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Abstract Interpretation in Practice




Hardware Model Checking

* Classical Model Checking (in Clarke’s book)(hardware model
checking): Implementer and verifier are same.

* During designing a system, each model is checked and refined.
* A correct system implementation is finally obtained.

* e.g. amodulo 8 counter

* vy = (voAvi) &2



Software Model Checking

* Modern Model Checking(software model checking):
Implementer and verifier may be different.
 Given a system implementation (e.g. a source code), construct a
model and verify it.
 Construction of models: manually/automatically.

O B
* security protocols

* real-time embedded systems
 program analysis
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Classical Program Analysis

¢ From POPA

* available expression analysis
* reaching definition analysis

* very busy expression analysis
* live variable analysis

* From Dragon book
* dead code detection
* constant propagation
* common expression detection
e code motion

e Concurrent program analysis

e deadlock, livelock
» data race

* Object-oriented program analysis
* point-to analysis
* escape analysis
* inference of class invariants
* shape analysis

* Aspect-oriented program analysis

. 99979



Brief Idea of Abstract Interpretation

* In order to know properties of a program, execute it for all
possible inputs.

It will not terminate since domains of variables are often infinite.

* Abstract input data to a suitable finite domain. Then finiteness
guarantees termination.

* Functions needs to be reinterpreted.



Brief Idea of Abstract Interpretation

* In order to know properties of a program, execute it for all
possible inputs.

It will not terminate since domains of variables are often infinite.

* Abstract input data to a suitable finite domain. Then finiteness
guarantees termination.

* Functions needs to be reinterpreted.
» Examples:
 Security protocols: a principal may receive infinitely many
messages from environments.
(some affects the principal, some are not)
* Embedded systems: a scheduler may have to schedule infinitely
many released tasks.
(when time exceeds, all tasks have the same results)
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* Abstraction:
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Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.
* Abstraction:
* Even
° Odd
* Interpretation:
* Even + Even = Even, Even + Odd = Odd,
* Even X Odd = Even, ...
* Positive/nagative analysis
* Abstraction:
* Pos
* Neg
* Zero
* Interpretation:
* Pos + Pos = Pos, Pos + Neg = {Pos, Zero, Neg}, ...
* Neg x Neg = Pos, Pos X Zero = Zero, ...
 The result will be a (sound) approximation.
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Sound Abstraction

The result is an approximation

Completeness: sufficient condition

* if no errors detected there are really no errors.

Soundness: necessary condition

» if errors detected they are really errors.

e Data Abstraction : abs : D — Abs
» Typical concretization : con = abs™!

* (abs - con = idaps) N (con - abs D idp)
guarantee soundness.
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Define abstraction and finite abstract domain

abs : D — Abs
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Abstract Interpretation

Define abstraction and finite abstract domain

abs : D — Abs

Interpret primitive functions

+’X7if":727§7“'

Execute looping structures via program semantics

while, function call



Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.
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Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.

Theorem

Tarski’s least fixed point theorem:

Assume T : P(D) — P (D) is a monotonic, then there exists the
unique least fixed point, which is computed as \J; 7(0).

We will come back to this theorem again!



Example: Computing Sum

/* sum */ SR |
1: read n; then skip
2 :=0; else
3: $:=0; Si=Sti;
4: c:=True; o=
'5: while ¢ | Ste' N>
. do it —c
162 S=S+i; | then skip
= =it § else
i8: ci=i<=n; | SE=S i
od; i i:=i+l;

9: write S CEEl==}

env = n,i,s,c|

T P(env X env) — P (env X env)
step 0: ¢

step 1:
{([0,0,0,True],
[0,1,0,False])}
T 2
step 2:
{([0,0,0,True],
[0,1,0,False]),
([1,0,0,True],
[1,2,1,False])}



Example: Positive/Negative
Analysis

Abstraction: Nat — {Pos, Zero}

env = [n,i,s, ]

P/ if —c T : P(env X env) — P (env X env)

- read n- then skip step 0: @
gEil==0; eéseer- T step 1:

