
congruence classes.

LetuRyviffuw € L < vw € L for eachw € X*.

URv = uR; v ;thus, Ry is of finite index.
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Mpyhill-Nerode Theorem says that L is regular <> L is a union of
congruence classes of finite index.
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Another Technique for Complement

Mpyhill-Nerode Theorem says that L is regular <> L is a union of
congruence classes of finite index.

L:UU,-

U;NLAD

Note that each U; is regular! Thus,

LS = U W,

U;NL=0
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Accept w-words, instead of finite words.

Acceptance condition is different.
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Accept w-words, instead of finite words.

Acceptance condition is different.

For a Biichi automaton A = (S, X, 4, o, F), w-word

w = apa; ... € X is accepted if there exists g s q1 4, . for
(gi,ai,qi+1) € 6 across F infinitely often. L(A) is the set of accepted
w-words.



Biichi Automata

Accept w-words, instead of finite words.

Acceptance condition is different.

For a Biichi automaton A = (S, X, 4, o, F), w-word

w = apa; ... € X is accepted if there exists g s q1 4, . for

(gi,ai,qi+1) € 6 across F infinitely often. L(A) is the set of accepted
w-words.

L(A) is called regular (w-language).
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Examples of Biichi Automata

Accepts {0*1*2¥}




Examples of Biichi Automata

0 1

\

Accepts {0*1*2¥}

Accepts {ab®, ac*}



Deterministic VS. Non-deterministic

Accepted by deterministic Biichi automata?

* (b*a)”

& (b*a)*b“’
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Deterministic VS. Non-deterministic

Accepted by deterministic Biichi automata?

* (b*a)”
* a appears infinitely many
* Yes!
. (b*a)*b¥
* {a,b}* = (b*a)”
* No!



Deterministic VS. Non-deterministic

Accepted by deterministic Biichi automata?

* (b*a)”
* a appears infinitely many
* Yes!

. (b*a)*b¥
* {a,b}* = (b*a)”



Variation on Automata for w-Words

Let Inf (o) be the set of states that a path o across infinitely often. Let
@ € B



Variation on Automata for w-Words

Let Inf (o) be the set of states that a path o across infinitely often. Let
G >

Biichi automata A = (S, X%, 4, qo, F)
* « has a path o such that Inf (o) N F # ().

Muller automata A = (S, 3,4, qo0, {F1,-..,Fm})
* « has a path o such that Inf (0) = F;.

Rabin automata A = (S, %, §, g0, {(L1,M1), ..., (Lym,Mu)})
* «a has a path o such that Inf (o) N L; = 0, Inf (o) N M; # 0.



Variation on Automata for w-Words

Let Inf (o) be the set of states that a path o across infinitely often. Let
G >

Biichi automata A = (S, X%, 4, qo, F)
* « has a path o such that Inf (o) N F # ().

Muller automata A = (S, 3,4, qo0, {F1,-..,Fm})
* « has a path o such that Inf (0) = F;.

Rabin automata A = (S, %, §, g0, {(L1,M1), ..., (Lym,Mu)})
* «a has a path o such that Inf (o) N L; = 0, Inf (o) N M; # 0.

If nondeterministic, they are all equivalent.
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Q: Which algorithms of finite automata can be reused in Biichi
automata?



Algorithm Reuse

Q: Which algorithms of finite automata can be reused in Biichi
automata?

* Intersection?
* Union?

* Complement?
* Emptiness?

e Subset?



