

Fundamentals of Programming Languages III

Finite and Büchi Automata

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Finite Automata

Finite Automata

Finite Automaton $A = (S, \Sigma, \delta, q_0, F)$, where

- S : a finite set of states
- Σ : alphabet
- $\delta \subseteq S \times (\sigma \cup \{\varepsilon\}) \times S$: transition
- $q_0 \in S$: initial state
- $F \subseteq S$: a set of final states

Finite Automata

Finite Automaton $A = (S, \Sigma, \delta, q_0, F)$, where

- S : a finite set of states
- Σ : alphabet
- $\delta \subseteq S \times (\Sigma \cup \{\varepsilon\}) \times S$: transition
- $q_0 \in S$: initial state
- $F \subseteq S$: a set of final states

Word $w = a_0a_1 \dots a_n \in \Sigma^*$ is accepted if there exists

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$$

for $(q_{i-1}, a_i, q_i) \in \delta$

Finite Automata

Finite Automaton $A = (S, \Sigma, \delta, q_0, F)$, where

- S : a finite set of states
- Σ : alphabet
- $\delta \subseteq S \times (\Sigma \cup \{\varepsilon\}) \times S$: transition
- $q_0 \in S$: initial state
- $F \subseteq S$: a set of final states

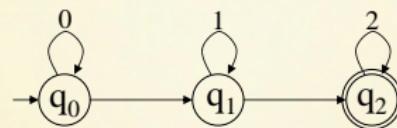
Word $w = a_0a_1 \dots a_n \in \Sigma^*$ is accepted if there exists

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} q_n \in F$$

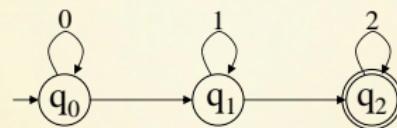
for $(q_{i-1}, a_i, q_i) \in \delta$

$L(A)$ is the set of accepted words.

Examples of Automata

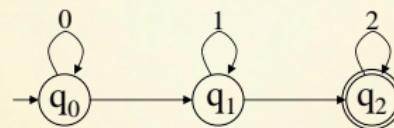


Examples of Automata

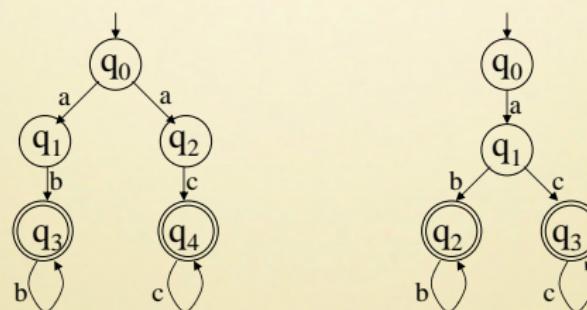


Accepts $\{0^*1^*2^*\}$

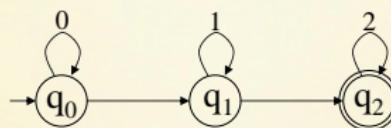
Examples of Automata



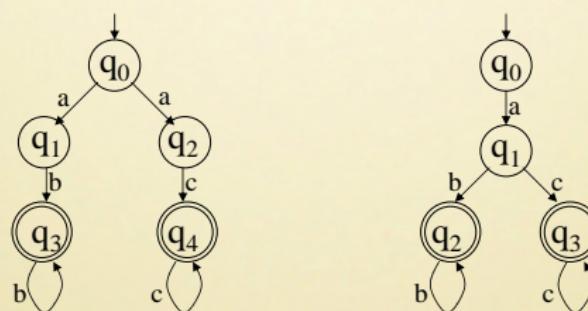
Accepts $\{0^*1^*2^*\}$



Examples of Automata



Accepts $\{0^*1^*2^*\}$



Accepts $\{ab^+, ac^+\}$

Examples of Regular Languages

$\{(ab)^n \mid \forall n \geq 0\}$

Examples of Regular Languages

$\{(ab)^n \mid \forall n \geq 0\}$

$\{(a^n b^n \mid \forall n \geq 0\}$

Examples of Regular Languages

$\{(ab)^n \mid \forall n \geq 0\}$

$\{(a^n b^n \mid \forall n \geq 0\}$

$\{ab, a^2b^2, \dots a^n b^n\}$

Notation

$$q \xrightarrow{a} q' \Leftrightarrow (q, a, q') \in \delta$$

$$q \xrightarrow{u} q' \Leftrightarrow q = q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \dots \xrightarrow{a_{n-1}} q_n = q'$$

