Fundamentals of Programming
Languages V

Abstract Interpretation

Guogiang Li

School of Software, Shanghai Jiao Tong University

Assignment

Assignment 2 is announced! Deadline Nov. 15

Reference

Cousot P, Cousot R., Abstract Interpretation: A Unified Lattice Mode for Static
Analysis of Programs by Construction or Approximation of Fixpoints, POPL’77

Steffen, B., Data Flow Analysis as Model Checking, TACS 91

Schmidt, D.A., Data Flow Analysis is Model Checking of Abstract Interpretations
POPL’98

Lacey,D., Proving Correctness of Compiler Optimizations by Temporal Logic
POPL’02

Turing Award

1986, Tony Hoare
For his fundamental contributions to the definition and design of programming
languages...

1991, Robin Milner

For three distinct and complete achievements: 1) LCF, the mechanization of Scott’s
Logic of Computable Functions, probably the first theoretically based yet practical
tool for machine assisted proof construction; 2) ML, the first language to include
polymorphic type inference together with a type-safe exception-handling mechanism;
3) CCS, a general theory of concurrency. In addition, he formulated and strongly
advanced full abstraction, the study of the relationship between operational and
denotational semantics...

1996, Amir Pnueli
For seminal work introducing temporal logic into computing science and for
outstanding contributions to program and systems verification...

2007, Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis
For their roles in developing model checking into a highly effective verification
technology, widely adopted in the hardware and software industries...

Abstract Interpretation in Practice

Hardware Model Checking

* Classical Model Checking (in Clarke’s book)(hardware model
checking): Implementer and verifier are same.

* During designing a system, each model is checked and refined.
* A correct system implementation is finally obtained.

* e.g. amodulo 8 counter

* vy = (voAvi) &2

Software Model Checking

* Modern Model Checking(software model checking):
Implementer and verifier may be different.
 Given a system implementation (e.g. a source code), construct a
model and verify it.
 Construction of models: manually/automatically.

O B
* security protocols

* real-time embedded systems
 program analysis

Classical Program Analysis

* From Dragon book

* dead code detection

* constant propagation

* common expression detection
e code motion

Classical Program Analysis

¢ From POPA

* available expression analysis
* reaching definition analysis

* very busy expression analysis
* live variable analysis

* From Dragon book

* dead code detection

* constant propagation

* common expression detection
e code motion

Classical Program Analysis

¢ From POPA

* available expression analysis
* reaching definition analysis

* very busy expression analysis
* live variable analysis

* From Dragon book

* dead code detection

* constant propagation

* common expression detection
e code motion

* Object-oriented program analysis
* point-to analysis
* escape analysis
* inference of class invariants
* shape analysis

Classical Program Analysis

¢ From POPA

* available expression analysis
* reaching definition analysis

* very busy expression analysis
* live variable analysis

* From Dragon book
* dead code detection
* constant propagation
* common expression detection
e code motion

e Concurrent program analysis

e deadlock, livelock
» data race

* Object-oriented program analysis
* point-to analysis
* escape analysis
* inference of class invariants
* shape analysis

* Aspect-oriented program analysis

. 99979

Brief Idea of Abstract Interpretation

* In order to know properties of a program, execute it for all
possible inputs.

It will not terminate since domains of variables are often infinite.

* Abstract input data to a suitable finite domain. Then finiteness
guarantees termination.

* Functions needs to be reinterpreted.

Brief Idea of Abstract Interpretation

* In order to know properties of a program, execute it for all
possible inputs.

It will not terminate since domains of variables are often infinite.

* Abstract input data to a suitable finite domain. Then finiteness
guarantees termination.

* Functions needs to be reinterpreted.
» Examples:
 Security protocols: a principal may receive infinitely many
messages from environments.
(some affects the principal, some are not)
* Embedded systems: a scheduler may have to schedule infinitely
many released tasks.
(when time exceeds, all tasks have the same results)

Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.

Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.
* Abstraction:

* Even
* Odd

Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.
» Abstraction:
* Even
* Odd
* Interpretation:
* Even + Even = Even, Even + Odd = Odd,
* Even X Odd = Even, ...

Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.
» Abstraction:
* Even
* Odd
* Interpretation:
* Even + Even = Even, Even + Odd = Odd,
* Even X Odd = Even, ...

