
Fundamentals of Programming
Languages V
Abstract Interpretation

Guoqiang Li

School of Software, Shanghai Jiao Tong University



Assignment

Assignment 2 is announced! Deadline Nov. 15



Reference

Cousot P., Cousot R., Abstract Interpretation: A Unified Lattice Mode for Static
Analysis of Programs by Construction or Approximation of Fixpoints, POPL’77

Steffen, B., Data Flow Analysis as Model Checking, TACS’91

Schmidt, D.A., Data Flow Analysis is Model Checking of Abstract Interpretations
POPL’98

Lacey,D., Proving Correctness of Compiler Optimizations by Temporal Logic
POPL’02



Turing Award
1986, Tony Hoare
For his fundamental contributions to the definition and design of programming
languages...

1991, Robin Milner
For three distinct and complete achievements: 1) LCF, the mechanization of Scott’s
Logic of Computable Functions, probably the first theoretically based yet practical
tool for machine assisted proof construction; 2) ML, the first language to include
polymorphic type inference together with a type-safe exception-handling mechanism;
3) CCS, a general theory of concurrency. In addition, he formulated and strongly
advanced full abstraction, the study of the relationship between operational and
denotational semantics...

1996, Amir Pnueli
For seminal work introducing temporal logic into computing science and for
outstanding contributions to program and systems verification...

2007, Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis
For their roles in developing model checking into a highly effective verification
technology, widely adopted in the hardware and software industries...



Abstract Interpretation in Practice



Hardware Model Checking

• Classical Model Checking (in Clarke’s book)(hardware model
checking): Implementer and verifier are same.

• During designing a system, each model is checked and refined.
• A correct system implementation is finally obtained.

• e.g. a modulo 8 counter
• v′0 = ¬v0
• v′1 = v0 ⊕ v1
• v′2 = (v0 ∧ v1)⊕ v2



Software Model Checking

• Modern Model Checking(software model checking):
Implementer and verifier may be different.

• Given a system implementation (e.g. a source code), construct a
model and verify it.

• Construction of models: manually/automatically.
• e.g.

• security protocols
• real-time embedded systems
• program analysis



Classical Program Analysis

• From Dragon book
• dead code detection
• constant propagation
• common expression detection
• code motion

• Object-oriented program analysis

• point-to analysis
• escape analysis
• inference of class invariants
• shape analysis

• From POPA

• available expression analysis
• reaching definition analysis
• very busy expression analysis
• live variable analysis

• Concurrent program analysis

• deadlock, livelock
• data race

• Aspect-oriented program analysis

• ?????



Classical Program Analysis

• From Dragon book
• dead code detection
• constant propagation
• common expression detection
• code motion

• Object-oriented program analysis

• point-to analysis
• escape analysis
• inference of class invariants
• shape analysis

• From POPA
• available expression analysis
• reaching definition analysis
• very busy expression analysis
• live variable analysis

• Concurrent program analysis

• deadlock, livelock
• data race

• Aspect-oriented program analysis

• ?????



Classical Program Analysis

• From Dragon book
• dead code detection
• constant propagation
• common expression detection
• code motion

• Object-oriented program analysis
• point-to analysis
• escape analysis
• inference of class invariants
• shape analysis

• From POPA
• available expression analysis
• reaching definition analysis
• very busy expression analysis
• live variable analysis

• Concurrent program analysis

• deadlock, livelock
• data race

• Aspect-oriented program analysis

• ?????



Classical Program Analysis

• From Dragon book
• dead code detection
• constant propagation
• common expression detection
• code motion

• Object-oriented program analysis
• point-to analysis
• escape analysis
• inference of class invariants
• shape analysis

• From POPA
• available expression analysis
• reaching definition analysis
• very busy expression analysis
• live variable analysis

• Concurrent program analysis
• deadlock, livelock
• data race

• Aspect-oriented program analysis

• ?????



Brief Idea of Abstract Interpretation

• In order to know properties of a program, execute it for all
possible inputs.

• It will not terminate since domains of variables are often infinite.
• Abstract input data to a suitable finite domain. Then finiteness

guarantees termination.
• Functions needs to be reinterpreted.

• Examples:

• Security protocols: a principal may receive infinitely many
messages from environments.
(some affects the principal, some are not)

• Embedded systems: a scheduler may have to schedule infinitely
many released tasks.
(when time exceeds, all tasks have the same results)



Brief Idea of Abstract Interpretation

• In order to know properties of a program, execute it for all
possible inputs.

• It will not terminate since domains of variables are often infinite.
• Abstract input data to a suitable finite domain. Then finiteness

guarantees termination.
• Functions needs to be reinterpreted.
• Examples:

• Security protocols: a principal may receive infinitely many
messages from environments.
(some affects the principal, some are not)

• Embedded systems: a scheduler may have to schedule infinitely
many released tasks.
(when time exceeds, all tasks have the same results)



Abstract Interpretation on Program
Analysis: Examples

• Even/Odd analysis: x × (x + 1) is even.

• Abstraction:

• Even
• Odd

• Interpretation:

• Even + Even = Even, Even + Odd = Odd,
• Even× Odd = Even, …

• Positive/nagative analysis

• Abstraction:

• Pos
• Neg
• Zero

• Interpretation:

• Pos + Pos = Pos, Pos + Neg = {Pos, Zero,Neg}, …
• Neg× Neg = Pos, Pos× Zero = Zero, …

• The result will be a (sound) approximation.



Abstract Interpretation on Program
Analysis: Examples

• Even/Odd analysis: x × (x + 1) is even.
• Abstraction:

• Even
• Odd

• Interpretation:

• Even + Even = Even, Even + Odd = Odd,
• Even× Odd = Even, …

• Positive/nagative analysis

• Abstraction:

• Pos
• Neg
• Zero

• Interpretation:

• Pos + Pos = Pos, Pos + Neg = {Pos, Zero,Neg}, …
• Neg× Neg = Pos, Pos× Zero = Zero, …

• The result will be a (sound) approximation.



