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Path Operators, A, E
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® AG: safety, bad things will never happen.

¢ AF': liveness, good things will eventually happen.



LTL Model Checking




Complicity of LTL Model Checking

Tableau method: O((|S| + |R|) x 2O(|‘P‘))



Complicity of LTL Model Checking

Tableau method: O((|S| + |R|) x 2O(|‘P‘))

At least NP-hard: consider Hamilton path of G

* M, qo ):E(Fpl/\.../\Fpn/\G(Pl%
XG—p)A...ANG(P, = XG—py))

* M = ({90, 9r} U V(G), {q0}, {(q0,v), (v: 4r), (41, 9r) [ v €
V(G)} VE(G),L)

* L(vi) = {pi}



Scenario of LTL Model Checking

* Apis aLTL, then the only state sub-formulas in ¢ are atomic
propositions.

*M,sEAp <= M,s =—-E-p

*M,sEFp<—=M,sE=truelUy

s = Gpo<— M,s =—F~-p

* It is sufficient to only consider the temporal operators X, U with
-, V wrapped by E.



Scenario of LTL Model Checking

* Apis aLTL, then the only state sub-formulas in ¢ are atomic
propositions.

= A0 <— M,s = E—p

*M,sEFp<—=M,sE=truelUy

*M,sEGp<= M,s =-F-yp

* It is sufficient to only consider the temporal operators X, U with
-, V wrapped by E.

* Construct closure cl(p) of ¢, which is the set of formulae related
to the truth value of ¢.

* Construct graph of atoms (transition graph on truth table of
cl(p))

* M,s = E ¢ is equivalent to existence of an eventuality sequence,
which is detected as a SCC.



Closure of LTL formula

The smallest set of formulae containing ¢, where

To keep finite (linear to |¢

—¢ € cl(p) iff ¢ € cl(p);

if V¢ e cl(p), then ¢, ¢ € cl(p);
if X ¢ € cl(p), then ¢ € cl(p);

if =X 1 € cl(p), then X ) € cl(ip);

ifyp Uo € cl(p), then ¢, ¢, X (¢ U @) € cl(p).

), - 1s eliminated.

By construction, at most one X would be added.

Size of cl(f) is linear in the size of f.
e.g cl(dUy) =



Closure of LTL formula

The smallest set of formulae containing ¢, where

To keep finite (linear to |¢

—¢ € cl(p) iff ¢ € cl(p);

ifyp V¢ € cl(p), then 9, ¢ € cl(p);
if X ¢ € cl(p), then ¢ € cl(p);

if =X 1 € cl(p), then X ) € cl(ip);

ifyp Uo € cl(p), then ¢, ¢, X (¢ U @) € cl(p).

), - 1s eliminated.

By construction, at most one X would be added.

Size of cl(f) is linear in the size of f.
e.g cl(dUy) =

{67 =4, 1, b,
U, ~(0U),X(0Up), ~X(5U ),

* X-(6U )}



Atoms (wrt. )

* Atom (s,K) with s € Sand K C cl(p) UAP,
where

» foreachp € AP,p € K, iff p € L(s);

* forevery 0 € cl(p), 6 € K, iff =6 ¢ K;

 forevery d Vi € cl(p), 6 V) € Kiff 6 € K
ory € K;

* for every =X d € cl(p), X ¢ € K iff
X (—9) €K;

s forevery U ¢ € cl(p), 0 Uy € K iffyp € K
or6,X(6Uv) € K.

* Intuitively, K is the maximum consistent truth
valuation at s.



Atoms (wrt. )

* Atom (s,K) with s € Sand K C cl(p) UAP,
where

foreachp € AP, p € K, iff p € L(s);

forevery d € cl(p), § € K, iff =6 ¢ K;
forevery 6 Vo € cl(p), 6 Vi € Kiff§ € K

s A(FUP) =

for every =X ¢ € cl(yp), 7X 6 € K iff (6,,8 U, X(6 U ),
foﬁ_e‘\(jgrjngb € cllg), sUpEKiffp ek ?;”’ i@ U@S’

or 6, X(0 Uv) € K. ~X(6U ), X~(0U)}

* Intuitively, K is the maximum consistent truth
valuation at s.



