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Path Operators, A, EPath Quantifier: A (for all), E (some)

Note: Aψ=¬E¬ψ
• AG: safety, bad things will never happen.

• AF: liveness, good things will eventually happen.



LTL Model Checking



Complicity of LTL Model Checking

Tableau method: O((|S|+ |R|)× 2O(|ϕ|))

At least NP-hard: consider Hamilton path of G

• M, q0 |= E(F p1 ∧ . . . ∧ F pn ∧ G(P1 →
X G¬p1) ∧ . . . ∧ G(Pn → X G¬pn))

• M = ({q0, qf } ∪ V(G), {q0}, {(q0, v), (v, qf ), (qf , qf ) | v ∈
V(G)} ∪ E(G),L)

• L(vi) = {pi}
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Scenario of LTL Model Checking

• Aϕ is a LTL, then the only state sub-formulas in ϕ are atomic
propositions.

• M, s |= Aϕ⇐⇒ M, s |= ¬E ¬ϕ
• M, s |= F ϕ⇐⇒ M, s |= true U ϕ

• M, s |= Gϕ⇐⇒ M, s |= ¬F ¬ϕ
• It is sufficient to only consider the temporal operators X,U with
¬,∨ wrapped by E.

• Construct closure cl(ϕ) of ϕ, which is the set of formulae related
to the truth value of ϕ.

• Construct graph of atoms (transition graph on truth table of
cl(ϕ))

• M, s |= E ϕ is equivalent to existence of an eventuality sequence,
which is detected as a SCC.
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Closure of LTL formula

• The smallest set of formulae containing ϕ, where
• ¬φ ∈ cl(ϕ) iff φ ∈ cl(ϕ);
• if ψ ∨ φ ∈ cl(ϕ), then ψ, φ ∈ cl(ϕ);
• if X ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ);
• if ¬X ψ ∈ cl(ϕ), then X ¬ψ ∈ cl(ϕ);
• if ψU φ ∈ cl(ϕ), then ψ, φ,X(ψU φ) ∈ cl(ϕ).

• To keep finite (linear to |ϕ|), ¬¬ is eliminated.
• By construction, at most one X would be added.
• Size of cl(f ) is linear in the size of f .
• e.g. cl(δU ψ) =

• {δ,¬δ, ψ,¬ψ,
• δU ψ,¬(δU ψ),X(δU ψ),¬X(δU ψ),
• X¬(δU ψ)}



Closure of LTL formula

• The smallest set of formulae containing ϕ, where
• ¬φ ∈ cl(ϕ) iff φ ∈ cl(ϕ);
• if ψ ∨ φ ∈ cl(ϕ), then ψ, φ ∈ cl(ϕ);
• if X ψ ∈ cl(ϕ), then ψ ∈ cl(ϕ);
• if ¬X ψ ∈ cl(ϕ), then X ¬ψ ∈ cl(ϕ);
• if ψU φ ∈ cl(ϕ), then ψ, φ,X(ψU φ) ∈ cl(ϕ).

• To keep finite (linear to |ϕ|), ¬¬ is eliminated.
• By construction, at most one X would be added.
• Size of cl(f ) is linear in the size of f .
• e.g. cl(δU ψ) =

• {δ,¬δ, ψ,¬ψ,
• δU ψ,¬(δU ψ),X(δU ψ),¬X(δU ψ),
• X¬(δU ψ)}



Atoms (wrt. ϕ)

• Atom (s,K) with s ∈ S and K ⊆ cl(ϕ) ∪ AP,
where

• for each p ∈ AP, p ∈ K , iff p ∈ L(s);
• for every δ ∈ cl(ϕ), δ ∈ K , iff ¬δ /∈ K ;
• for every δ ∨ ψ ∈ cl(ϕ), δ ∨ ψ ∈ K iff δ ∈ K

or ψ ∈ K ;
• for every ¬X δ ∈ cl(ϕ), ¬X δ ∈ K iff

X (¬δ) ∈ K ;
• for every δU ψ ∈ cl(ϕ), δU ψ ∈ K iff ψ ∈ K

or δ,X(δU ψ) ∈ K .

• Intuitively, K is the maximum consistent truth
valuation at s.

e.g.