Abstract Interpretation on Program
Analysis: Examples

• Even/Odd analysis: x × (x + 1) is even.
• Abstraction:

• Even
• Odd

• Interpretation:
• Even + Even = Even, Even + Odd = Odd,
• Even× Odd = Even, …

• Positive/nagative analysis

• Abstraction:

• Pos
• Neg
• Zero

• Interpretation:

• Pos + Pos = Pos, Pos + Neg = {Pos, Zero,Neg}, …
• Neg× Neg = Pos, Pos× Zero = Zero, …

• The result will be a (sound) approximation.



Abstract Interpretation on Program
Analysis: Examples

• Even/Odd analysis: x × (x + 1) is even.
• Abstraction:

• Even
• Odd

• Interpretation:
• Even + Even = Even, Even + Odd = Odd,
• Even× Odd = Even, …

• Positive/nagative analysis

• Abstraction:

• Pos
• Neg
• Zero

• Interpretation:

• Pos + Pos = Pos, Pos + Neg = {Pos, Zero,Neg}, …
• Neg× Neg = Pos, Pos× Zero = Zero, …

• The result will be a (sound) approximation.



Abstract Interpretation on Program
Analysis: Examples

• Even/Odd analysis: x × (x + 1) is even.
• Abstraction:

• Even
• Odd

• Interpretation:
• Even + Even = Even, Even + Odd = Odd,
• Even× Odd = Even, …

• Positive/nagative analysis
• Abstraction:

• Pos
• Neg
• Zero

• Interpretation:

• Pos + Pos = Pos, Pos + Neg = {Pos, Zero,Neg}, …
• Neg× Neg = Pos, Pos× Zero = Zero, …

• The result will be a (sound) approximation.



Abstract Interpretation on Program
Analysis: Examples

• Even/Odd analysis: x × (x + 1) is even.
• Abstraction:

• Even
• Odd

• Interpretation:
• Even + Even = Even, Even + Odd = Odd,
• Even× Odd = Even, …

• Positive/nagative analysis
• Abstraction:

• Pos
• Neg
• Zero

• Interpretation:
• Pos + Pos = Pos, Pos + Neg = {Pos, Zero,Neg}, …
• Neg× Neg = Pos, Pos× Zero = Zero, …

• The result will be a (sound) approximation.



Abstract Interpretation on Program
Analysis: Examples

• Even/Odd analysis: x × (x + 1) is even.
• Abstraction:

• Even
• Odd

• Interpretation:
• Even + Even = Even, Even + Odd = Odd,
• Even× Odd = Even, …

• Positive/nagative analysis
• Abstraction:

• Pos
• Neg
• Zero

• Interpretation:
• Pos + Pos = Pos, Pos + Neg = {Pos, Zero,Neg}, …
• Neg× Neg = Pos, Pos× Zero = Zero, …

• The result will be a (sound) approximation.



Sound Abstraction

The result is an approximation

Completeness: sufficient condition
• if no errors detected there are really no errors.

Soundness: necessary condition
• if errors detected they are really errors.

• Data Abstraction : abs : D→ Abs
• Typical concretization : con = abs−1

• (abs · con = idAbs) ∧ (con · abs ⊇ idD)
guarantee soundness.

D D

Abs Abs

f

abscon

Int(f)

abs

1



Sound Abstraction

The result is an approximation

Completeness: sufficient condition
• if no errors detected there are really no errors.

Soundness: necessary condition
• if errors detected they are really errors.

• Data Abstraction : abs : D→ Abs
• Typical concretization : con = abs−1

• (abs · con = idAbs) ∧ (con · abs ⊇ idD)
guarantee soundness.

D D

Abs Abs

f

abscon

Int(f)

abs

1



Sound Abstraction

The result is an approximation

Completeness: sufficient condition
• if no errors detected there are really no errors.

Soundness: necessary condition
• if errors detected they are really errors.

• Data Abstraction : abs : D→ Abs
• Typical concretization : con = abs−1

• (abs · con = idAbs) ∧ (con · abs ⊇ idD)
guarantee soundness.

D D

Abs Abs

f

abscon

Int(f)

abs

1



Abstract Interpretation

Define abstraction and finite abstract domain

abs : D→ Abs

Interpret primitive functions

+,×, if ,=,≥,≤, . . .

Execute looping structures via program semantics

while, function call



Abstract Interpretation

Define abstraction and finite abstract domain

abs : D→ Abs

Interpret primitive functions

+,×, if ,=,≥,≤, . . .

Execute looping structures via program semantics

while, function call



Abstract Interpretation

Define abstraction and finite abstract domain

abs : D→ Abs

Interpret primitive functions

+,×, if ,=,≥,≤, . . .

Execute looping structures via program semantics

while, function call



Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.

Theorem
Tarski’s least fixed point theorem:
Assume τ : P(D)→P(D) is a monotonic, then there exists the
unique least fixed point, which is computed as

⋃
i τ

i(∅).

We will come back to this theorem again!



Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.

Theorem
Tarski’s least fixed point theorem:
Assume τ : P(D)→P(D) is a monotonic, then there exists the
unique least fixed point, which is computed as

⋃
i τ

i(∅).

We will come back to this theorem again!



Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.

Theorem
Tarski’s least fixed point theorem:
Assume τ : P(D)→P(D) is a monotonic, then there exists the
unique least fixed point, which is computed as

⋃
i τ

i(∅).

We will come back to this theorem again!



Example: Computing Sum
This can be read as 

• Unfold while sentence as repeated applications of if. 

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ step 1: 
{([0,0,0,True],
[0,1,0,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ2

step 2: 
{([0,0,0,True],
[0,1,0,False]),

（[1,0,0,True],
[1,2,1,False])}

Unfold while-loop

This can be read as 
• Unfold while sentence as repeated applications of if. 

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ step 1: 
{([0,0,0,True],
[0,1,0,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ2

step 2: 
{([0,0,0,True],
[0,1,0,False]),

（[1,0,0,True],
[1,2,1,False])}

Unfold while-loop

env = [n, i, s, c]

τ : P(env × env)→P(env × env)

This can be read as 
• Unfold while sentence as repeated applications of if. 