Example of Atoms

* Tableau:

* [TLTT], [T T, TF], [TTET], [T.TEF]
* [CETT], [TETF], [TLEET], [TLEEF]
* [ET,TT], [ET,TF], [ETET], [ETEF]
o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R ) &



Example of Atoms

* Tableau:

* [TLTT], [T T, TF], [TTET], [T.TEF]
* [CETT], [TETF], [TLEET], [TLEEF]
* [ET,TT], [ET,TF], [ETET], [ETEF]
o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R ) &

[
* 50 : (L(so) = —6 A —¢))
- [EET,T], [EETF], [ERET], [EEEF]



Example of Atoms

* Tableau:

* [LTTT] [TTTF], [TTET], [T,TEF]

* [LETT], [TETF], [TEET], [TEEF]

* [ET,TT], [ET,TF], [ETET], [ETEF]

o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R ) &
* 50 : (L(s0) = =6 A =)

* [EETT], [EETF], [EEET], [EEEF]
SN (s1) =0 A )

* [LETT], [TETF], [TEET], [TLEEF]



Example of Atoms

Tableau:

S0

S1

$2

* [TLTT], [T T, TF], [TTET], [T.TEF]
* [CETT], [TETF], [TLEET], [TLEEF]
* [ET,TT], [ET,TF], [ETET], [ETEF]
o [DEQRSTESINL, (DR RSTE &)y (DR R ATR s RN R ) &

[
t (L(so) = =6 A —¢)
[

* [EETT], [EETF], [EEET], [EEEF]

(L(s1) = 6 A )

* [LETT], [TETF], [TEET], [TLEEF]

: (L(s2) = 0 A )

SETTT], [ETT.F], [ETET], [ET.EF]



Graph of Atoms

* For Kripke structure M = (S, So, R, L), formula ¢, define a graph
of atoms where nodes are atoms and edged are:

{((s,K), (s, K")) | (s,8) ERAV(XS) €cl(p),X6 EK <= S €K'}

85,0, 6 U, X(5U )
(so» [F.F.F. TD)—(s., [T,F.T,T] (32, [F.T,T,T])
IR E =, (s, [T.FF, F])—=(s, A ERMINED



Eventuality Sequence

* An eventuality sequence is an infinite path 7 in a graph of atoms,
satisfying:
* If § Uy € K for an atom (s, K) on 7, then there exists an atom
(s, K') on 7 after (s, K) with ¢ € K'.

O=0=0

8,3, 8 U, X(8 U )
(S [F.F.F, T])—(sy, [T,F, T, T] (32, [F,T,T.7])
(So: [F.F.F,FI)— (s, [T,F.F,F])«—2(s,, [F,T,T,F])



Eventuality Sequence

* An eventuality sequence is an infinite path 7 in a graph of atoms,
satisfying:
* If § Uy € K for an atom (s, K) on 7, then there exists an atom
(s, K') on 7 after (s, K) with ¢ € K'.
 Don’t care on § between (s, K) and (s',K"), why?

O=0=0

8,3, 8 U, X(8 U )
(S [F.F.F, T])—(sy, [T,F, T, T] (SZ, [F,T,T.7])
(So: [F.F.F,FI)— (s, [T,F.F,F])«—2(s,, [F,T,T,F])



Key Lemma

Lemma:
M, s |= E o iff there exists an eventuality sequence starting from an
atom (s, K) with ¢ € K.



Proof Sketch (=)

* M, sy = E o, if there exists an eventuality sequence
i (S(),K()), (Sl,Kl), (Sz,Kz) ... with ¢ € K.

s let‘ﬂ'i = (Si, Ki), (Si+1,Ki+1), (SH_z, KH—Z) ..., WE will prove
“m' =0 < § € K;, for each § € cl(¢)” by induction on the
structure of formula.

» Case § = X : By construction of a graph of atoms,
((si,Ki), (Sit1,Kit1)) implies X v € K; <= 7 € Ki41.
Thus, Xy €Ki <= yeK 1 <=l Ey <= =Xy
* Case 6 =y U
* By definition of 7, there exists (first) j > i with ¢ € K.
e Then 6 € K; (by definition of atom), and o = 4 (by induction
hypothesis); thus 7/ = 4.
* Notethat) € Ki A ... A € Kj_1;theny,X d € K;
<~ yEKANIEKL <= YEKAN...AYEK_; < T =
TR aaai =7 = = O



Proof Sketch (<)

* M,so = E o only if there exists an eventuality sequence starting
from an atom (s, K) with ¢ € K.

EWEl T 50,51,5),- .-, 8.t. M, = . Then,
(s0,Ko), (s1,K1), (s2,K2), . . . is an eventuality sequence where
Ky = {5 ‘ 0 € Cl(gO) /\M,ﬂ'i ': (5} for i = O ALl LR < o oo



Self-fulfilling SCC in Graph of
Atoms
A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every

atom (s, K) in C with § U v € K, there exists an atom (s, K’) in C
such that ¢ € K'.

(i.e., there is an eventuality sequence that covers SCC C).
0,0, 06U, X(6U )

(S, [F.F,F, T])——(sy, [T,F,T.T] (82, [F, T lesisl
(So: [F.F.F,FI)— (s, [T,F,F,F])«—2(s,, [F,T,T,F])



Self-fulfilling SCC in Graph of
Atoms

A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every
atom (s, K) in C with 6 U ¢ € K, there exists an atom (s', K’) in C
such that ¢ € K'.