Boolean Closure of Biichi Automata



Boolean Closure of Biichi Automata

A:(szv(quan)vB:( 751aQO7 )



Boolean Closure of Biichi Automata

A= (sza(S»quF)vB =3 (S/72>6IaQ(/)7F/)’
Biichi automaton that accepts L(A) N L(B)
S 0,11, %, 6", (90,45,0), F x S’ x {0} US x FAx {148
where §" = {((s,s',1), (a,d'), (¢,7,))) | (s,a,t) € §,(s',d,t') € &,
e j=1lifeitheri=0ands € F,ori=1and? ¢ F',
e j=0ifeitheri=0andr ¢ F,ori=1and¢ € F’

}



Boolean Closure of Biichi Automata

A= (sza(S»quF)vB =3 (S/72>5IaQ(/)7F/)’
Biichi automaton that accepts L(A) N L(B)
S 0,11, %, 6", (90,45,0), F x S’ x {0} US x FAx {148
where §" = {((s,s',1), (a,d'), (¢,7,))) | (s,a,t) € §,(s',d,t') € &,
e j=1lifeitheri=0ands € F,ori=1and? ¢ F',
e j=0ifeitheri=0andr ¢ F,ori=1and¢ € F’
}

Biichi automaton that accepts L(A) U L(B)
(SUS'U{g},%,0Ud U{(q,¢,9), (g€, 90)}, 9, F UF')



Emptiness

For a Biichi automaton A = (S, %, 4, qo, F), L(A) # 0 implies
Ju,v € ¥* such that |ul, |v| < |S| and uv* € L(A).



Emptiness

For a Biichi automaton A = (S, %, 4, qo, F), L(A) # 0 implies
Ju,v € ¥* such that |ul, |v| < |S| and uv* € L(A).

o Sl Sk
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Complement of Biichi Automata

For a Biichi automaton A = (S, %, 4, o, F),

Even if A is deterministic, A° may be non-deterministic.
o (b*a)w

But, deterministic C non-deterministic ...

The Biichi automaton version of Myhill-Nerode Theorem discussion
is required.



Several ways for Complement
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Miyano, S., Hayashi, T., Alternating Finite Automata on omega-Words. TCS 32,
pp-321-330, 1984



Several ways for Complement

Via Muller Automata

Via Alternating Automata
Miyano, S., Hayashi, T., Alternating Finite Automata on omega-Words. TCS 32,

pp.321-330, 1984

Explicit representation by congruence classes (this also gives
minimization)

Many many new techniques recently, which is still a hot topic
nowadays.



Notations

For a Biichi automaton A = (S, X, 6, qo, F),
2 / N
q —F q < q — ¢ across some gy € F

ur~yviffVvg,q €8S,

(@5 d<qa>d)Ng=rd < q>rq)



Finite Congruence of Biichi
Automata

~4 is a finite congruence over X
~y4 classes U, Vare regular

U.V* is regular w-languages.



L(A) as a Union of U.V¥

Lemma
For a Biichi automaton A = (S, %, 4, qo, F),

L= U uvw

U.V¥NL(A)#0D
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L(A) as a Union of U.V¥

Lemma
For a Biichi automaton A = (S, X, 6, qo, F),

L= U uvw
U.V¥NL(A)#0D

L(A) 2 Uy.yeniayzo U-V* is easy, since

U.V¥ NL(A) # 0 = U.V® C L(A)

L(A) C UU.Vme(A);é@ U.V¥ needs Ramsey’s Theorem.



Ramsey’s Theorem

General Version

Let G be an infinite complete graph. Put a label from {1,2,...,k} on
each edge. Then, there exists an infinite complete sub-graph such that
its each edge has the same label.



L(A) € UU.VWHL(A)#Q) U.ve

For each a € X%, there exist ~4 -classes U, V such that « € U.V¥.
NG ) — dnap ) - -a, ) fora = ayaa;s ...

Regarding a(m,n) € V as a label V, by Ramsey’s Theorem,
a(n,m), (n2,n3),... € V.ifa(0,n;) € U, then o € U.V“.



Complement of L(A)

For a Biichi automaton A = (S, X, 6, qo, F),
LSRR SRS R
U.VNL(A)#D

Then,

= S e

U.VeNL(A)=0

U,V are regular; thus, L°(A) is regular.



Reports

Rep4. Antichain for Universality, subset of automata (Maximal 3
students).