. 1=S+i;
2. S-—g, it {([Zero,Zero,Zero,True],
,,,,,  ci=lrue; iy Zero,Pos,Zero,False
|52 while ¢ | C-=1<=n: 2 L Dy
. do T . c step 2:
165 ?fsfl; . then skip {([Zero,Zero,Zero,True],
B clse [Zero,Pos,Zero,False]),
: B S-S [Pos,Zero,Zero,True],
Lmtﬁgdf ,,,,,,,,,,,,, B RS [Pos,Pos,Pos,
9: write S c:=i<=n; True/False])}

Least Fixed Point!



Example: Variation

Abstraction: Nat — {Many, One, Zero}

P . if —c env = [n,i,s,c|

i iggd i then skip T P(env X env) — P (env X env)
5. §-=0- else . step 0: ¢

. S:=S+i; :
431- S-:T, CEEg step 1:
VNENQM;WFH?17 T e {([zZero,Zero,Zero,True],
55_ while c iy z rgz[zero,One,Zero,False])}
§ do . 1f —c
162 S=S+i; | then skip step 2:
375 |Ei!+i, else {([Zero,Zero,Zero,True],
s <=n: Si=S+1 [Zero,One,Zero,False]),
B od; . =i+l [One,Zero,Zero,True],

He=
9: write S ci=i<=n; [One,One,One, True])}
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analysis to a model checking problem.

+ Save implementing time.



Model Checking Based Program
Analysis

Each line of a program is regarded as nondeterministic transition.
After abstraction, states becomes finite.

Least fixed point computation over finite domains can be done by
model checking.

Advantage:
* Obtain more precise results.
» Need not develop each program for each analysis, just reduce the
analysis to a model checking problem.
+ Save implementing time.
Disadvantage:
* not so efficient. (do we really need preciseness?)



Example: Positive/Negative
Analysis

Abstraction: Nat — {Pos, Zero}

/* sum */ @ izero n, in_n(1)
o2 e © | =oi®
3: 5:=0; i Zero_s
4: c:=True; ® ! =@
5: while c @ i true_c (4)
do !
to G (5) i true_c (5)
7: o ii=i+l; (®) i zero_s (6)
8: c:i=i<=n; !
od; @ | pos_i (7)
9: wrlt[e S_ ] Q i e @
state = [n,1,s,Cc], !
in_n, out_s @ ! out_s 9

n,i,s,c: Boolean

@)
n
o)
N
@D
=
o
=



o W

o N O

Example:

read X;
while X > 1
do
Z:=Xx3+1
C:=X%2;
ifC=0
then
X:=X/2;
else
X:.=7Z

fi,
Z.=X%*x2;
od;

write X,

This is expected
to return 1

Even/Odd Analysis

&@{c}#@@

G

CFG

state = linex, [x, z, ]
ready , writey)
x,z, ¢ : Bool(even/odd)
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Example:

read X;
while X > 1
do
Z:=Xx3+1
C:=X%2;
ifC=0
then
X:=X/2;
else
X:.=7Z

fi,
Z.=X%*x2;
od;

write X,

This is expected
to return 1

Even/Odd Analysis

&@ﬁ}#@@

G

CFG

state = linex, [x, z, ]
ready , writey)
x,z, ¢ : Bool(even/odd)

AG('EF (writey)
Ax = even))



Dead Code Detection

/ / ¢
* sum *
1: read n; 6
2: 1:=0; ©)
* Detect variables that are defined, i ii'ol'rue @
but never used or redefined before 5% analy et
used. do @
s Abstraction: 6:  Si=S+i; (6
" 7: c:=False;
* def, when x is defined 8 §rzitl- ©
(e.g. x:=2) 9: c:=i<=n;
* use, when x is referred od; ®
(eg.y:=x+1) 10: write S ©
N,

CFG



Dead Code Detection

e Useless code: x is defined but never used.
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Dead Code Detection

e Useless code: x is defined but never used.
AG —(def, N AX —~EF usey)

x is never defined if it will not used

e x is defined but not used before re-defined.