(i.e., there is an eventuality sequence that covers SCC C).

Lemma:

There exists an eventuality sequence starting at an atom (s, K) iff
there exists a path from (s, K) to a self-fulfilling SCC.



Proof

=: Assume that there is an eventuality sequence starting at (s, K).
Consider the set C’ of all atoms that appear infinitely often in this
sequence. The set C’ is a subset of a (maximal) strongly connected
component C of G. Consider a subformula U, and an atom

(s,K) € C such that Uy € K. Because C is strongly connected,
there is a finite path in C from (s, K) into C’. If ¢ appears on the path,
we are done! Otherwise, since C’ comes from an eventuality
sequence, and ¢ is in some atom of C’.

«: Trivial.



LTL Model Checking

M, s |= E ¢ iff there exists atom A = (s, K) such that ¢ € K and there
exists a path from A to a self-fulfilling strongly connected component.



Summary of Algorithm

Construct a graph of atoms for a formula ¢, and compute
self-fulfilling SCCs.

Finding an eventuality sequence to self-fulfilling SCC by
depth-first search.

Atoms may multiplicand at most the exponential of the size of
closure, (which is linear to |¢|).

Complexity: O((|S| + |R]) x 20(¢D)



4 On-the-Fly Model Checking
:lr k |
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Biichi Automata

A Biichi automaton is a tuple A = (%, S, 8, So, F) where
* X is an alphabet,

* S is a set of states,

* §:8 x ¥ — S (deterministic) or § : § x ¥ — 25
(nondeterministic) is a transition function,

* So C S is a set of initial states (a singleton for deterministic
automata), and

* F C Sis a set of accepting states.



Infinite Runs

A word w is accepted by an automaton A = (X, S, 4, So, F) if there is a
labeling
p:N—=S§
of the word by states such that
* p(0) € S,
* Vi>0,p(i+ 1) € 0(p(i),w(i)),
» inf(p) NF # 0.



Generalized Biichi Automata

The acceptance condition of a generalized Biichi automaton is a set of
sets of states F C 25, and the requirement is that some state of each of
the sets F; € F appears infinitely often.

More formally, a generalized Biichi A = (X, S, d, So, F) accepts a
word w if there is a labeling p of w by states of A that satisfies the
same first two conditions as given for Biichi automata, the third being
replaced by:

* For each F; € F,inf(p) N F; # .



Encoding Generalized Biichi
automata

Given a generalized Biichi automaton A = (%, S, d, So, F), where
F = {F\,...,F}, the Biichi automaton A’ = (X, 5, &', Sy, F’)
defined as follows accepts the same language as A.

RS (1, .., k]

= Sy < {1}

* ¢’ is defined by (z,i) € §((s,j)),a) if

= if s ¢ F;

Eeisra) NS i
i=(j modk)+1 otherwise

o F/:Fl X{l}



An Example

2 '@
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From Temporal Logic to Automata




Problem Statement

Given an LTL formula ¢ built from a set of atomic propositions AP,
construct an automaton on infinite words over the alphabet 247 that
accepts exactly the infinite sequences satisfying .



A Dialect of LTL Logic

* true, false, p, and —p, for all p € AP;
* 1 Ao and 1 V o, where 1 and ¢, are LTL formulas;
* X1, p1Ups, and ¢ Ry, where 1 and ¢, are LTL formulas.



A Dialect of LTL Logic

* true, false, p, and —p, for all p € AP;
* 1 Ao and 1 V o, where 1 and ¢, are LTL formulas;
* X1, p1Ups, and ¢ Ry, where 1 and ¢, are LTL formulas.

p1Rpy: it requires ¢, always be true, a requirement that is released as
soon as ¢ becomes true.



The Way to Handle Negation

0 p1Upr & 0 = (-p1)R(—p2)

cEXpsoEXp



Closure of a Formula

¢ € cl(p)

P1 A @2 € cl(p) = 1,92 € cl(p)
01V 2 € cl(p) = p1,92 € cl(p)
X1 € cl(p) = ¢1 € cl(p)
p1Ups € Cl(go) = 1, P2 € Cl(go)
P1Rps € cl(p) = 1,92 € cl(p)



Closure of a Formula

¢ € cl(p)

P1 A @2 € cl(p) = 1,92 € cl(p)
01V 2 € cl(p) = p1,92 € cl(p)
X1 € cl(p) = ¢1 € cl(p)
p1Ups € Cl(go) = 1, P2 € Cl(go)
P1Rp; € cl(p) = p1,¢2 € cl(p)

Example

cl(F-p) = cl(trueU—p) = {F—p, —p, true}



Hintikka Structure

A valid closure labeling 7 : N — 2°/(%) of a sequence ¢ : N — 24P
has to satisfy.