* Positive/nagative analysis

Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.
» Abstraction:
* Even
* Odd
* Interpretation:
* Even + Even = Even, Even + Odd = Odd,
* Even X Odd = Even, ...
* Positive/nagative analysis
» Abstraction:
* Pos
* Neg
e Zero

Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.
* Abstraction:
* Even
° Odd
* Interpretation:
* Even + Even = Even, Even + Odd = Odd,
* Even X Odd = Even, ...
* Positive/nagative analysis
* Abstraction:
* Pos
* Neg
* Zero
* Interpretation:
* Pos + Pos = Pos, Pos + Neg = {Pos, Zero, Neg}, ...
* Neg x Neg = Pos, Pos X Zero = Zero, ...

Abstract Interpretation on Program
Analysis: Examples

* Even/Odd analysis: x x (x + 1) is even.
* Abstraction:
* Even
° Odd
* Interpretation:
* Even + Even = Even, Even + Odd = Odd,
* Even X Odd = Even, ...
* Positive/nagative analysis
* Abstraction:
* Pos
* Neg
* Zero
* Interpretation:
* Pos + Pos = Pos, Pos + Neg = {Pos, Zero, Neg}, ...
* Neg x Neg = Pos, Pos X Zero = Zero, ...
 The result will be a (sound) approximation.

Sound Abstraction

The result is an approximation

Sound Abstraction

The result is an approximation

Completeness: sufficient condition

* if no errors detected there are really no errors.

Soundness: necessary condition

» if errors detected they are really errors.

Sound Abstraction

The result is an approximation

Completeness: sufficient condition

* if no errors detected there are really no errors.

Soundness: necessary condition

» if errors detected they are really errors.

e Data Abstraction : abs : D — Abs
» Typical concretization : con = abs™!

* (abs - con = idaps) N (con - abs D idp)
guarantee soundness.

Abstract Interpretation

Define abstraction and finite abstract domain

abs : D — Abs

Abstract Interpretation

Define abstraction and finite abstract domain

abs : D — Abs

Interpret primitive functions

+’X7if":727§7“'

Abstract Interpretation

Define abstraction and finite abstract domain

abs : D — Abs

Interpret primitive functions

+’X7if":727§7“'

Execute looping structures via program semantics

while, function call

Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.

Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.

Theorem

Tarski’s least fixed point theorem:

Assume T : P(D) — P (D) is a monotonic, then there exists the
unique least fixed point, which is computed as \J; 7(0).

Program Semantics

Semantics: interpret a program (syntax) as an input-output relation
(semantics).

Intuitively, the input-output relation is a relation between input
environment and output environment of variables in a scopes.

Looping structure is solved as least fixed point.

Theorem

Tarski’s least fixed point theorem:

Assume T : P(D) — P (D) is a monotonic, then there exists the
unique least fixed point, which is computed as \J; 7(0).

We will come back to this theorem again!

Example: Computing Sum

/* sum */ SR |
1: read n; then skip
2 :=0; else
3: $:=0; Si=Sti;
4: c:=True; o=
'5: while ¢ | Ste' N>
. do it —c
162 S=S+i; | then skip
= =it § else
i8: ci=i<=n; | SE=S i
od; i i:=i+l;

9: write S CEEl==}

env = n,i,s,c|

T P(env X env) — P (env X env)
step 0: ¢

step 1:
{([0,0,0,True],
[0,1,0,False])}
T 2
step 2:
{([0,0,0,True],
[0,1,0,False]),
([1,0,0,True],
[1,2,1,False])}

Example: Positive/Negative
Analysis

Abstraction: Nat — {Pos, Zero}

env = [n,i,s,]

P/ if —c T : P(env X env) — P (env X env)

- read n- then skip step 0: @
gEil==0; eéseer- T step 1:

. 1=S+i;
2. S-—g, it {([Zero,Zero,Zero,True],
,,,,, ci=lrue; iy Zero,Pos,Zero,False
|52 while ¢ | C-=1<=n: 2 L Dy
. do T . c step 2:
165 ?fsfl; . then skip {([Zero,Zero,Zero,True],
B clse [Zero,Pos,Zero,False]),
: B S-S [Pos,Zero,Zero,True],
Lmtﬁgdf ,,,,,,,,,,,,, B RS [Pos,Pos,Pos,
9: write S c:=i<=n; True/False])}

Least Fixed Point!