AG —(def, N AX —A(—use, U def,)



Abstract Interpretation in Theory




Abstract Interpretation

Mathematical framework that helps the highlevel design of a program
analysis.

Based on lattice theory.

Suggests to design an analysis by choosing appropriate lattices and
functions between them.



PA 1n a Nutshell

Two main components of a program analysis:

e Abstract domain D s.t. 1. € D
e Transfer function ¥ : D — D

Aim: Compute a fixpoint of F'.

Algorithm: Start from L. Apply F repeatedly until fixpoint.

L, oD B R g @0 L)
where n is the first s.t. F"(L) = F*+1(1)



A Running Example

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);




A Running Example

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D = Sign = {1, pos,neg,Z} where L =)
* F(d) = pos U (if (d = neg) then Z else d).

* Analysis run:

L= el e L) = o



Main Concerns




Ql

Q3

Main Concerns
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: Is a fixpoint of F a correct answer?
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Main Concerns

Q1: Does a fixpoint of F exist?
Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Abstract interpretation answers these questions. It provides guidance
about how to choose D and F.



Tarski’s Fixpoint Theorem




Answer of Q1

Recall the components of a abstract interpretation:

D, F:D — Dsuchthat | € D

Q1: Does F have a fixpoint?



Answer of Q1

Recall the components of a abstract interpretation:

D, F:D — Dsuchthat | € D

Q1: Does F have a fixpoint?

Al: If D is a complete lattice and F is monotone, F' has the least and
the greatest fixpoints.
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Preorder and Partial Order

A binary relation C on a set D is a preorder if

* reflexivity: d C d for all d in D
* transitivity: (dCeAeCf)=dLCf

A preorder C is a partial order if
* antisymmetry: (d CeAeld)=e=d

A preset means a set D with a preorder C. A poset means a set D with
a partial order C.  Usually written in (D, C)

Idea: C is an approximate subset/implication relation
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Quiz: Poset

AN

pos neg
: Sign: @

: Powerset of Z: (P(Z),C)

: Interval: ({[n,m] | n,m € ZAn <m},Q)

: LinCony : ({Ax<b|beZ,},=)



Least Upper Bound (lub)
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Least Upper Bound (lub)

Let (D, C) be a poset, and E a subset of D
* dis an upper bound of E if e C d foralle € E

* d is a least upper bound (lub) of E if d is an upper bound and
d C d' for all upper bound d’ of E

* Notations: lub(E) and UE

Quiz: lub(E) is unique?



Greatest Lower Bound (glb)

Dual to the definition of lub.
e dis an lower bound of £ ife Jd foralle € E

* d is a greatest lower bound (glb) of £ if d is a lower bound and
d 3 d' for all lower bound d’ of E.



Greatest Lower Bound (glb)

Dual to the definition of lub.
e dis an lower bound of £ ife Jd foralle € E

* d is a greatest lower bound (glb) of £ if d is a lower bound and
d 3 d' for all lower bound d’ of E.

* Notations: glb(E) and ME
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Quiz: Compute lub
/N

pos neg
: Sign: %)
> pos Uneg =77

: Powerset of Z : P(Z)
« {2} U {4} =77
« 2} u{4tu{6tu...=27

: Interval: {[n,m] |n,m € Z An < m}
* [2,2] U [4,4] =77
« [2,2]U[4,4]u6,6]U... =77



Complete Lattice

A poset (D, C) is a complete lattice if every subset of D has the lub
and glb.



Quiz: Complete Lattice

Z
7N
pos neg
Ql: Sign: %

Q2: Powerset of Z: (P(Z), Q)

Q3: Interval: ([n,m] |n,m € ZAn <m,C)



Quiz: Complete Lattice

Z
7N
pos neg
Ql: Sign: %
Q2: Powerset of Z: (P(Z), Q)

Q3: Interval: ([n,m] |n,m € ZAn <m,C)

s (0 [n,m] | n,m € ZU{—00,+00} An < m}, Q)
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Tarski’s fixpoint theorem

Let (C,C) and (D, C) be presets. A function F : C — D is monotone
if
PE eh=aEE /o)

[Tarski’s Theorem]
Every monotone function F' on a complete lattice D has both the least
and the greatest fixpoints.