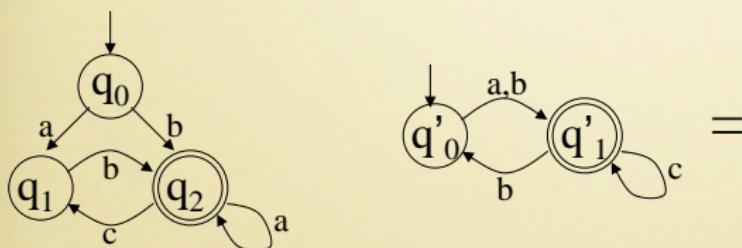
where $u = a_1 a_2 \dots a_{n-1} \in \Sigma^*$

Intersection of Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

An Automaton that accepts $L(A) \cap L(B)$

$$(S \times S', \Sigma, \delta \times \delta', (q_0, q'_0), F \times F')$$

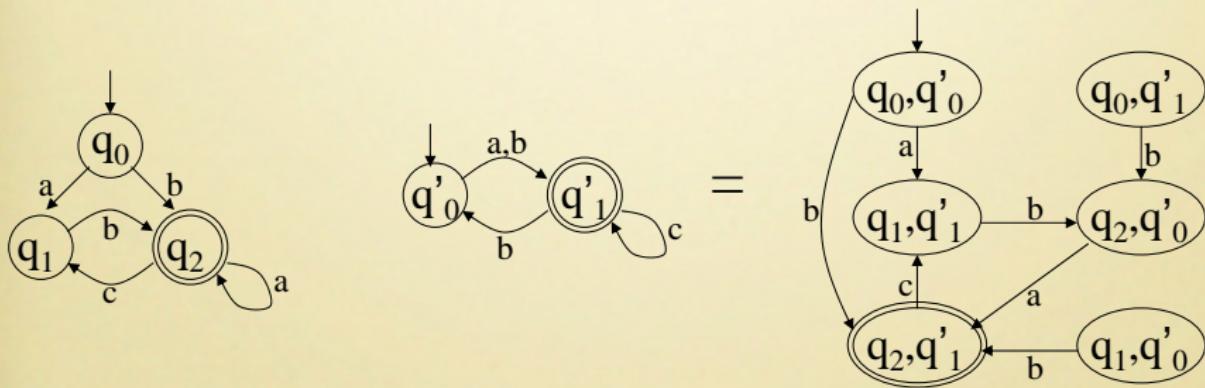


Intersection of Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

An Automaton that accepts $L(A) \cap L(B)$

$$(S \times S', \Sigma, \delta \times \delta', (q_0, q'_0), F \times F')$$

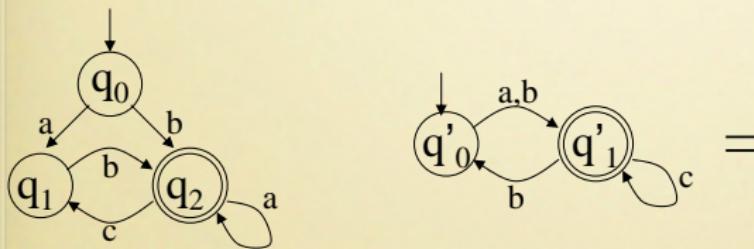


Union of Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

An Automaton that accepts $L(A) \cup L(B)$

$$(S \cup S' \cup \{q\}, \Sigma, \delta \cup \delta' \cup \{(q, \varepsilon, q_0), (q, \varepsilon, q'_0)\}, q, F \cup F')$$