Example: Variation

Abstraction: Nat — {Many, One, Zero}

P . if —c env = [n,i,s,c|

i iggd i then skip T P(env X env) — P (env X env)
5. §-=0- else . step 0: ¢

. S:=S+i; :
431- S-:T, CEEg step 1:
VNENQM;WFH?17 T e {([zZero,Zero,Zero,True],
55_ while c iy z rgz[zero,One,Zero,False])}
§ do . 1f —c
162 S=S+i; | then skip step 2:
375 |Ei!+i, else {([Zero,Zero,Zero,True],
s <=n: Si=S+1 [Zero,One,Zero,False]),
B od; . =i+l [One,Zero,Zero,True],

He=
9: write S ci=i<=n; [One,One,One, True])}

Model Checking Based Program
Analysis

* Each line of a program is regarded as nondeterministic transition.
e After abstraction, states becomes finite.

* Least fixed point computation over finite domains can be done by
model checking.

Model Checking Based Program
Analysis

Each line of a program is regarded as nondeterministic transition.
After abstraction, states becomes finite.

Least fixed point computation over finite domains can be done by
model checking.
Advantage:

* Obtain more precise results.

» Need not develop each program for each analysis, just reduce the
analysis to a model checking problem.

+ Save implementing time.

Model Checking Based Program
Analysis

Each line of a program is regarded as nondeterministic transition.
After abstraction, states becomes finite.

Least fixed point computation over finite domains can be done by
model checking.

Advantage:
* Obtain more precise results.
» Need not develop each program for each analysis, just reduce the
analysis to a model checking problem.
+ Save implementing time.
Disadvantage:
* not so efficient. (do we really need preciseness?)

Example: Positive/Negative
Analysis

Abstraction: Nat — {Pos, Zero}

/* sum */ @ izero n, in_n(1)
o2 e © | =oi®
3: 5:=0; i Zero_s
4: c:=True; ® ! =@
5: while c @ i true_c (4)
do !
to G (5) i true_c (5)
7: o ii=i+l; (®) i zero_s (6)
8: c:i=i<=n; !
od; @ | pos_i (7)
9: wrlt[e S_] Q i e @
state = [n,1,s,Cc], !
in_n, out_s @ ! out_s 9

n,i,s,c: Boolean

@)
n
o)
N
@D
=
o
=

o W

o N O

Example:

read X;
while X > 1
do
Z:=Xx3+1
C:=X%2;
ifC=0
then
X:=X/2;
else
X:.=7Z

fi,
Z.=X%*x2;
od;

write X,

This is expected
to return 1

Even/Odd Analysis

&@{c}#@@

G

CFG

state = linex, [x, z,]
ready , writey)
x,z, ¢ : Bool(even/odd)

o W

o N O

Example:

read X;
while X > 1
do
Z:=Xx3+1
C:=X%2;
ifC=0
then
X:=X/2;
else
X:.=7Z

fi,
Z.=X%*x2;
od;

write X,

This is expected
to return 1

Even/Odd Analysis

&@ﬁ}#@@

G

CFG

state = linex, [x, z,]
ready , writey)
x,z, ¢ : Bool(even/odd)

AG('EF (writey)
Ax = even))

Dead Code Detection

/ / ¢
* sum *
1: read n; 6
2: 1:=0; ©)
* Detect variables that are defined, i ii'ol'rue @
but never used or redefined before 5% analy et
used. do @
s Abstraction: 6: Si=S+i; (6
" 7: c:=False;
* def, when x is defined 8 §rzitl- ©
(e.g. x:=2) 9: c:=i<=n;
* use, when x is referred od; ®
(eg.y:=x+1) 10: write S ©
N,

CFG

Dead Code Detection

e Useless code: x is defined but never used.

Dead Code Detection

e Useless code: x is defined but never used.
AG —(def; N\ AX —EF use;)

x is never defined if it will not used

Dead Code Detection

e Useless code: x is defined but never used.
AG —(def; N\ AX —EF use;)

x is never defined if it will not used

 x is defined but not used before re-defined.

Dead Code Detection

e Useless code: x is defined but never used.
AG —(def, N AX —~EF usey)

x is never defined if it will not used

e x is defined but not used before re-defined.

AG —(def, N AX —A(—use, U def,)

Abstract Interpretation in Theory

Abstract Interpretation

Mathematical framework that helps the highlevel design of a program
analysis.

Based on lattice theory.

Suggests to design an analysis by choosing appropriate lattices and
functions between them.