Notations: Ifp(F) and gfp(F).
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Quiz: Compute Fixpoints
Z
7N
pos neg
: Sign: %)
* F(d) = pos U (if (d = neg) then Z else d).

: Powerset of Z : P(Z)
s Fd)={2}u{i+2|ied}

: Interval: (DU {[n,m] | n,m € ZU {—o00,+00} An <m},C)
* F(d) =[2,2] U (if (d = [n,m]) then [n + 2,m + 2] else ()
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Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

* LetPre={d | F(d) Cd}and Post = {d | d C F(d)}.
* glb(Pre) is the least fixpoint of F.
* lub(Post) is the greatest fixpoint of F'.
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Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D — D is monotonic, then the

sequence
IRSEERIO) P2 () (e

converges to Ifp(F) in finite steps.

The lemma implies that our analysis terminates.

Quiz:
* What if we drop the finiteness requirement

* Modify the lemma for greatest fixpoint
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Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

e Use finite D.
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The Sign Example

assume(x == 2);
while (nondet()) { x =x+2; }
assert(x > 0);

* D = Sign = {L,pos,neg,Z} where L = ()
* F(d) = pos U (if (d = neg) then Z else d).
e\ B) — Pos.



The Sign Example

assume(x == 2);
while (nondet()) { x =x+2; }
assert(x > 0);

* D = Sign = {L,pos,neg,Z} where L = ()

* F(d) = pos U (if (d = neg) then Z else d).

* Ifp(F) = Pos. Correct. It overapproximates all possible values of
x at the loop entry.



The Sign Example

assume(x < 0);
while (nondet()) { x =x+2; }
assert(x > 0);

* D = Sign = {L,pos,neg,Z} where L =)
* F(d) = pos U (if (d = neg) then Z else d).
* Ifp(F) = Pos. Correct?



The Guarantee of Correctness
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assert(x > 0);

D = Sign, F(d) = pos U (if (d = neg) then Z else d)



The Guarantee of Correctness

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

D = Sign, F(d) = pos U (if (d = neg) then Z else d)

Define the concrete semantics (called collecting semantics):

C=P(2),E(c)={2}U{i+2|icc}

Connect C and D via Galois connection

Show that F is a sound abstraction of E

Then, correct by fixpoint transfer theorem



Galois Connection

Let (C,C) and (D, C) be presets. A Galois connection from C to D is
a pair of monotone functions:

a: C — D (abstraction), ~:D — C (concretization)
such that for all cin C and d in D,

a(c) Cd & c Cvy(d)



Galois Connection

Let (C,C) and (D, C) be presets. A Galois connection from C to D is
a pair of monotone functions:

a: C — D (abstraction), ~:D — C (concretization)
such that for all cin C and d in D,

a(c) Cd & c Cvy(d)

Intuition: elements in D abstract those in C. a(c) is the best
abstraction of ¢. y(d) is the meaning of d.



Galois Connection




Quiz: Galois Connection

/N
pos neg
Sign: )
Powerset of Z : P(Z)
Interval: (0 U {[n,m] | n,m € ZU {—o00,+00} An < m},C)



Quiz: Galois Connection

/N
pos neg
Sign: )
Powerset of Z : P(Z)
Interval: (0 U {[n,m] | n,m € ZU {—o00,+00} An < m},C)

Find Galois connections
e From Powersets to Intervals
* From Intervals to Signs

* From Powersets to Signs



Soundness of Transfer Functions

Assume C, D: Complete lattices, and Galois connection from C to D:
@ 5 € = 1Dy 8 ID) =@



Soundness of Transfer Functions

Assume C, D: Complete lattices, and Galois connection from C to D:
@ 5 € = 1Dy 8 ID) =@