δ ψ

1

cl(δU ψ) =
{δ, ψ, δU ψ,X(δU ψ),
¬δ,¬ψ,¬(δU ψ),
¬X(δU ψ),X¬(δU ψ)}



Atoms (wrt. ϕ)

• Atom (s,K) with s ∈ S and K ⊆ cl(ϕ) ∪ AP,
where

• for each p ∈ AP, p ∈ K , iff p ∈ L(s);
• for every δ ∈ cl(ϕ), δ ∈ K , iff ¬δ /∈ K ;
• for every δ ∨ ψ ∈ cl(ϕ), δ ∨ ψ ∈ K iff δ ∈ K

or ψ ∈ K ;
• for every ¬X δ ∈ cl(ϕ), ¬X δ ∈ K iff

X (¬δ) ∈ K ;
• for every δU ψ ∈ cl(ϕ), δU ψ ∈ K iff ψ ∈ K

or δ,X(δU ψ) ∈ K .

• Intuitively, K is the maximum consistent truth
valuation at s.

e.g.

δ ψ

1

cl(δU ψ) =
{δ, ψ, δU ψ,X(δU ψ),
¬δ,¬ψ,¬(δU ψ),
¬X(δU ψ),X¬(δU ψ)}



Example of Atoms

δ ψ

1

• Tableau:
• [T,T,T,T], [T,T,T,F], [T,T,F,T], [T,T,F,F]
• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]
• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]
• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s0 : (L(s0) = ¬δ ∧ ¬ψ)

• [F,F,T,T], [F,F,T,F], [F,F,F,T], [F,F,F,F]

• s1 : (L(s1) = δ ∧ ¬ψ)

• [T,F,T,T], [T,F,T,F], [T,F,F,T], [T,F,F,F]

• s2 : (L(s2) = ¬δ ∧ ψ)

• [F,T,T,T], [F,T,T,F], [F,T,F,T], [F,T,F,F]
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Graph of Atoms

• For Kripke structure M = (S, S0,R,L), formula ϕ, define a graph
of atoms where nodes are atoms and edged are:

{((s,K), (s′,K ′)) | (s, s′) ∈ R ∧ ∀ (X δ) ∈ cl(ϕ),X δ ∈ K ⇐⇒ δ ∈ K ′}

δ ψ

1

δ, ψ, δU ψ,X(δU ψ)

Graph of atoms
• For transition graph M= (S,S0,R,L), formula ψ, 

define a graph of atoms (wrtψ) where nodes are 
atoms and edged are 

{ ((s,K), (s’,K’)) | XΦ∈K ⇔Φ∈K’ for ∀Φ∈CL(ψ) }
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CL(δUΦ) = {δ，Φ，δUΦ，X(δUΦ), X(¬(δUΦ)),
¬δ，¬Φ，¬(δUΦ)，¬X(δUΦ), ¬X(¬(δUΦ))  }

Example:

s2



Eventuality Sequence

• An eventuality sequence is an infinite path π in a graph of atoms,
satisfying:

• If δU ψ ∈ K for an atom (s,K) on π, then there exists an atom
(s′,K ′) on π after (s,K) with ψ ∈ K ′.

• Don’t care on δ between (s,K) and (s′,K ′), why?
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Key Lemma

Lemma:
M, s |= E ϕ iff there exists an eventuality sequence starting from an
atom (s,K) with ϕ ∈ K .



Proof Sketch (=⇒)

• M, s0 |= E ϕ, if there exists an eventuality sequence
π = (s0,K0), (s1,K1), (s2,K2) . . . with ϕ ∈ K0.

• let πi = (si,Ki), (si+1,Ki+1), (si+2,Ki+2) . . ., we will prove
“πi |= δ ⇐⇒ δ ∈ Ki, for each δ ∈ cl(ϕ)” by induction on the
structure of formula.

• Case δ = X γ: By construction of a graph of atoms,
((si,Ki), (si+1,Ki+1)) implies X γ ∈ Ki ⇐⇒ γ ∈ Ki+1.
Thus, X γ ∈ Ki ⇐⇒ γ ∈ Ki+1 ⇐⇒ πi+1 |= γ ⇐⇒ πi |= X γ.

• Case δ = γ U ψ:
• By definition of π, there exists (first) j ≥ i with ψ ∈ Kj.
• Then δ ∈ Kj (by definition of atom), and πj |= ψ (by induction

hypothesis); thus πj |= δ.
• Note that ψ 6∈ Ki ∧ . . . ∧ ψ 6∈ Kj−1; then γ,X δ ∈ Ki

⇐⇒ γ ∈ Ki ∧ δ ∈ Ki+1 ⇐⇒ γ ∈ Ki ∧ . . . ∧ γ ∈ Kj−i ⇐⇒ πi |=
γ ∧ . . . πj−1 |= γ ⇐⇒ πi |= δ.