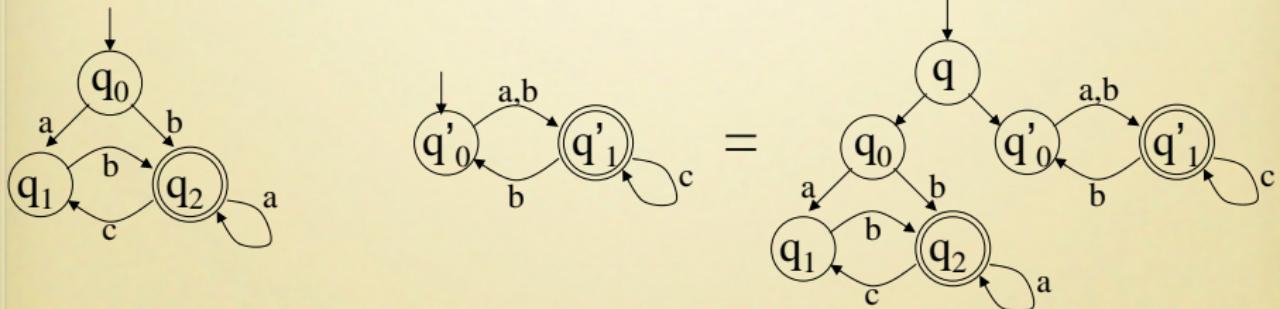


Union of Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$$

An Automaton that accepts $L(A) \cup L(B)$

$$(S \cup S' \cup \{q\}, \Sigma, \delta \cup \delta' \cup \{(q, \varepsilon, q_0), (q, \varepsilon, q'_0)\}, q, F \cup F')$$



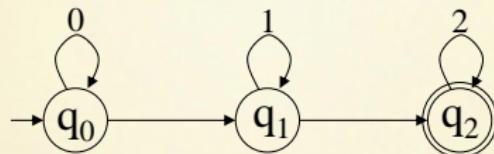
Removing ε -transitions

$$A = (S, \Sigma, \delta, q_0, F)$$

$$A' = (S, \Sigma, \{(q, a, q') \mid q \xrightarrow{\varepsilon^* a \varepsilon^*} q'\}, q_0, F')$$

where $F' = \begin{cases} F \cup \{q_0\} & \text{if } q_0 \xrightarrow{\varepsilon^*} q_f \text{ for } q_f \in F \\ F & \text{otherwise} \end{cases}$

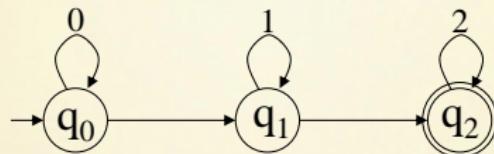
Example of ε -transition Removal



Put a new transition \xrightarrow{a} where $\xrightarrow{\varepsilon^* a \varepsilon^*}$

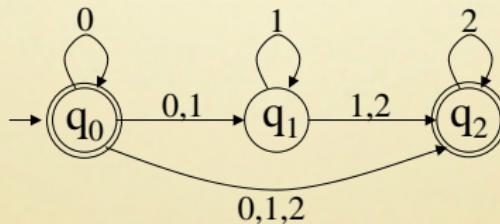
If $q_0 \xrightarrow{\varepsilon^*} q_f$ for $q_f \in F$, add q_0 to F

Example of ε -transition Removal



Put a new transition \xrightarrow{a} where $\xrightarrow{\varepsilon^* a \varepsilon^*}$

If $q_0 \xrightarrow{\varepsilon^*} q_f$ for $q_f \in F$, add q_0 to F



Complement of Automata

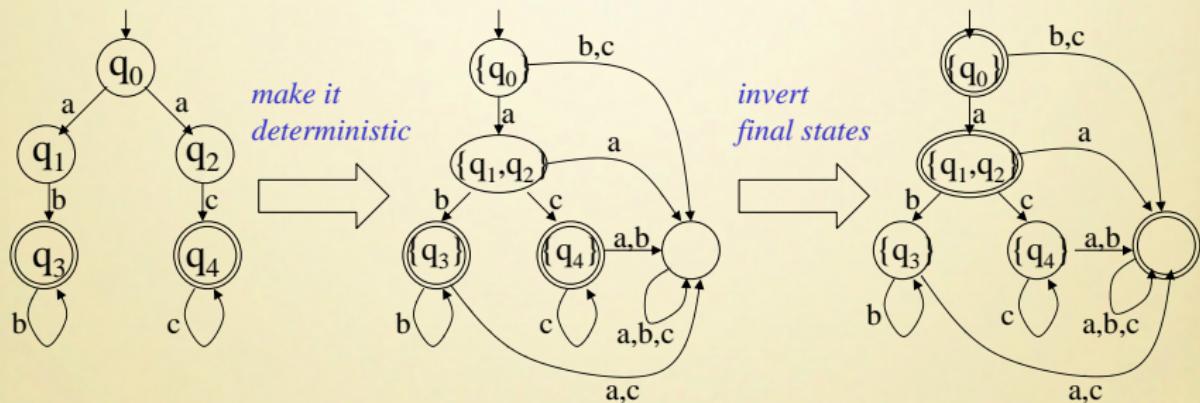
$$A = (S, \Sigma, \delta, q_0, F)$$

- if A is deterministic, $A^c = (S, \Sigma, \delta, q_0, S - F)$.
- if A is non-deterministic, make A deterministic first