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ step 1: 
{([0,0,0,True],
[0,1,0,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ2

step 2: 
{([0,0,0,True],
[0,1,0,False]),

（[1,0,0,True],
[1,2,1,False])}

Unfold while-loop



Example: Positive/Negative
Analysis

Abstraction: Nat → {Pos,Zero}

This can be read as 
• Unfold while sentence as repeated applications of if. 

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ step 1: 
{([0,0,0,True],
[0,1,0,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ2

step 2: 
{([0,0,0,True],
[0,1,0,False]),

（[1,0,0,True],
[1,2,1,False])}

Unfold while-loop

This can be read as 
• Unfold while sentence as repeated applications of if. 

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ step 1: 
{([0,0,0,True],
[0,1,0,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ2

step 2: 
{([0,0,0,True],
[0,1,0,False]),

（[1,0,0,True],
[1,2,1,False])}

Unfold while-loop

env = [n, i, s, c]

τ : P(env × env)→P(env × env)

Example: positive/negative analysis
• Abstraction: Nat → {Pos, Zero}, Bool → Bool

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
τ’

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

step 1: 
{([Zero,Zero,Zero,True],
[Zero,Pos,Zero,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ’2
step 2: 
{([Zero,Zero,Zero,True],
[Zero,Pos,Zero,False]),
[Pos,Zero,Zero,True],
[Pos,Pos,Pos,

True/False])}

Converged! (analyzed!)Least Fixed Point!



Example: Variation

Abstraction: Nat → {Many,One,Zero}

This can be read as 
• Unfold while sentence as repeated applications of if. 

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ step 1: 
{([0,0,0,True],
[0,1,0,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ2

step 2: 
{([0,0,0,True],
[0,1,0,False]),

（[1,0,0,True],
[1,2,1,False])}

Unfold while-loop

This can be read as 
• Unfold while sentence as repeated applications of if. 

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ step 1: 
{([0,0,0,True],
[0,1,0,False])}

env = [n,i,s,c]
τ: env×env → env×env

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ2

step 2: 
{([0,0,0,True],
[0,1,0,False]),

（[1,0,0,True],
[1,2,1,False])}

Unfold while-loop

env = [n, i, s, c]

τ : P(env × env)→P(env × env)

Variation of abstraction
• Abstraction: Nat → {Pos, Zero}, Bool → Bool
• Abstraction: Nat → {Many,One,Zero}, Bool → Bool

/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

step 0: φ
τ’

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

step 1: 
{([Zero,Zero,Zero,True],
[Zero,One,Zero,False])}

if ￢c
then skip 
else 
S:=S+i;
i:=i+1;
c:=i<=n;

τ’2
step 2: 
{([Zero,Zero,Zero,True],
[Zero,One,Zero,False]),
[One,Zero,Zero,True],
[One,One,One,True])}

Finer abstraction will find more; but this is trade-off



Program Analysis = Abstract Interpretation + Model Checking



Model Checking Based Program
Analysis

• Each line of a program is regarded as nondeterministic transition.
• After abstraction, states becomes finite.
• Least fixed point computation over finite domains can be done by

model checking.

• Advantage:

• Obtain more precise results.
• Need not develop each program for each analysis, just reduce the

analysis to a model checking problem.
• Save implementing time.

• Disadvantage:

• not so efficient. (do we really need preciseness?)



Model Checking Based Program
Analysis

• Each line of a program is regarded as nondeterministic transition.
• After abstraction, states becomes finite.
• Least fixed point computation over finite domains can be done by

model checking.
• Advantage:

• Obtain more precise results.
• Need not develop each program for each analysis, just reduce the

analysis to a model checking problem.
• Save implementing time.

• Disadvantage:

• not so efficient. (do we really need preciseness?)



Model Checking Based Program
Analysis

• Each line of a program is regarded as nondeterministic transition.
• After abstraction, states becomes finite.
• Least fixed point computation over finite domains can be done by

model checking.
• Advantage:

• Obtain more precise results.
• Need not develop each program for each analysis, just reduce the

analysis to a model checking problem.
• Save implementing time.

• Disadvantage:
• not so efficient. (do we really need preciseness?)



Example: Positive/Negative
Analysis

Abstraction: Nat → {Pos,Zero}

Example: positive/negative analysis
• Abstraction: Nat → {Pos, Zero}, Bool → Bool
/* sum */
1: read n;
2: i:=0; 
3: S:=0; 
4: c:=True;
5: while c

do
6: S=S+i;
7: i:=i+1; 
8: c:=i<=n;

od;
9: write S

state = [n,i,s,c],
in_n, out_s

n,i,s,c: Boolean

1

2

3

4

5

6

7

8

9

CFG

1

2

3

4

5

9

1

2

3

4

5

6

7

8

pos_n, in_nzero_n, in_n

zero_izero_i

zero_szero_s

true_c

true_c

true_c

pos_i

out_s

6 zero_spos_s

model

5

6

7

8 8

zero_s

pos_i

false_c
false_c

true_c

7

true_c

5

9

zero_i

false_c

zero_n pos_n



Example: Even/Odd Analysis
Example: even/odd analysis

spec: AG（!EF（stmt(write x） & x=even））
never reach to exit point with even x

modelCFG

state = Line×[x,z,c], 
stmt(read x),
stmt(write x)

x,z,c: Boolean

details are 
excercise

statement

This is expected 
to return 1

even/odd
state = line x, [x, z, c]

readX ,writeX)
x, z, c : Bool(even/odd)



Example: Even/Odd Analysis
Example: even/odd analysis

spec: AG（!EF（stmt(write x） & x=even））
never reach to exit point with even x

modelCFG

state = Line×[x,z,c], 
stmt(read x),
stmt(write x)

x,z,c: Boolean

details are 
excercise

statement

This is expected 
to return 1

even/odd

state = line x, [x, z, c]
readX ,writeX)

x, z, c : Bool(even/odd)

AG(!EF(writex)
∧x = even))



Dead Code Detection

• Detect variables that are defined,
but never used or redefined before
used.