Proof Sketch (⇐=)

• M, s0 |= E ϕ only if there exists an eventuality sequence starting
from an atom (s,K) with ϕ ∈ K .

• Let π = s0, s1, s2, . . ., s.t. M, π |= ϕ. Then,
(s0,K0), (s1,K1), (s2,K2), . . . is an eventuality sequence where
Ki = {δ | δ ∈ cl(ϕ) ∧M, πi |= δ} for πi = si, si+1, si+2, . . ..



Self-fulfilling SCC in Graph of
Atoms

A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every
atom (s,K) in C with δU ψ ∈ K , there exists an atom (s′,K ′) in C
such that ψ ∈ K ′.
(i.e., there is an eventuality sequence that covers SCC C).
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Self-fulfilling SCC in Graph of
Atoms

A non-trivial SCC C in a graph of atoms is self-fulfilling iff, for every
atom (s,K) in C with δU ψ ∈ K , there exists an atom (s′,K ′) in C
such that ψ ∈ K ′.
(i.e., there is an eventuality sequence that covers SCC C).
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Lemma:
There exists an eventuality sequence starting at an atom (s,K) iff
there exists a path from (s,K) to a self-fulfilling SCC.



Proof

⇒: Assume that there is an eventuality sequence starting at (s,K).
Consider the set C′ of all atoms that appear infinitely often in this
sequence. The set C′ is a subset of a (maximal) strongly connected
component C of G. Consider a subformula δUϕ, and an atom
(s,K) ∈ C such that δUϕ ∈ K . Because C is strongly connected,
there is a finite path in C from (s,K) into C′. If ϕ appears on the path,
we are done! Otherwise, since C′ comes from an eventuality
sequence, and ϕ is in some atom of C′.
⇐: Trivial.



LTL Model Checking

M, s |= E φ iff there exists atom A = (s,K) such that φ ∈ K and there
exists a path from A to a self-fulfilling strongly connected component.



Summary of Algorithm

• Construct a graph of atoms for a formula ϕ, and compute
self-fulfilling SCCs.

• Finding an eventuality sequence to self-fulfilling SCC by
depth-first search.

• Atoms may multiplicand at most the exponential of the size of
closure, (which is linear to |ϕ|).

• Complexity: O((|S|+ |R|)× 2O(|ϕ|))



On-the-Fly Model Checking



Büchi Automata

A Büchi automaton is a tuple A = (Σ, S, δ, S0,F) where

• Σ is an alphabet,
• S is a set of states,
• δ : S × Σ→ S (deterministic) or δ : S × Σ→ 2S

(nondeterministic) is a transition function,
• S0 ⊆ S is a set of initial states (a singleton for deterministic

automata), and
• F ⊆ S is a set of accepting states.



Infinite Runs

A word w is accepted by an automaton A = (Σ, S, δ, S0,F) if there is a
labeling

ρ : N→ S

of the word by states such that
• ρ(0) ∈ S0,
• ∀i ≥ 0, ρ(i + 1) ∈ δ(ρ(i),w(i)),
• inf (ρ) ∩ F 6= ∅.



Generalized Büchi Automata

The acceptance condition of a generalized Büchi automaton is a set of
sets of states F ⊆ 2S, and the requirement is that some state of each of
the sets Fi ∈ F appears infinitely often.

More formally, a generalized Büchi A = (Σ, S, δ, S0,F) accepts a
word w if there is a labeling ρ of w by states of A that satisfies the
same first two conditions as given for Büchi automata, the third being
replaced by:

• For each Fi ∈ F , inf (ρ) ∩ Fi 6= ∅.



Encoding Generalized Büchi
automata

Given a generalized Büchi automaton A = (Σ, S, δ, S0,F), where
F = {F1, . . . ,Fk}, the Büchi automaton A′ = (Σ, S′, δ′, S′

0,F
′)

defined as follows accepts the same language as A.

• S′ = S × {1, . . . , k}.
• S′

0 = S0 × {1}.
• δ′ is defined by (t, i) ∈ δ′((s, j), a) if

t ∈ δ(s, a) ∧
{

i = j if s /∈ Fj

i = (j mod k) + 1 otherwise

.
• F ′ = F1 × {1}.