Assume that A is without ε -transition. Then

$$(P(S), \Sigma, \{(X, a, \{y \mid x \xrightarrow{a} y \text{ for } x \in X\})\}, \{q_0\}, \{X \mid X \cap F \neq \emptyset\})$$

Example of Complement



Emptiness

Emptiness

Pumping Lemma

Let $A = (S, \Sigma, \delta, q_0, F)$ be a finite automaton. For each $z \in L(A)$ with $|z| \geq |S|$, $\exists u, v, w$ such that $z = uvw$, $|uw| < |S|$, $|v| \geq 1$, $uv^i w \in L(A)$.

Emptiness

Pumping Lemma

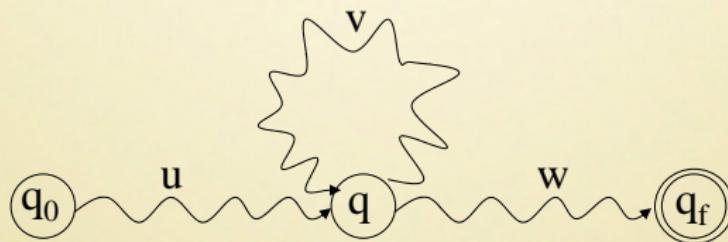
Let $A = (S, \Sigma, \delta, q_0, F)$ be a finite automaton. For each $z \in L(A)$ with $|z| \geq |S|$, $\exists u, v, w$ such that $z = uvw$, $|uw| < |S|$, $|v| \geq 1$, $uv^i w \in L(A)$.

$L(A) \neq \emptyset$ iff $\exists z$ with $|z| < |S|$ and $z \in L$.

Idea of Pumping Lemma

Pumping Lemma

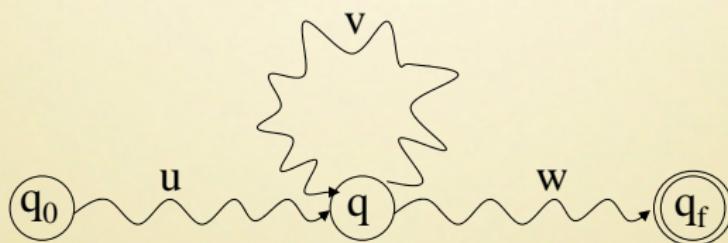
Let $A = (S, \Sigma, \delta, q_0, F)$ be a finite automaton. For each $z \in L(A)$ with $|z| \geq |S|$, $\exists u, v, w$ such that $z = uvw$, $|uw| < |S|$, $|v| \geq 1$, $uv^i w \in L(A)$.



Idea of Pumping Lemma

Pumping Lemma

Let $A = (S, \Sigma, \delta, q_0, F)$ be a finite automaton. For each $z \in L(A)$ with $|z| \geq |S|$, $\exists u, v, w$ such that $z = uvw$, $|uw| < |S|$, $|v| \geq 1$, $uv^i w \in L(A)$.



Pigeon hole principle!

Subset

$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$

Ask $L(A) \subseteq L(B)$?

Subset

$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F')$

Ask $L(A) \subseteq L(B)$?

$L(A) \subseteq L(B) \Leftrightarrow L(A) \cap L(B^c) = \emptyset$

Congruence

uRv is a **congruence** iff R is an equivalence and preserved under concatenation

$$uRv \Rightarrow wuw' R wvw' \text{ for each } w, w' \in \Sigma^*$$

Myhill-Nerode Theorem

Myhill-Nerode Theorem

The following three statements are equivalent.