• Abstraction:
• defx when x is defined

(e.g. x := 2)
• usex when x is referred

(e.g. y := x + 1)

Example : dead code detection

/* sum */
1:  read n;
2:  i:=0; 
3:  S:=0; 
4:  c:=True;
5:  while c

do
6:  S:=S+i;
7:  c:=False;
8:  i:=i+1;
9:  c:=i<=n;

od;
10: write S

1

2

3

4

5

6

7

8

9

CFG

10

1

2

3

4

5

6

7

8

9

model

10

def_i

def_i,use_i

def_c

def_s,use_s,use_i

def_c,use_n,use_i

def_s

def_c

def_n

use_c

use_s

Simplest abstraction:
1 point abstract domain



Dead Code Detection

• Useless code: x is defined but never used.

• x is defined but not used before re-defined.



Dead Code Detection

• Useless code: x is defined but never used.

AG¬(defx ∧ AX ¬EF usex)

x is never defined if it will not used

• x is defined but not used before re-defined.



Dead Code Detection

• Useless code: x is defined but never used.

AG¬(defx ∧ AX ¬EF usex)

x is never defined if it will not used

• x is defined but not used before re-defined.



Dead Code Detection

• Useless code: x is defined but never used.

AG¬(defx ∧ AX ¬EF usex)

x is never defined if it will not used

• x is defined but not used before re-defined.

AG¬(defx ∧ AX ¬A(¬usex U defx)



Abstract Interpretation in Theory



Abstract Interpretation

Mathematical framework that helps the highlevel design of a program
analysis.

Based on lattice theory.

Suggests to design an analysis by choosing appropriate lattices and
functions between them.



PA in a Nutshell

Two main components of a program analysis:

• Abstract domain D s.t. ⊥ ∈ D
• Transfer function F : D→ D

Aim: Compute a fixpoint of F.

Algorithm: Start from ⊥. Apply F repeatedly until fixpoint.

⊥,F(⊥),F2(⊥), . . . ,Fn(⊥),Fn+1(⊥)

where n is the first s.t. Fn(⊥) = Fn+1(⊥)



A Running Example

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = Sign = {⊥, pos, neg,Z} where ⊥ = ∅
• F(d) = pos ∪ (if (d = neg) then Z else d).
• Analysis run:

⊥ = ∅, F(⊥) = pos, F2(⊥) = pos



A Running Example

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = Sign = {⊥, pos, neg,Z} where ⊥ = ∅
• F(d) = pos ∪ (if (d = neg) then Z else d).
• Analysis run:

⊥ = ∅, F(⊥) = pos, F2(⊥) = pos



Main Concerns

Q1: Does a fixpoint of F exist?

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Abstract interpretation answers these questions. It provides guidance
about how to choose D and F.



Main Concerns

Q1: Does a fixpoint of F exist?

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Abstract interpretation answers these questions. It provides guidance
about how to choose D and F.



Main Concerns

Q1: Does a fixpoint of F exist?

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Abstract interpretation answers these questions. It provides guidance
about how to choose D and F.



Main Concerns

Q1: Does a fixpoint of F exist?

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Abstract interpretation answers these questions. It provides guidance
about how to choose D and F.



Tarski’s Fixpoint Theorem



Answer of Q1

Recall the components of a abstract interpretation:

D, F : D→ D such that ⊥ ∈ D

.
Q1: Does F have a fixpoint?

A1: If D is a complete lattice and F is monotone, F has the least and
the greatest fixpoints.



Answer of Q1

Recall the components of a abstract interpretation:

D, F : D→ D such that ⊥ ∈ D

.
Q1: Does F have a fixpoint?

A1: If D is a complete lattice and F is monotone, F has the least and
the greatest fixpoints.



Preorder and Partial Order

A binary relation v on a set D is a preorder if

• reflexivity: d v d for all d in D
• transitivity: (d v e ∧ e v f )⇒ d v f

A preorder v is a partial order if
• antisymmetry: (d v e ∧ e v d)⇒ e = d

A preset means a set D with a preorder v. A poset means a set D with
a partial order v. Usually written in (D,v)

Idea: v is an approximate subset/implication relation



Preorder and Partial Order

A binary relation v on a set D is a preorder if

• reflexivity: d v d for all d in D
• transitivity: (d v e ∧ e v f )⇒ d v f

A preorder v is a partial order if
• antisymmetry: (d v e ∧ e v d)⇒ e = d

A preset means a set D with a preorder v. A poset means a set D with
a partial order v. Usually written in (D,v)

Idea: v is an approximate subset/implication relation



Preorder and Partial Order

A binary relation v on a set D is a preorder if

• reflexivity: d v d for all d in D
• transitivity: (d v e ∧ e v f )⇒ d v f

A preorder v is a partial order if
• antisymmetry: (d v e ∧ e v d)⇒ e = d

A preset means a set D with a preorder v. A poset means a set D with
a partial order v. Usually written in (D,v)

Idea: v is an approximate subset/implication relation



Preorder and Partial Order

A binary relation v on a set D is a preorder if

• reflexivity: d v d for all d in D
• transitivity: (d v e ∧ e v f )⇒ d v f

A preorder v is a partial order if
• antisymmetry: (d v e ∧ e v d)⇒ e = d

A preset means a set D with a preorder v. A poset means a set D with
a partial order v. Usually written in (D,v)

Idea: v is an approximate subset/implication relation



Preorder and Partial Order

A binary relation v on a set D is a preorder if

• reflexivity: d v d for all d in D
• transitivity: (d v e ∧ e v f )⇒ d v f

A preorder v is a partial order if
• antisymmetry: (d v e ∧ e v d)⇒ e = d

A preset means a set D with a preorder v. A poset means a set D with
a partial order v. Usually written in (D,v)