An Example
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Fig. 3. From generalized Büchi to Büchi

with nondeterministic automata; closure under intersection is obtained using a
product construction similar to the one employed for finite-word automata. Clo-
sure under complementation is much more tricky and has been the subject of
an extensive literature [Büc62,SVW87,Saf88,KV97]. Checking that a (general-
ized) Büchi automaton is nonempty (accepts at least one word) can be done by
computing its strongly connected components, and checking that there exists a
reachable strongly connected component that has a non empty intersection with
each set in F .

4 From Temporal Logic to Automata

4.1 Problem Statement

We now consider the following problem: given an LTL formula ϕ built from a
set of atomic propositions P , construct an automaton on infinite words over the
alphabet 2P that accepts exactly the infinite sequences satisfying ϕ.

To get an intuitive idea of what we are aiming at, let us first look at an
example.

Example 3. Consider the formula 3 p. This formula describes the sequences over
{∅, {p}} in which {p} occurs at least once. These sequences are accepted by the
automaton of Figure 4.
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s0,1��
���
��> s1,1��

��

b

)

a

s0,2��
��
M

a

s1,2��
��
1

b

?

a

6

b

HH
HH

HH
HH

HH
HH

HY

a
HHHHHHHHHHHHHj

b

Fig. 3. From generalized Büchi to Büchi
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From Temporal Logic to Automata



Problem Statement

Given an LTL formula ϕ built from a set of atomic propositions AP,
construct an automaton on infinite words over the alphabet 2AP that
accepts exactly the infinite sequences satisfying ϕ.



A Dialect of LTL Logic

• true, false, p, and ¬p, for all p ∈ AP;
• ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are LTL formulas;
• Xϕ1, ϕ1Uϕ2, and ϕ1Rϕ2, where ϕ1 and ϕ2 are LTL formulas.

ϕ1Rϕ2: it requires ϕ2 always be true, a requirement that is released as
soon as ϕ1 becomes true.
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• Xϕ1, ϕ1Uϕ2, and ϕ1Rϕ2, where ϕ1 and ϕ2 are LTL formulas.

ϕ1Rϕ2: it requires ϕ2 always be true, a requirement that is released as
soon as ϕ1 becomes true.



The Way to Handle Negation

σ 6|= ϕ1Uϕ2 ⇔ σ |= (¬ϕ1)R(¬ϕ2)

σ 6|= Xϕ⇔ σ |= X¬ϕ



Closure of a Formula

ϕ ∈ cl(ϕ)
ϕ1 ∧ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ)
ϕ1 ∨ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ)
Xϕ1 ∈ cl(ϕ)⇒ ϕ1 ∈ cl(ϕ)
ϕ1Uϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ)
ϕ1Rϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ)

Example

cl(F¬p) = cl(trueU¬p) = {F¬p,¬p, true}
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Hintikka Structure

A valid closure labeling τ : N→ 2cl(ϕ) of a sequence σ : N→ 2AP

has to satisfy.

If a formula ϕ1 ∈ cl(ϕ) labels a position i, then the sequence σi |= ϕ1.



Rules for Labeling Sequences

1 false /∈ τ(i);

2 for p ∈ AP, if p ∈ τ(i) then p ∈ σ(i), and if ¬p ∈ τ(i) then
p /∈ σ(i);

3 if ϕ1 ∧ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i);

4 if ϕ1 ∨ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) or ϕ2 ∈ τ(i);

5 if Xϕ1 ∈ τ(i) then ϕ1 ∈ τ(i + 1);

6 if ϕ1Uϕ2 ∈ τ(i) then either ϕ2 ∈ τ(i), or ϕ1 ∈ τ(i) and
ϕ1Uϕ2 ∈ τ(i + 1);

7 if ϕ1Rϕ2 ∈ τ(i) then ϕ2 ∈ τ(i), and either ϕ1 ∈ τ(i) or
ϕ1Rϕ2 ∈ τ(i + 1);

8 if ϕ1Uϕ2 ∈ τ(i) then there exists a j > i such that ϕ2 ∈ τ(j).



Key Lemmas

Lemma.
Consider a formula ϕ defined over a set of propositions AP, a
sequence σ : N→ 2AP, and a closure labeling τ : N→ 2cl(ϕ)

satisfying rules 1-8. For every formula ϕ′ ∈ cl(ϕ) and i ≥ 0, one has
that if ϕ′ ∈ τ(i) then σi |= ϕ′.