- ① L is regular.
- ② L is a union of congruence classes of finite index.
- ③ R_L is a congruence of finite index, where

$$u R_L v \text{ iff } uw \in L \Leftrightarrow vw \in L \text{ for each } w \in \Sigma^*$$

Proof: $3 \Rightarrow 1$

Let R_L be a congruence of finite index, where

$$u R_L v \text{ iff } uw \in L \Leftrightarrow vw \in L \text{ for each } w \in \Sigma^*$$

Proof: $3 \Rightarrow 1$

Let R_L be a congruence of finite index, where

$$u R_L v \text{ iff } uw \in L \Leftrightarrow vw \in L \text{ for each } w \in \Sigma^*$$

Let an automaton $A = (S, \Sigma, \delta, q_0, F)$ be

- $S = \Sigma^*/R_L$ (finite congruence classes of R_L)
- $\delta = \{([u], a, [ua]) \mid u \in \Sigma^*, a \in \Sigma\}$
- $q_0 = [\varepsilon]$
- $F = \{[u] \mid u \in L\}$

Proof: $3 \Rightarrow 1$

Let R_L be a congruence of finite index, where

$$u R_L v \text{ iff } uw \in L \Leftrightarrow vw \in L \text{ for each } w \in \Sigma^*$$

Let an automaton $A = (S, \Sigma, \delta, q_0, F)$ be

- $S = \Sigma^*/R_L$ (**f**inite congruence classes of R_L)
- $\delta = \{([u], a, [ua]) \mid u \in \Sigma^*, a \in \Sigma\}$
- $q_0 = [\varepsilon]$
- $F = \{[u] \mid u \in L\}$

$L = L(A)$ and L is regular.

Proof: 1 \Rightarrow 2

Let $L = L(A)$ with $A = (S, \Sigma, \delta, q_0, F)$

Proof: 1 \Rightarrow 2

Let $L = L(A)$ with $A = (S, \Sigma, \delta, q_0, F)$

$u R_A v$ iff $q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q'$ for $q, q' \in S$

Proof: 1 \Rightarrow 2

Let $L = L(A)$ with $A = (S, \Sigma, \delta, q_0, F)$

$u R_A v$ iff $q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q'$ for $q, q' \in S$

R_A is a congruence of finite index,

Proof: 1 \Rightarrow 2

Let $L = L(A)$ with $A = (S, \Sigma, \delta, q_0, F)$

$u R_A v$ iff $q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q'$ for $q, q' \in S$

R_A is a congruence of finite index, (at most $2^{|S| \times |S|}$).

Proof: $2 \Rightarrow 3$

Let R be a congruence of finite index and let L be a union of congruence classes.

Proof: 2 \Rightarrow 3

Let R be a congruence of finite index and let L be a union of congruence classes.

Let $uR_L v$ iff $uw \in L \Leftrightarrow vw \in L$ for each $w \in \Sigma^*$.

Proof: 2 \Rightarrow 3

Let R be a congruence of finite index and let L be a union of congruence classes.

Let $u R_L v$ iff $uw \in L \Leftrightarrow vw \in L$ for each $w \in \Sigma^*$.

$u R v \Rightarrow u R_L v$; thus, R_L is of finite index.

Another Technique for Complement

Myhill-Nerode Theorem says that L is regular $\Leftrightarrow L$ is a union of congruence classes of finite index.

Another Technique for Complement

Myhill-Nerode Theorem says that L is regular $\Leftrightarrow L$ is a union of congruence classes of finite index.

$$L = \bigcup_{U_i \cap L \neq \emptyset} U_i$$

Another Technique for Complement

Myhill-Nerode Theorem says that L is regular $\Leftrightarrow L$ is a union of congruence classes of finite index.

$$L = \bigcup_{U_i \cap L \neq \emptyset} U_i$$

Note that each U_i is regular! Thus,

$$L^c = \bigcup_{U_i \cap L = \emptyset} U_i$$

Büchi Automata

Büchi Automata

Accept ω -words, instead of finite words.

Acceptance condition is different.

Büchi Automata

Accept ω -words, instead of finite words.

Acceptance condition is different.

For a **Büchi automaton** $A = (S, \Sigma, \delta, q_0, F)$, ω -word

$w = a_0a_1 \dots \in \Sigma^\omega$ is accepted if there exists $q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} \dots$ for $(q_i, a_i, q_{i+1}) \in \delta$ across F infinitely often. $L(A)$ is the set of accepted ω -words.

Büchi Automata

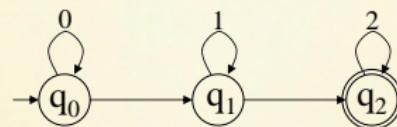
Accept ω -words, instead of finite words.

Acceptance condition is different.