Idea: v is an approximate subset/implication relation



Quiz: Poset

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Q2: Powerset of Z: (P(Z),⊆)

Q3: Interval: ({[n,m] | n,m ∈ Z ∧ n ≤ m},⊆)

Q4: LinConA : ({Ax ≤ b | b ∈ Zn},⇒)



Quiz: Poset

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Q2: Powerset of Z: (P(Z),⊆)

Q3: Interval: ({[n,m] | n,m ∈ Z ∧ n ≤ m},⊆)

Q4: LinConA : ({Ax ≤ b | b ∈ Zn},⇒)



Quiz: Poset

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Q2: Powerset of Z: (P(Z),⊆)

Q3: Interval: ({[n,m] | n,m ∈ Z ∧ n ≤ m},⊆)

Q4: LinConA : ({Ax ≤ b | b ∈ Zn},⇒)



Quiz: Poset

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Q2: Powerset of Z: (P(Z),⊆)

Q3: Interval: ({[n,m] | n,m ∈ Z ∧ n ≤ m},⊆)

Q4: LinConA : ({Ax ≤ b | b ∈ Zn},⇒)



Least Upper Bound (lub)

Let (D,v) be a poset, and E a subset of D
• d is an upper bound of E if e v d for all e ∈ E
• d is a least upper bound (lub) of E if d is an upper bound and

d v d′ for all upper bound d′ of E

• Notations: lub(E) and tE

Quiz: lub(E) is unique?



Least Upper Bound (lub)

Let (D,v) be a poset, and E a subset of D
• d is an upper bound of E if e v d for all e ∈ E
• d is a least upper bound (lub) of E if d is an upper bound and

d v d′ for all upper bound d′ of E
• Notations: lub(E) and tE

Quiz: lub(E) is unique?



Least Upper Bound (lub)

Let (D,v) be a poset, and E a subset of D
• d is an upper bound of E if e v d for all e ∈ E
• d is a least upper bound (lub) of E if d is an upper bound and

d v d′ for all upper bound d′ of E
• Notations: lub(E) and tE

Quiz: lub(E) is unique?



Greatest Lower Bound (glb)

Dual to the definition of lub.
• d is an lower bound of E if e w d for all e ∈ E
• d is a greatest lower bound (glb) of E if d is a lower bound and

d w d′ for all lower bound d′ of E.

• Notations: glb(E) and uE



Greatest Lower Bound (glb)

Dual to the definition of lub.
• d is an lower bound of E if e w d for all e ∈ E
• d is a greatest lower bound (glb) of E if d is a lower bound and

d w d′ for all lower bound d′ of E.
• Notations: glb(E) and uE



Quiz: Compute lub

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• pos t neg =??

Q2: Powerset of Z : P(Z)

• {2} t {4} =??

• {2} t {4} t {6} t . . . =??

Q3: Interval: {[n,m] | n,m ∈ Z ∧ n ≤ m}
• [2, 2] t [4, 4] =??

• [2, 2] t [4, 4] t [6, 6] t . . . =??



Quiz: Compute lub

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• pos t neg =??

Q2: Powerset of Z : P(Z)

• {2} t {4} =??

• {2} t {4} t {6} t . . . =??

Q3: Interval: {[n,m] | n,m ∈ Z ∧ n ≤ m}
• [2, 2] t [4, 4] =??

• [2, 2] t [4, 4] t [6, 6] t . . . =??



Quiz: Compute lub

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• pos t neg =??

Q2: Powerset of Z : P(Z)

• {2} t {4} =??

• {2} t {4} t {6} t . . . =??

Q3: Interval: {[n,m] | n,m ∈ Z ∧ n ≤ m}
• [2, 2] t [4, 4] =??

• [2, 2] t [4, 4] t [6, 6] t . . . =??



Quiz: Compute lub

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• pos t neg =??

Q2: Powerset of Z : P(Z)

• {2} t {4} =??

• {2} t {4} t {6} t . . . =??

Q3: Interval: {[n,m] | n,m ∈ Z ∧ n ≤ m}
• [2, 2] t [4, 4] =??

• [2, 2] t [4, 4] t [6, 6] t . . . =??



Quiz: Compute lub

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• pos t neg =??

Q2: Powerset of Z : P(Z)

• {2} t {4} =??

• {2} t {4} t {6} t . . . =??

Q3: Interval: {[n,m] | n,m ∈ Z ∧ n ≤ m}
• [2, 2] t [4, 4] =??

• [2, 2] t [4, 4] t [6, 6] t . . . =??



Complete Lattice

A poset (D,v) is a complete lattice if every subset of D has the lub
and glb.



Quiz: Complete Lattice

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Q2: Powerset of Z: (P(Z),⊆)

Q3: Interval: ([n,m] | n,m ∈ Z ∧ n ≤ m,⊆)

• (∅∪{[n,m] | n,m ∈ Z∪{−∞,+∞} ∧ n ≤ m},⊆)



Quiz: Complete Lattice

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Q2: Powerset of Z: (P(Z),⊆)

Q3: Interval: ([n,m] | n,m ∈ Z ∧ n ≤ m,⊆)

• (∅∪{[n,m] | n,m ∈ Z∪{−∞,+∞} ∧ n ≤ m},⊆)



Tarski’s fixpoint theorem

Let (C,⊆) and (D,v) be presets. A function F : C → D is monotone
if

c ⊆ c′ ⇒ F(c) v F(c′)

.

[Tarski’s Theorem]
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

Notations: lfp(F) and gfp(F).



Tarski’s fixpoint theorem

Let (C,⊆) and (D,v) be presets. A function F : C → D is monotone
if

c ⊆ c′ ⇒ F(c) v F(c′)

.

[Tarski’s Theorem]
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

Notations: lfp(F) and gfp(F).



Tarski’s fixpoint theorem

Let (C,⊆) and (D,v) be presets. A function F : C → D is monotone
if

c ⊆ c′ ⇒ F(c) v F(c′)

.

[Tarski’s Theorem]
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

Notations: lfp(F) and gfp(F).