Lemma.
Consider a formula ϕ defined over a set of propositions AP and a
sequence σ : N→ 2AP. If σ |= ϕ, there exists a closure labeling
τ : N→ 2cl(ϕ) satisfying rules 1-8 and such that ϕ ∈ τ(0).
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satisfying rules 1-8. For every formula ϕ′ ∈ cl(ϕ) and i ≥ 0, one has
that if ϕ′ ∈ τ(i) then σi |= ϕ′.

Lemma.
Consider a formula ϕ defined over a set of propositions AP and a
sequence σ : N→ 2AP. If σ |= ϕ, there exists a closure labeling
τ : N→ 2cl(ϕ) satisfying rules 1-8 and such that ϕ ∈ τ(0).



Correctness

Theorem
Consider a formula ϕ defined over a set of propositions AP and a
sequence σ : N→ 2AP. One then has that σ |= ϕ, iff there is a closure
labeling τ : N→ 2cl(ϕ) satisfying rules 1-8 and such that ϕ ∈ τ(0).



Defining the Automaton



Encoding to Büchi Automata Σ, S

Given a formula ϕ, a generalized Büchi automaton accepting exactly
the sequences σ : N→ 2AP satisfying ϕ can be defined as follows.
The automaton is Aϕ = (Σ, S, δ, S0,F) where,

• Σ = 2AP,
• S ⊆ 2cl(ϕ), and for each s ∈ S

• false /∈ s;
• if ϕ1 ∧ ϕ2 ∈ s, then ϕ1 ∈ s and ϕ2 ∈ s.
• if ϕ1 ∨ ϕ2 ∈ s, then ϕ1 ∈ s or ϕ2 ∈ s.



Encoding to Büchi Automata δ, S0

Given a formula ϕ, a generalized Büchi automaton accepting exactly
the sequences σ : N→ 2AP satisfying ϕ can be defined as follows.
The automaton is Aϕ = (Σ, S, δ, S0,F) where,

• t ∈ δ(s, a) iff,
• For all p ∈ AP, if p ∈ s then p ∈ a.
• For all p ∈ AP, if ¬p ∈ s then p /∈ a.
• If Xϕ ∈ s, then ϕ ∈ t.
• If ϕ1Uϕ2 ∈ s then either ϕ2 ∈ s, or ϕ1 ∈ s and ϕ1Uϕ2 ∈ t.
• If ϕ1Rϕ2 ∈ s then ϕ2 ∈ s and either ϕ1 ∈ s, or ϕ1Rϕ2 ∈ t.

• S0 = {s ∈ S | ϕ ∈ s}.



Encoding to Büchi Automata δ, S0

Given a formula ϕ, a generalized Büchi automaton accepting exactly
the sequences σ : N→ 2AP satisfying ϕ can be defined as follows.
The automaton is Aϕ = (Σ, S, δ, S0,F) where,

• t ∈ δ(s, a) iff,
• For all p ∈ AP, if p ∈ s then p ∈ a.
• For all p ∈ AP, if ¬p ∈ s then p /∈ a.
• If Xϕ ∈ s, then ϕ ∈ t.
• If ϕ1Uϕ2 ∈ s then either ϕ2 ∈ s, or ϕ1 ∈ s and ϕ1Uϕ2 ∈ t.
• If ϕ1Rϕ2 ∈ s then ϕ2 ∈ s and either ϕ1 ∈ s, or ϕ1Rϕ2 ∈ t.

• S0 = {s ∈ S | ϕ ∈ s}.



Encoding to Büchi Automata F

Given a formula ϕ, a generalized Büchi automaton accepting exactly
the sequences σ : N→ 2AP satisfying ϕ can be defined as follows.
The automaton is Aϕ = (Σ, S, δ, S0,F) where,

• If the eventualities appearing in cl(ϕ) are e1(ϕ1), . . . , em(ϕm),
F = {Φ1,Φ2 . . .Φm}, where

Φi = {s ∈ S | ei(ϕi), ϕi ∈ s ∨ ei(ϕi) /∈ s}

for every eventuality formula e(ϕ′) = ϕUϕ′



An Example F p
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Fig. 4. An automaton for 3 p