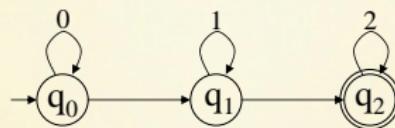
For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$, ω -word $w = a_0a_1 \dots \in \Sigma^\omega$ is accepted if there exists $q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} \dots$ for $(q_i, a_i, q_{i+1}) \in \delta$ across F infinitely often. $L(A)$ is the set of accepted ω -words.

$L(A)$ is called regular (ω -language).

Examples of Büchi Automata

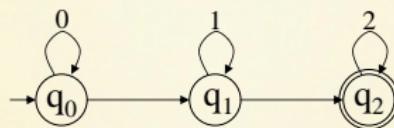


Examples of Büchi Automata

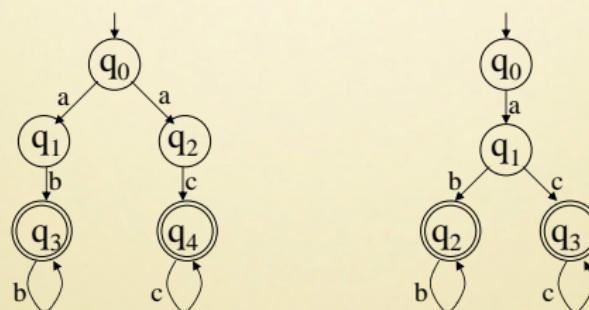


Accepts $\{0^*1^*2^\omega\}$

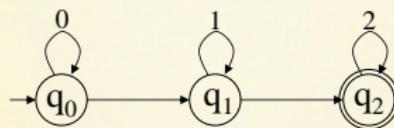
Examples of Büchi Automata



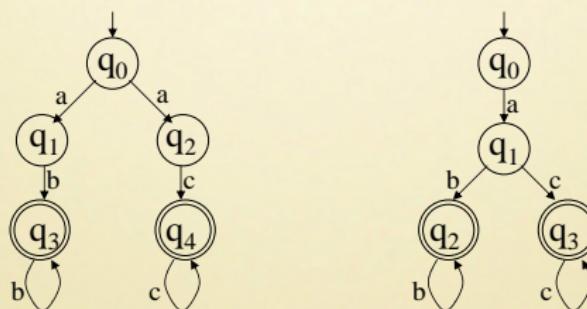
Accepts $\{0^*1^*2^\omega\}$



Examples of Büchi Automata



Accepts $\{0^*1^*2^\omega\}$



Accepts $\{ab^\omega, ac^\omega\}$

Deterministic VS. Non-deterministic

Accepted by **deterministic** Büchi automata?

- $(b^*a)^\omega$
- $(b^*a)^*b^\omega$

Deterministic VS. Non-deterministic

Accepted by **deterministic** Büchi automata?

- $(b^*a)^\omega$
 - a appears infinitely many
 - Yes!
- $(b^*a)^*b^\omega$

Deterministic VS. Non-deterministic

Accepted by **deterministic** Büchi automata?

- $(b^*a)^\omega$
 - a appears infinitely many
 - Yes!
- $(b^*a)^*b^\omega$
 - $\{a, b\}^\omega - (b^*a)^\omega$

Deterministic VS. Non-deterministic

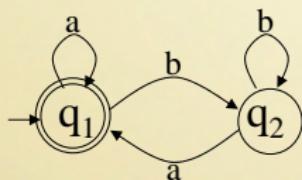
Accepted by **deterministic** Büchi automata?

- $(b^*a)^\omega$
 - a appears infinitely many
 - Yes!
- $(b^*a)^*b^\omega$
 - $\{a, b\}^\omega - (b^*a)^\omega$
 - No!

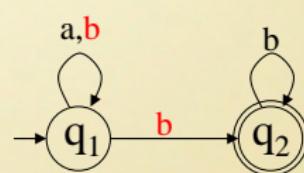
Deterministic VS. Non-deterministic

Accepted by **deterministic** Büchi automata?

- $(b^*a)^\omega$
 - a appears infinitely many
 - Yes!
- $(b^*a)^*b^\omega$
 - $\{a, b\}^\omega - (b^*a)^\omega$
 - No!



$(b^*a)^\omega$



$(b^*a)^*b^\omega$

Variation on Automata for ω -Words

Let $\text{Inf}(\sigma)$ be the set of states that a path σ across infinitely often. Let $\alpha \in \Sigma^\omega$

Variation on Automata for ω -Words

Let $\text{Inf}(\sigma)$ be the set of states that a path σ across infinitely often. Let $\alpha \in \Sigma^\omega$

Büchi automata $A = (S, \Sigma, \delta, q_0, F)$

- α has a path σ such that $\text{Inf}(\sigma) \cap F \neq \emptyset$.