Quiz: Compute Fixpoints

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• F(d) = pos t (if (d = neg) then Z else d).

Q2: Powerset of Z : P(Z)

• F(d) = {2} t {i + 2 | i ∈ d}

Q3: Interval: (∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m},⊆)

• F(d) = [2, 2] t (if (d = [n,m]) then [n + 2,m + 2] else ∅)



Quiz: Compute Fixpoints

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• F(d) = pos t (if (d = neg) then Z else d).

Q2: Powerset of Z : P(Z)

• F(d) = {2} t {i + 2 | i ∈ d}

Q3: Interval: (∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m},⊆)

• F(d) = [2, 2] t (if (d = [n,m]) then [n + 2,m + 2] else ∅)



Quiz: Compute Fixpoints

Q1: Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

• F(d) = pos t (if (d = neg) then Z else d).

Q2: Powerset of Z : P(Z)

• F(d) = {2} t {i + 2 | i ∈ d}

Q3: Interval: (∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m},⊆)

• F(d) = [2, 2] t (if (d = [n,m]) then [n + 2,m + 2] else ∅)



Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

• Let Pre = {d | F(d) v d} and Post = {d | d v F(d)}.
• glb(Pre) is the least fixpoint of F.
• lub(Post) is the greatest fixpoint of F.



Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

• Let Pre = {d | F(d) v d} and Post = {d | d v F(d)}.

• glb(Pre) is the least fixpoint of F.
• lub(Post) is the greatest fixpoint of F.



Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

• Let Pre = {d | F(d) v d} and Post = {d | d v F(d)}.
• glb(Pre) is the least fixpoint of F.

• lub(Post) is the greatest fixpoint of F.



Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

• Let Pre = {d | F(d) v d} and Post = {d | d v F(d)}.
• glb(Pre) is the least fixpoint of F.
• lub(Post) is the greatest fixpoint of F.



Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D→ D is monotonic, then the
sequence

⊥,F(⊥),F2(⊥), . . . ,Fn(⊥), . . .

converges to lfp(F) in finite steps.

The lemma implies that our analysis terminates.

Quiz:
• What if we drop the finiteness requirement
• Modify the lemma for greatest fixpoint



Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D→ D is monotonic, then the
sequence

⊥,F(⊥),F2(⊥), . . . ,Fn(⊥), . . .

converges to lfp(F) in finite steps.

The lemma implies that our analysis terminates.

Quiz:
• What if we drop the finiteness requirement
• Modify the lemma for greatest fixpoint



Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D→ D is monotonic, then the
sequence

⊥,F(⊥),F2(⊥), . . . ,Fn(⊥), . . .

converges to lfp(F) in finite steps.

The lemma implies that our analysis terminates.

Quiz:
• What if we drop the finiteness requirement

• Modify the lemma for greatest fixpoint



Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D→ D is monotonic, then the
sequence

⊥,F(⊥),F2(⊥), . . . ,Fn(⊥), . . .

converges to lfp(F) in finite steps.

The lemma implies that our analysis terminates.

Quiz:
• What if we drop the finiteness requirement
• Modify the lemma for greatest fixpoint



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

• Use finite D.



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

• Use finite D.



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

• Use finite D.



Galois Connection



The Sign Example

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = Sign = {⊥, pos, neg,Z} where ⊥ = ∅
• F(d) = pos ∪ (if (d = neg) then Z else d).
• lfp(F) = Pos.

Correct. It overapproximates all possible values of
x at the loop entry.



The Sign Example

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = Sign = {⊥, pos, neg,Z} where ⊥ = ∅
• F(d) = pos ∪ (if (d = neg) then Z else d).
• lfp(F) = Pos. Correct. It overapproximates all possible values of

x at the loop entry.



The Sign Example

assume(x < 0);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = Sign = {⊥, pos, neg,Z} where ⊥ = ∅
• F(d) = pos ∪ (if (d = neg) then Z else d).
• lfp(F) = Pos. Correct?



The Guarantee of Correctness

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

D = Sign, F(d) = pos ∪ (if (d = neg) then Z else d)

• Define the concrete semantics (called collecting semantics):

C = P(Z),E(c) = {2} ∪ {i + 2 | i ∈ c}

• Connect C and D via Galois connection
• Show that F is a sound abstraction of E
• Then, correct by fixpoint transfer theorem



The Guarantee of Correctness

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

D = Sign, F(d) = pos ∪ (if (d = neg) then Z else d)

• Define the concrete semantics (called collecting semantics):

C = P(Z),E(c) = {2} ∪ {i + 2 | i ∈ c}

• Connect C and D via Galois connection
• Show that F is a sound abstraction of E
• Then, correct by fixpoint transfer theorem



Galois Connection

Let (C,⊆) and (D,v) be presets. A Galois connection from C to D is
a pair of monotone functions:

α : C → D (abstraction), γ : D→ C (concretization)

such that for all c in C and d in D,

α(c) v d ⇔ c ⊆ γ(d)

Intuition: elements in D abstract those in C. α(c) is the best
abstraction of c. γ(d) is the meaning of d.



Galois Connection

Let (C,⊆) and (D,v) be presets. A Galois connection from C to D is
a pair of monotone functions:

α : C → D (abstraction), γ : D→ C (concretization)

such that for all c in C and d in D,

α(c) v d ⇔ c ⊆ γ(d)

Intuition: elements in D abstract those in C. α(c) is the best
abstraction of c. γ(d) is the meaning of d.



Galois Connection

fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Why is this useful?

David Henriques Order Theory 21/ 40



Quiz: Galois Connection

Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Powerset of Z : P(Z)
Interval: (∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m},⊆)

Find Galois connections
• From Powersets to Intervals
• From Intervals to Signs
• From Powersets to Signs



Quiz: Galois Connection

Sign:

1. Sign:

2. Powerset of Z:  (P(Z),  ⊆)

3. Interval:  ({ [n,m] | n,m∈Z ∧ n≤m },  ⊆) 

4. LinConA:   ({ Ax≤b | b∈Zn }, ⇒)

pos neg

∅

Z

[Ex] Which one is a poset? ⊑ is a partial order
if reflexive, transitive, 
antisymmetric.