LetE : C — C and F : D — D be monotonic functions. F is a sound
abstraction of E if

(Eo7)(d) S (yoF)(d)
for all d € D, diagrammatically,

b— b

Y| Y
<»

c—E “¢&



Quiz: Which One 1s Sound

R @NE(c) — {2} U {i+2 |i € c} D = {L,pos,negiZik



Quiz: Which One 1s Sound

R @NE(c) — {2} U {i+2 |i € c} D = {L,pos,negiZik

il
eais(d)
()

if (d = neg) then Z else (d L pos)
pos
Z



Best Abstraction

LetE : C — C and F : D — D be monotonic functions.

F is the best abstraction of E if

aoFEoy=F
diagrammatically,
| F
D D
v| o
c—E—c




Fixpoint Transfer

LetE : C — C and F : D — D be monotonic functions. If

D—F D

Y| Y
<

c—E “¢&

then Ifp(E) E v(Ifp(F))



Fixpoint Transfer

LetE : C — C and F : D — D be monotonic functions. If

D—F D

Y| Y
<

c—E “¢&

then Ifp(E) E v(Ifp(F))

Same condition. Preset D. For all d in D, if F(d) C d, then
Ifp(E) C v(d).



Guarantee for Correctness

Given data:
* Program analysis (D, F : D — D)
* Concrete semantics (C,E : C — C)

® Find a Galois connection from C to D
@® Show that F is a sound abstraction of E

© Then, correct by fixpoint transfer theorem



Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.
Q2: Is a fixpoint of F a correct answer?
e Yes, if Galois connection, and sound transfer.
Q3: Does our algorithm always terminate? If not, what should we do?

e Use finite D.



Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.
Q2: Is a fixpoint of F a correct answer?
e Yes, if Galois connection, and sound transfer.
Q3: Does our algorithm always terminate? If not, what should we do?

e Use finite D.



Widening and Narrowing




Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0QU{[n,m] | n,m € ZU{—00,+00} An<m}
« F(d) = [2,2] U (if (d = [i,]) then [i + 2, + 2] else 0).
s lfp(F) 73 [27 +OO]'



Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0QU{[n,m] | n,m € ZU{—00,+00} An<m}

« F(d) = [2,2] U (if (d = [i,j]) then [i + 2,j + 2] else B).

* Ifp(F) = [2,+00]. But it cannot be reached in finite steps. So,
the analysis will not terminate.



Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0QU{[n,m] | n,m € ZU{—00,+00} An<m}

« F(d) = [2,2] U (if (d = [i,j]) then [i + 2,j + 2] else B).

* Ifp(F) = [2,+00]. But it cannot be reached in finite steps. So,
the analysis will not terminate.

« 0,F(0) = [2,2], F2(0) = [2,4], F3(0) = [2,6],...



Widening Operator V

binary operator V : D x D — D



Widening Operator V

binary operator V : D x D — D

such that
* d; Cd\Vd, fori € {1,2}; and
* for every sequence {d, }, in D, the following sequence {wy }, has

wy with wy = wyq:

Wwo = do, Wnr1 = WnVdny1



Widening Operator V

binary operator V : D x D — D

such that
* d; Cd\Vd, fori € {1,2}; and

* for every sequence {d, }, in D, the following sequence {wy }, has
wy with wy = wyq:

wo = do, Whpt1 = WannJrl

Intuition: d; Vd, extrapolates the change from dj to ds.