Muller automata $A = (S, \Sigma, \delta, q_0, \{F_1, \dots, F_m\})$

- α has a path σ such that $\text{Inf}(\sigma) = F_i$.

Rabin automata $A = (S, \Sigma, \delta, q_0, \{(L_1, M_1), \dots, (L_m, M_m)\})$

- α has a path σ such that $\text{Inf}(\sigma) \cap L_i = \emptyset, \text{Inf}(\sigma) \cap M_i \neq \emptyset$.

Variation on Automata for ω -Words

Let $\text{Inf}(\sigma)$ be the set of states that a path σ across infinitely often. Let $\alpha \in \Sigma^\omega$

Büchi automata $A = (S, \Sigma, \delta, q_0, F)$

- α has a path σ such that $\text{Inf}(\sigma) \cap F \neq \emptyset$.

Muller automata $A = (S, \Sigma, \delta, q_0, \{F_1, \dots, F_m\})$

- α has a path σ such that $\text{Inf}(\sigma) = F_i$.

Rabin automata $A = (S, \Sigma, \delta, q_0, \{(L_1, M_1), \dots, (L_m, M_m)\})$

- α has a path σ such that $\text{Inf}(\sigma) \cap L_i = \emptyset, \text{Inf}(\sigma) \cap M_i \neq \emptyset$.

If nondeterministic, they are all equivalent.

Algorithm Reuse

Q: Which algorithms of finite automata can be reused in Büchi automata?

Algorithm Reuse

Q: Which algorithms of finite automata can be reused in Büchi automata?

- Intersection?
- Union?
- Complement?
- Emptiness?
- Subset?

Boolean Closure of Büchi Automata

Boolean Closure of Büchi Automata

$A = (S, \Sigma, \delta, q_0, F)$, $B = (S', \Sigma, \delta', q'_0, F')$,

Boolean Closure of Büchi Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F'),$$

Büchi automaton that accepts $L(A) \cap L(B)$

$$(S \times S' \times \{0, 1\}, \Sigma, \delta'', (q_0, q'_0, 0), F \times S' \times \{0\} \cup S \times F' \times \{1\})$$

where $\delta'' = \{((s, s', i), (a, a'), (t, t', j)) \mid (s, a, t) \in \delta, (s', a', t') \in \delta',$

- $j = 1$ if either $i = 0$ and $t \in F$, or $i = 1$ and $t' \notin F'$,
- $j = 0$ if either $i = 0$ and $t \notin F$, or $i = 1$ and $t' \in F'$

}

Boolean Closure of Büchi Automata

$$A = (S, \Sigma, \delta, q_0, F), B = (S', \Sigma, \delta', q'_0, F'),$$

Büchi automaton that accepts $L(A) \cap L(B)$

$$(S \times S' \times \{0, 1\}, \Sigma, \delta'', (q_0, q'_0, 0), F \times S' \times \{0\} \cup S \times F' \times \{1\})$$

where $\delta'' = \{((s, s', i), (a, a'), (t, t', j)) \mid (s, a, t) \in \delta, (s', a', t') \in \delta',$

- $j = 1$ if either $i = 0$ and $t \in F$, or $i = 1$ and $t' \notin F'$,

- $j = 0$ if either $i = 0$ and $t \notin F$, or $i = 1$ and $t' \in F'$

}

Büchi automaton that accepts $L(A) \cup L(B)$

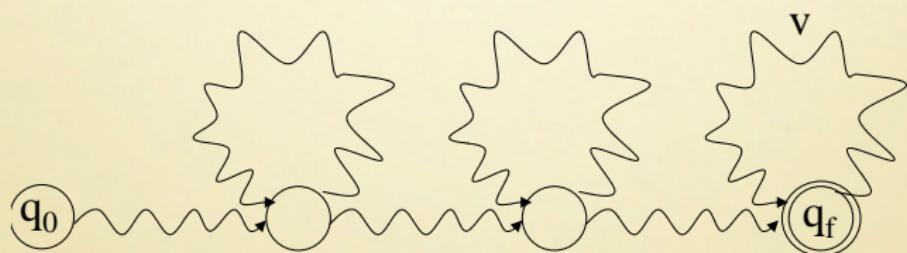
$$(S \cup S' \cup \{q\}, \Sigma, \delta \cup \delta' \cup \{(q, \varepsilon, q_0), (q, \varepsilon, q'_0)\}, q, F \cup F')$$

Emptiness

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$, $L(A) \neq \emptyset$ implies
 $\exists u, v \in \Sigma^*$ such that $|u|, |v| \leq |S|$ and $uv^\omega \in L(A)$.