I think that it is better to write these 
examples in the whiteboard, and to ask 
students do solve them.


The first three examples (Sign, Subset, 
Interval) will be used repeatedly in my 
lecture.

Powerset of Z : P(Z)
Interval: (∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m},⊆)

Find Galois connections
• From Powersets to Intervals
• From Intervals to Signs
• From Powersets to Signs



Soundness of Transfer Functions

Assume C,D: Complete lattices, and Galois connection from C to D:
α : C → D, γ : D→ C

Let E : C → C and F : D→ D be monotonic functions. F is a sound
abstraction of E if

(E ◦ γ)(d) ⊆ (γ ◦ F)(d)

for all d ∈ D, diagrammatically,

Soundness of transfer functions

Let E: C→C and F: D→D be mono. functions.

F is a sound abstraction of E if

(E o γ)(d) ⊑ (γ o F)(d)  for all d∈D,

diagrammatically,
D D

C C

F

E

γγ
⊑



Soundness of Transfer Functions

Assume C,D: Complete lattices, and Galois connection from C to D:
α : C → D, γ : D→ C

Let E : C → C and F : D→ D be monotonic functions. F is a sound
abstraction of E if

(E ◦ γ)(d) ⊆ (γ ◦ F)(d)

for all d ∈ D, diagrammatically,

Soundness of transfer functions

Let E: C→C and F: D→D be mono. functions.

F is a sound abstraction of E if

(E o γ)(d) ⊑ (γ o F)(d)  for all d∈D,

diagrammatically,
D D

C C

F

E

γγ
⊑



Quiz: Which One is Sound

C = P(Z),E(c) = {2} ∪ {i + 2 | i ∈ c} D = {⊥, pos, neg,Z}

• F1(d) = if (d = neg) then Z else (d t pos)
• F2(d) = pos
• F3(d) = Z



Quiz: Which One is Sound

C = P(Z),E(c) = {2} ∪ {i + 2 | i ∈ c} D = {⊥, pos, neg,Z}

• F1(d) = if (d = neg) then Z else (d t pos)
• F2(d) = pos
• F3(d) = Z



Best Abstraction

Let E : C → C and F : D→ D be monotonic functions.

F is the best abstraction of E if

α ◦ E ◦ γ = F

diagrammatically,

Best abstraction
Let E: C→C and F: D→D be mono. functions.

F is the best abstraction of E if

α o E o γ = F

diagrammatically,
D D

C C

F

E

αγ

[Ex] Show that the best abstraction F is a sound 
abstraction of E and is the least such wrt. ⊑. 

Point out that F1 is indeed the best 
abstraction.



Fixpoint Transfer

Let E : C → C and F : D→ D be monotonic functions. If

Soundness of transfer functions

Let E: C→C and F: D→D be mono. functions.

F is a sound abstraction of E if

(E o γ)(d) ⊑ (γ o F)(d)  for all d∈D,

diagrammatically,
D D

C C

F

E

γγ
⊑

then lfp(E) v γ(lfp(F))

Same condition. Preset D. For all d in D, if F(d) v d, then
lfp(E) ⊆ γ(d).



Fixpoint Transfer

Let E : C → C and F : D→ D be monotonic functions. If

Soundness of transfer functions

Let E: C→C and F: D→D be mono. functions.

F is a sound abstraction of E if

(E o γ)(d) ⊑ (γ o F)(d)  for all d∈D,

diagrammatically,
D D

C C

F

E

γγ
⊑

then lfp(E) v γ(lfp(F))

Same condition. Preset D. For all d in D, if F(d) v d, then
lfp(E) ⊆ γ(d).



Guarantee for Correctness

Given data:
• Program analysis (D,F : D→ D)

• Concrete semantics (C,E : C → C)

1 Find a Galois connection from C to D

2 Show that F is a sound abstraction of E

3 Then, correct by fixpoint transfer theorem



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

• Yes, if Galois connection, and sound transfer.

Q3: Does our algorithm always terminate? If not, what should we do?

• Use finite D.



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

• Yes, if Galois connection, and sound transfer.

Q3: Does our algorithm always terminate? If not, what should we do?

• Use finite D.



Widening and Narrowing



Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = ∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m}
• F(d) = [2, 2] ∪ (if (d = [i, j]) then [i + 2, j + 2] else ∅).
• lfp(F) = [2,+∞].

But it cannot be reached in finite steps. So,
the analysis will not terminate.

• ∅,F(∅) = [2, 2],F2(∅) = [2, 4],F3(∅) = [2, 6], . . .



Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = ∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m}
• F(d) = [2, 2] ∪ (if (d = [i, j]) then [i + 2, j + 2] else ∅).
• lfp(F) = [2,+∞]. But it cannot be reached in finite steps. So,

the analysis will not terminate.

• ∅,F(∅) = [2, 2],F2(∅) = [2, 4],F3(∅) = [2, 6], . . .



Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = ∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m}
• F(d) = [2, 2] ∪ (if (d = [i, j]) then [i + 2, j + 2] else ∅).
• lfp(F) = [2,+∞]. But it cannot be reached in finite steps. So,

the analysis will not terminate.
• ∅,F(∅) = [2, 2],F2(∅) = [2, 4],F3(∅) = [2, 6], . . .



Widening Operator ∇

binary operator∇ : D× D→ D

such that
• di v d1∇d2 for i ∈ {1, 2}; and
• for every sequence {dn}n in D, the following sequence {wn}n has

wk with wk = wk+1:

w0 = d0,wn+1 = wn∇dn+1

Intuition: d1∇d2 extrapolates the change from d1 to d2.



Widening Operator ∇

binary operator∇ : D× D→ D

such that
• di v d1∇d2 for i ∈ {1, 2}; and
• for every sequence {dn}n in D, the following sequence {wn}n has

wk with wk = wk+1:

w0 = d0,wn+1 = wn∇dn+1

Intuition: d1∇d2 extrapolates the change from d1 to d2.