If a formula ¢; € cl(p) labels a position i, then the sequence o* = ;.



Rules for Labeling Sequences

O false ¢ 7(i);

@® forp € AP, if p € 7(i) then p € o (i), and if —p € 7(i) then
p¢a(i);

© if o1 A pp € 7(i) then 1 € 7(i) and ; € 7(i);

@ if o1 V ¢y € 7(i) then ¢; € 7(i) or ¢ € 7(i);

@ if Xp; € 7(i) then 1 € 7(i + 1);

0O if p1Up; € 7(i) then either ¢, € 7(i), or 1 € 7(i) and
o1Up € T(i+1);

@ if p1Rp; € 7(i) then ¢, € 7(i), and either ¢; € 7(i) or
ViRpy € T(i+1);

O if o1 Uy, € 7(i) then there exists aj > i such that ¢, € 7(j).



Key Lemmas

Lemma.

Consider a formula ¢ defined over a set of propositions AP, a
sequence o : N — 24P and a closure labeling 7 : N — 2¢/(®)
satisfying rules 1-8. For every formula ¢’ € cl(¢) and i > 0, one has
that if ¢’ € 7(i) then o |= ¢'.



Key Lemmas

Lemma.

Consider a formula ¢ defined over a set of propositions AP, a
sequence o : N — 24P and a closure labeling 7 : N — 2¢/(®)
satisfying rules 1-8. For every formula ¢’ € cl(¢) and i > 0, one has
that if ¢’ € 7(i) then o |= ¢'.

Lemma.

Consider a formula ¢ defined over a set of propositions AP and a
sequence o : N — 247 If o |= ¢, there exists a closure labeling
7 : N = 2°%) satisfying rules 1-8 and such that ¢ € 7(0).



Correctness

Theorem

Consider a formula ¢ defined over a set of propositions AP and a
sequence o : N — 24P One then has that o |= ¢, iff there is a closure
labeling 7 : N — 2¢(#) satisfying rules 1-8 and such that ¢ € 7(0).



Defining the Automaton




Encoding to Biichi Automata >, S

Given a formula ¢, a generalized Biichi automaton accepting exactly
the sequences o : N — 247 satisfying ¢ can be defined as follows.
The automaton is A, = (X, S, d, So, F) where,

o $ = 2AP,
o § C2¢U®) and foreachs € S
* false ¢ s;

* if o) Ay € 5, then ) € sand @, € s.
* if o1 V y € s, then p; € sor p; € 5.



Encoding to Biichi Automata 9, Sy

Given a formula ¢, a generalized Biichi automaton accepting exactly
the sequences o : N — 247 satisfying ¢ can be defined as follows.
The automaton is A, = (X, S, d, So, F) where,
s t € §(s,a) iff,

* Forallp € AP, ifp € sthenp € a.

* Forallp € AP, if -p € sthenp ¢ a.

s IfXp €s,thenp € ¢.

* If ¢ U, € s then either ¢, € s, 0r ) € sand U, € t.

* If 1R, € s then ¢, € s and either ¢; € s, or 1R, € t.



Encoding to Biichi Automata 9, Sy

Given a formula ¢, a generalized Biichi automaton accepting exactly
the sequences o : N — 247 satisfying ¢ can be defined as follows.
The automaton is A, = (X, S, d, So, F) where,
s t € §(s,a) iff,

* Forallp € AP, ifp € sthenp € a.

* Forallp € AP, if -p € sthenp ¢ a.

s IfXp €s,thenp € ¢.

* If ¢ U, € s then either ¢, € s, 0r ) € sand U, € t.

* If 1R, € s then ¢, € s and either ¢; € s, or 1R, € t.

s So={seS|ypes}



Encoding to Biichi Automata F

Given a formula ¢, a generalized Biichi automaton accepting exactly
the sequences o : N — 247 satisfying ¢ can be defined as follows.
The automaton is A, = (X, S, d, So, F) where,

* If the eventualities appearing in cl(p) are e (1), - - - , €m(©m),
F={®,9,...D,}, where

;i ={seS|ei(p),pi €sVeilpi) & s}

for every eventuality formula e(¢’) = U’



An Example F p
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Optimizations

Omitting Redundant Transitions
Building the Automaton by Need
Identifying Equivalent States
Simplifying the Formula.

Early Detection of Inconsistencies.

Moving Propositions from States to Transitions.



Reports

Rep5. Bounded model checking for LTL (0/3) (Maximal 3 students).