4.2 The Closure of a Formula

In order to develop a procedure for building automata from LTL formulas, we
first look at the problem of determining if a sequence σ : N → 2P satisfies a
formula ϕ defined over the set of propositions P . This can, at least conceptually,
be done by labeling the sequence with subformulas of ϕ in a way that respects
LTL semantics. First, let us define the set of subformulas of a formula ϕ that
are needed. This set is called the closure of ϕ (cl(ϕ)) and is defined as follows:

– ϕ ∈ cl(ϕ),
– ϕ1 ∧ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ϕ1 ∨ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ©ϕ1 ∈ cl(ϕ)⇒ ϕ1 ∈ cl(ϕ),
– ϕ1 U ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ),
– ϕ1 Ũ ϕ2 ∈ cl(ϕ)⇒ ϕ1, ϕ2 ∈ cl(ϕ).

Example 4.

cl(3¬p) = cl(trueU ¬p) = {3¬p,¬p, true}

4.3 Rules for Labeling Sequences

The next step is to define the set of rules that a valid closure labeling τ : N →
2cl(ϕ) of a sequence σ : N → 2P has to satisfy. The validity criterion is that, if
a formula ϕ1 ∈ cl(ϕ) labels a position i (i.e. ϕ1 ∈ τ(i)), then the sequence σi

satisfies it (σi |= ϕ1)2. For this to hold, our labeling rules have to mirror the
semantic rules for LTL. A first set of rules deals with the purely propositional
part of LTL.

Consider a closure labeling τ : N → 2cl(ϕ) of a sequence σ : N → 2P for
a formula ϕ defined over a set of atomic propositions P . For τ to be a valid
labeling, it has to satisfy the following rules for every i ≥ 0:

1. false 6∈ τ(i);
2. for p ∈ P , if p ∈ τ(i) then p ∈ σ(i), and if ¬p ∈ τ(i) then p 6∈ σ(i);
3. if ϕ1 ∧ ϕ2 ∈ τ(i) then ϕ1 ∈ τ(i) and ϕ2 ∈ τ(i);

2 Such a validly labeled structure is often called a Hintikka structure in the modal
logic literature
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Fig. 5. The automaton constructed for 3 p

automaton states. Furthermore, given the way the transition relation is defined,
any transition possible from a state s1 is also possible from any state s2 ⊂ s1.
This seems to imply that if, from a given state, two transitions lead to states s1

and s2 such that s2 ⊂ s1, then it is sufficient to keep the transition leading to
the state s2. Almost so. Indeed, the way the transition relation of the automaton
is defined guarantees that if there is a computation of the automaton on a given
word from s1, there is also one from s2. The problem is with accepting states: if
s1 contains an eventuality formula e(ϕ′) as well as its argument ϕ′, but that s2

only contains e(ϕ′), s2 might be outside an accepting set in which s1 is included.
The simplification rule we will use is thus the following.

Omit transitions. Assume that from a state s two identically labeled tran-
sitions lead to states s1 and s2 such that s2 ⊂ s1 and such that, for all
eventuality formulas e(ϕ′) ∈ s1, if e(ϕ′) ∈ s2 and ϕ′ ∈ s1 then also ϕ′ ∈ s2.
The transition from s to s1 can then be omitted.

Example 6. Applying the omit transitions rule to the automaton of Figure 5
and eliminating unreachable states, one obtains the automaton of Figure 6.

To see that the omit transitions rule is sound, we establish that for every
state of the automaton, the language accepted from that state after applying the
omit transitions rule is unchanged. First notice that we are removing transi-
tions. So, after applying the rule, the language accepted cannot contain more
words. We show that it also cannot contain less words. Assume that there exists
an accepting computation from a state s before applying the omit transitions
rule. Such a computation still exists after applying the rule. Indeed, if the com-
putation from s starts with an omitted transition leading to a state s1, there
remains an identically labeled transition to a state s2 ⊂ s1 that is accepting
whenever s1 is accepting. Now, since s2 ⊂ s1, before the transition omission pro-
cedure, all transitions possible from s1 are also possible from s2, so there also is
an accepting computation from s2. Of course, some transitions from s2, may also



Optimizations

Omitting Redundant Transitions

Building the Automaton by Need

Identifying Equivalent States

Simplifying the Formula.

Early Detection of Inconsistencies.

Moving Propositions from States to Transitions.
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Rep5. Bounded model checking for LTL (0/3) (Maximal 3 students).