Widening Operator ∇

binary operator∇ : D× D→ D

such that
• di v d1∇d2 for i ∈ {1, 2}; and
• for every sequence {dn}n in D, the following sequence {wn}n has

wk with wk = wk+1:

w0 = d0,wn+1 = wn∇dn+1

Intuition: d1∇d2 extrapolates the change from d1 to d2.



Quiz: Which One is Widening

Interval = ∅ ∪ {[i, j] | i, j ∈ Z ∪ {−∞,+∞} ∧ i ≤ j}

I. ∅∇d = d∇∅ = d, [i, j]∇[i′, j′] = [i′′, j′′] where
• i′′ = (i ≤ i′)?i : −∞
• j′′ = (j′ ≤ j)?j : +∞

II. d∇d′ = d t d′

III. ∅∇d = d∇∅ = d, [i, j]∇[i′, j′] = [i′′, j′′] where
• i′′ = (min(i, i′) < L)?−∞ : min(i, i′)
• j′′ = (max(j, j′) > U)? +∞ : max(j, j′)



Program Analysis with Widening

Analysis: (D,v,⊥,F,∇)

Algorithm: Generate wk according to the following rule until
wk+1 = wk .

w0 = ⊥,wk+1 = wk∇F(wk)



Program Analysis with Widening

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = ∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m}
• F(d) = [2, 2] t (if (d = [i, j]) then [i + 2, j + 2] else ∅).
• ∅∇d = d∇∅ = d,
• [i, j]∇[i′, j′] = [i′′, j′′] where

• i′′ = (i ≤ i′)?i : −∞
• j′′ = (j′ ≤ j)?j : +∞

Q: Simulate the analysis algorithm.



Program Analysis with Widening

assume(x == 2);
while (nondet()) { x = x + 2; }
assert(x > 0);

• D = ∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m}
• F(d) = [2, 2] t (if (d = [i, j]) then [i + 2, j + 2] else ∅).
• ∅∇d = d∇∅ = d,
• [i, j]∇[i′, j′] = [i′′, j′′] where

• i′′ = (i ≤ i′)?i : −∞
• j′′ = (j′ ≤ j)?j : +∞

Q: Simulate the analysis algorithm.



Program Analysis with Widening

Analysis: (D,v,⊥,F,∇)

Algorithm: Generate wk according to the following rule until
wk+1 = wk .

w0 = ⊥,wk+1 = wk∇F(wk)

Theorem The algorithm terminates.

Theorem On termination, F(wk) v wk . Thus, correct if ∃-Galois
connection and F is a sound abstraction.



Modification

Analysis: (D,v,⊥,F,∇)

Algorithm: Generate wk according to the following rule until
F(wk) v wk .

w0 = ⊥,wk+1 = wk∇F(wk)

Theorem The algorithm terminates.

Theorem On termination, F(wk) v wk . Thus, correct if ∃-Galois
connection and F is a sound abstraction.



Quiz

Design a widening operator for P(Z).



Narrowing Operation ∆

Binary operator ∆ : D× D→ D
such that

• d1 u d2 v d1∆d2 v d1 and
• for every decreasing sequence {dn}n in D, the following

sequence {vn}n has vk with vk = vk+1:

v0 = d0, vn+1 = vn∆dn+1

Intuition: d1∆d2 interpolates the change from d1 to d1 u d2.



Example

Interval = ∅ ∪ {[i, j] | i, j ∈ Z ∪ {−∞,+∞} ∧ i ≤ j}

∅∆d = d∆∅ = ∅

[i, j]∆[i′, j′] = [(i = −∞)?i′ : i, (j = +∞)?j′ : j]



Program Analysis with Widening
and Narrowing

Analysis: (D,v,⊥,F,∇,∆)

Algorithm:

1 Generate wk according to the following rule until wk+1 = wk .

w0 = ⊥,wk+1 = wk∇F(wk)

2 Refine wk by narrowing, Generate vm according to the following
rule until vm+1 = vm

v0 = wk, vm+1 = vm∆(vm u F(vm))



Example

assume(x == 2);
while (x < 9) { x = x + 2; }

• D = ∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m}
• F(d) = [2, 2] t ((d u [−∞, 9] = [i, j])?[i + 2, j + 2] : ∅).
• [i, j]∇[i′, j′] = [(i ≤ i′)?i : −∞, (j′ ≤ j)?j : +∞]

• [i, j]∆[i′, j′] = [(i = −∞)?i′ : i, (j = +∞)?j′ : j]

Q: Simulate the analysis algorithm.



Example

assume(x == 2);
while (x < 9) { x = x + 2; }

• D = ∅ ∪ {[n,m] | n,m ∈ Z ∪ {−∞,+∞} ∧ n ≤ m}
• F(d) = [2, 2] t ((d u [−∞, 9] = [i, j])?[i + 2, j + 2] : ∅).
• [i, j]∇[i′, j′] = [(i ≤ i′)?i : −∞, (j′ ≤ j)?j : +∞]

• [i, j]∆[i′, j′] = [(i = −∞)?i′ : i, (j = +∞)?j′ : j]

Q: Simulate the analysis algorithm.



Correctness

Why is the narrowing step correct?



Main Concerns

Q1: Does a fixpoint of F exist?

• Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

• Yes, if Galois connection, and sound transfer.

Q3: Does our algorithm always terminate? If not, what should we do?

• Use finite D. Or use widening.



Roadmap

Specify an analysis in terms of the following data:

1 Preset D (abstract domain).

2 Monotone function F (abstract transfer function).

3 Widening operator∇ (unless D is finite).

4 Narrowing operator ∆ (optional).

5 Galois connection from C (concrete domain) to D.

6 Soundness of F wrt. E (concrete transfer function).

Then, our analysis terminates and is correct (sound).



Report

Rep6. Algorithms for widening and narrowing (Maximal 3 students)