PA 1n a Nutshell

Two main components of a program analysis:

e Abstract domain D s.t. 1. € D
e Transfer function ¥ : D — D

Aim: Compute a fixpoint of F'.

Algorithm: Start from L. Apply F repeatedly until fixpoint.

L, oD B R g @0 L)
where n is the first s.t. F"(L) = F*+1(1)

A Running Example

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

A Running Example

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D = Sign = {1, pos,neg,Z} where L =)
* F(d) = pos U (if (d = neg) then Z else d).

* Analysis run:

L= el e L) = o

Main Concerns

Ql

Q3

Main Concerns

: Does a fixpoint of F exist?
: Is a fixpoint of F a correct answer?

: Does our algorithm always terminate? If not, what should we do?

Main Concerns

Q1: Does a fixpoint of F exist?
Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Abstract interpretation answers these questions. It provides guidance
about how to choose D and F.

Main Concerns

Q1: Does a fixpoint of F exist?
Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Abstract interpretation answers these questions. It provides guidance
about how to choose D and F.

Tarski’s Fixpoint Theorem

Answer of Q1

Recall the components of a abstract interpretation:

D, F:D — Dsuchthat | € D

Q1: Does F have a fixpoint?

Answer of Q1

Recall the components of a abstract interpretation:

D, F:D — Dsuchthat | € D

Q1: Does F have a fixpoint?

Al: If D is a complete lattice and F is monotone, F' has the least and
the greatest fixpoints.

Preorder and Partial Order

Preorder and Partial Order

A binary relation C on a set D is a preorder if

* reflexivity: d C d for all d in D
* transitivity: (dCeAeCf)=dLCf

Preorder and Partial Order

A binary relation C on a set D is a preorder if

* reflexivity: d C d for all d in D
* transitivity: (dCeAeCf)=dLCf

A preorder C is a partial order if
* antisymmetry: (d CeAeld)=e=d

Preorder and Partial Order

A binary relation C on a set D is a preorder if

* reflexivity: d C d for all d in D
* transitivity: (dCeAeCf)=dLCf

A preorder C is a partial order if
* antisymmetry: (d CeAeld)=e=d

A preset means a set D with a preorder C. A poset means a set D with
a partial order C. Usually written in (D, C)

Preorder and Partial Order

A binary relation C on a set D is a preorder if

* reflexivity: d C d for all d in D
* transitivity: (dCeAeCf)=dLCf

A preorder C is a partial order if
* antisymmetry: (d CeAeld)=e=d

A preset means a set D with a preorder C. A poset means a set D with
a partial order C. Usually written in (D, C)

Idea: C is an approximate subset/implication relation

Quiz: Poset

AN

pos neg

: Sign: @

Quiz: Poset

AN

pos neg
: Sign: @

: Powerset of Z: (P(Z),C)

Quiz: Poset

AN

pos neg
: Sign: @
: Powerset of Z: (P(Z),C)

: Interval: ({[n,m] | n,m € ZAn <m},Q)

Quiz: Poset

AN

pos neg
: Sign: @

: Powerset of Z: (P(Z),C)

: Interval: ({[n,m] | n,m € ZAn <m},Q)

: LinCony : ({Ax<b|beZ,},=)

Least Upper Bound (lub)

Let (D, C) be a poset, and E a subset of D
* dis an upper bound of E if e C d foralle € E

* d is a least upper bound (lub) of E if d is an upper bound and
d C d' for all upper bound d’ of E

Least Upper Bound (lub)

Let (D, C) be a poset, and E a subset of D
* dis an upper bound of E if e C d foralle € E

* d is a least upper bound (lub) of E if d is an upper bound and
d C d' for all upper bound d’ of E

* Notations: lub(E) and UE

Least Upper Bound (lub)

Let (D, C) be a poset, and E a subset of D
* dis an upper bound of E if e C d foralle € E

* d is a least upper bound (lub) of E if d is an upper bound and
d C d' for all upper bound d’ of E

* Notations: lub(E) and UE

Quiz: lub(E) is unique?

Greatest Lower Bound (glb)

Dual to the definition of lub.
e dis an lower bound of £ ife Jd foralle € E

* d is a greatest lower bound (glb) of £ if d is a lower bound and
d 3 d' for all lower bound d’ of E.

Greatest Lower Bound (glb)

Dual to the definition of lub.
e dis an lower bound of £ ife Jd foralle € E

* d is a greatest lower bound (glb) of £ if d is a lower bound and
d 3 d' for all lower bound d’ of E.