Quiz: Which One 1s Widening

Interval = DU {[i,j] | i,j € ZU{—o00,+00} Ai <j}

L 0Vd =dV0 =d,[i,jIV[’,j] = [i",j"] where
(= )7 : —0
*J' =0 <)% 4o

l¥Nd —dlld

1. Vd = dV0 = d, [i,j]V[{,j'] = [i",j"] where
o " = (min(i,i") < L)? — oo : min(i,i’)
SN (max(j,j/) > U)? aF 69 § max(j,j/)



Program Analysis with Widening

Analysis: (D,C, 1, F,V)

Algorithm: Generate wy according to the following rule until
Wit+1 = Wk
wo = L, wir1 = wi VF(wy)



Program Analysis with Widening

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0U{[n,m] | n,m € ZU{—00,+00} An<m}
* F(d) = [2,2] U (if (d = [i,j]) then [i +2,j + 2] else 0).
* OVd =dVi =d,
el J]V[ b= il where
"=({<i?%i:—c0
*J =0 <)Y oo



Program Analysis with Widening

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0U{[n,m] | n,m € ZU{—00,+00} An<m}
* F(d) = [2,2] U (if (d = [i,j]) then [i +2,j + 2] else 0).
* OVd =dVi =d,
[,J]V[ b= il where
"=({<i?%i:—c0
*JT =0 <)Y 4o

Q: Simulate the analysis algorithm.



Program Analysis with Widening

Analysis: (D,C, L,F,V)
Algorithm: Generate wy according to the following rule until

Wigl = Wg.
wo = L, Wip1 = wi VF (wy)

Theorem The algorithm terminates.

Theorem On termination, F(wy) T wy. Thus, correct if 3-Galois
connection and F is a sound abstraction.



Modification

Analysis: (D,C, 1, F,V)
Algorithm: Generate wy according to the following rule until

F(wg) C wy.
wo = L, wir1 = wi VF (wy)

Theorem The algorithm terminates.

Theorem On termination, F(wy) T wy. Thus, correct if 3-Galois
connection and F is a sound abstraction.






Narrowing Operation A

Binary operator A : D x D — D
such that

e diMdy C diAdy C dy and

* for every decreasing sequence {d, }, in D, the following
sequence {v,}, has vg with vy = vy:

vo = do, Vil = VnAdn—l—l

Intuition: d Ad, interpolates the change from d; to dj M d,.



Example

Interval = QU {[i,j] | i,j € Z U {—00,+o0} Ai < j}
OAd = dAD = ()

BRG] = [(i = —00)?i .+ i,\(j = Feoliisl



Program Analysis with Widening
and Narrowing

Analysis: (D,C, L,F,V,A)

Algorithm:

@ Generate wy according to the following rule until w1 = wy.

wo = L, wir1 = wi VF(wy)

® Refine wy by narrowing, Generate v,, according to the following
rule until vy, 11 = vy,

Vo = Wi, Vi1 = ViAW M F(vi))



Example

assume(x == 2);
while (x < {x=x+2;}

* D=0U{[n,m] | n,m € ZU{—o00,+00} An < m}

e F(d) = [2,2]U((d N [~00,9] = [i,j])?[i +2,j +2] : ).
* LAV =[G < )% —o0, (' <)% : 400]

* BAAR] = [ = —00)?' 1 i, (j = +00) 7 1 ]]



Example

assume(x == 2);
while (x < {x=x+2;}

DZQU{[, m] | n,m € Z U {—o0,+o0} An < m}
F(d)=[2,2]U((dN[~00,9] = [i,/])?[i +2,j +2] : D).

R = [ < )7« —o0, (' <)% : +o0]

 [LAA[ ] = [(i = —00)? 1 i, (j = +00) 7 : ]

Q: Simulate the analysis algorithm.



Correctness

Why is the narrowing step correct?



Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F' is monotonic.
Q2: Is a fixpoint of F a correct answer?
* Yes, if Galois connection, and sound transfer.
Q3: Does our algorithm always terminate? If not, what should we do?

* Use finite D. Or use widening.



Roadmap

Specify an analysis in terms of the following data:

@ Preset D (abstract domain).

® Monotone function F (abstract transfer function).
©® Widening operator V (unless D is finite).

@ Narrowing operator A (optional).

©® Galois connection from C (concrete domain) to D.

@ Soundness of F wrt. E (concrete transfer function).

Then, our analysis terminates and is correct (sound).



Report

Rep6. Algorithms for widening and narrowing (Maximal 3 students)