Emptiness

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$, $L(A) \neq \emptyset$ implies $\exists u, v \in \Sigma^*$ such that $|u|, |v| \leq |S|$ and $uv^\omega \in L(A)$.



Complement of Büchi Automata

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

Complement of Büchi Automata

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

Even if A is deterministic, A^c may be non-deterministic.

- $(b^*a)^\omega$

Complement of Büchi Automata

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

Even if A is deterministic, A^c may be non-deterministic.

- $(b^*a)^\omega$

But, deterministic \subset non-deterministic ...

Complement of Büchi Automata

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

Even if A is deterministic, A^c may be non-deterministic.

- $(b^*a)^\omega$

But, deterministic \subset non-deterministic ...

The Büchi automaton version of Myhill-Nerode Theorem discussion is required.

Several ways for Complement

Several ways for Complement

Via **Muller Automata**

Several ways for Complement

Via **Muller Automata**

Via **Alternating Automata**

Miyano, S., Hayashi, T., Alternating Finite Automata on omega-Words. TCS 32, pp.321-330, 1984

Several ways for Complement

Via **Muller Automata**

Via **Alternating Automata**

Miyano, S., Hayashi, T., Alternating Finite Automata on omega-Words. TCS 32, pp.321-330, 1984

Explicit representation by congruence classes (this also gives minimization)

Many many new techniques recently, which is still a **hot topic** nowadays.

Notations

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

$q \xrightarrow{u} F q' \Leftrightarrow q \xrightarrow{u} q'$ across some $q_f \in F$

$u \sim_A v$ iff $\forall q, q' \in S$,

$(q \xrightarrow{u} q' \Leftrightarrow q \xrightarrow{v} q') \wedge (q \xrightarrow{u}_F q' \Leftrightarrow q \xrightarrow{v}_F q')$

Finite Congruence of Büchi Automata

\sim_A is a finite congruence over Σ

\sim_A classes U, V are regular

$U.V^\omega$ is regular ω -languages.

$L(A)$ as a Union of $U.V^\omega$

Lemma

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

$$L(A) = \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$$

$L(A)$ as a Union of $U.V^\omega$

Lemma

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

$$L(A) = \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$$

$L(A) \supseteq \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$ is easy, since

$$U.V^\omega \cap L(A) \neq \emptyset \Rightarrow U.V^\omega \subseteq L(A)$$

$L(A)$ as a Union of $U.V^\omega$

Lemma

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

$$L(A) = \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$$

$L(A) \supseteq \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$ is easy, since

$$U.V^\omega \cap L(A) \neq \emptyset \Rightarrow U.V^\omega \subseteq L(A)$$

$L(A) \subseteq \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$ needs **Ramsey's Theorem**.

Ramsey's Theorem

General Version

Let G be an infinite complete graph. Put a label from $\{1, 2, \dots, k\}$ on each edge. Then, there exists an infinite complete sub-graph such that its each edge has the same label.

$$L(A) \subseteq \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$$

For each $\alpha \in \Sigma^\omega$, there exist \sim_A -classes U, V such that $\alpha \in U.V^\omega$.

Let $\alpha(m, n) = a_m a_{m+1} \dots a_{n-1}$ for $\alpha = a_1 a_2 a_3 \dots$

Regarding $\alpha(m, n) \in V$ as a label V , by Ramsey's Theorem, $\alpha(n_1, n_2), (n_2, n_3), \dots \in V$. If $\alpha(0, n_1) \in U$, then $\alpha \in U.V^\omega$.

Complement of $L(A)$

For a Büchi automaton $A = (S, \Sigma, \delta, q_0, F)$,

$$L(A) = \bigcup_{U.V^\omega \cap L(A) \neq \emptyset} U.V^\omega$$

Then,

$$L^c(A) = \bigcup_{U.V^\omega \cap L(A) = \emptyset} U.V^\omega$$

U, V are regular; thus, $L^c(A)$ is regular.

Reports

Rep4. Antichain for Universality, subset of automata (Maximal 3 students).