* Notations: glb(E) and ME

Quiz: Compute lub
/N
pos neg

: Sign: %)
* posineg =77

Quiz: Compute lub
/N
pos neg
: Sign: %)

* pos lineg =77

: Powerset of Z : P(Z)
» {2} L {4} =77

Quiz: Compute lub
/N

pos neg
: Sign: %)
* posineg =77

: Powerset of Z : P(Z)
» {2} L {4} =77
SR HAb {6} LI... =77

Quiz: Compute lub
/N

pos neg
: Sign: %)
* posineg =77

: Powerset of Z : P(Z)
» {2} L {4} =77
« 2} u{4tu{6tu...=27

: Interval: {[n,m] |n,m € Z An < m}
* [2,2] U [4,4] =77

Quiz: Compute lub
/N

pos neg
: Sign: %)
> pos Uneg =77

: Powerset of Z : P(Z)
« {2} U {4} =77
« 2} u{4tu{6tu...=27

: Interval: {[n,m] |n,m € Z An < m}
* [2,2] U [4,4] =77
« [2,2]U[4,4]u6,6]U... =77

Complete Lattice

A poset (D, C) is a complete lattice if every subset of D has the lub
and glb.

Quiz: Complete Lattice

Z
7N
pos neg
Ql: Sign: %

Q2: Powerset of Z: (P(Z), Q)

Q3: Interval: ([n,m] |n,m € ZAn <m,C)

Quiz: Complete Lattice

Z
7N
pos neg
Ql: Sign: %
Q2: Powerset of Z: (P(Z), Q)

Q3: Interval: ([n,m] |n,m € ZAn <m,C)

s (0 [n,m] | n,m € ZU{—00,+00} An < m}, Q)

Tarski’s fixpoint theorem

Let (C,C) and (D, C) be presets. A function F : C — D is monotone
if
PE eh=aEE /o)

Tarski’s fixpoint theorem

Let (C,C) and (D, C) be presets. A function F : C — D is monotone
if

PE eh=aEE /o)

[Tarski’s Theorem]
Every monotone function F' on a complete lattice D has both the least
and the greatest fixpoints.

Tarski’s fixpoint theorem

Let (C,C) and (D, C) be presets. A function F : C — D is monotone
if
PE eh=aEE /o)

[Tarski’s Theorem]
Every monotone function F' on a complete lattice D has both the least
and the greatest fixpoints.

Notations: Ifp(F) and gfp(F).

Quiz: Compute Fixpoints
/N
pos neg

: Sign: %)
* F(d) = posU (if (d = neg) then Z else d).

Quiz: Compute Fixpoints
/N
pos neg

: Sign: %)
* F(d) = pos U (if (d = neg) then Z else d).

: Powerset of Z : P(Z)
s Fld)={2}u{i+2|ied}

Quiz: Compute Fixpoints
Z
7N
pos neg
: Sign: %)
* F(d) = pos U (if (d = neg) then Z else d).

: Powerset of Z : P(Z)
s Fd)={2}u{i+2|ied}

: Interval: (DU {[n,m] | n,m € ZU {—o00,+00} An <m},C)
* F(d) =[2,2] U (if (d = [n,m]) then [n + 2,m + 2] else ()

Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

* LetPre={d | F(d) Cd}and Post = {d | d C F(d)}.

Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

* LetPre={d | F(d) Cd}and Post = {d | d C F(d)}.
* glb(Pre) is the least fixpoint of F.

Proof of the Theorem

Tarski’s Theorem
Every monotone function F on a complete lattice D has both the least
and the greatest fixpoints.

* LetPre={d | F(d) Cd}and Post = {d | d C F(d)}.
* glb(Pre) is the least fixpoint of F.
* lub(Post) is the greatest fixpoint of F'.

Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D — D is monotonic, then the
sequence

IRSEERIO) P2 () (e

converges to Ifp(F) in finite steps.

Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D — D is monotonic, then the

sequence
IRSEERIO) P2 () (e

converges to Ifp(F) in finite steps.

The lemma implies that our analysis terminates.

Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D — D is monotonic, then the

sequence
IRSEERIO) P2 () (e

converges to Ifp(F) in finite steps.

The lemma implies that our analysis terminates.

Quiz:

* What if we drop the finiteness requirement

Finiteness Gains Termination

Lemma
If D is a finite complete lattice and F : D — D is monotonic, then the

sequence
IRSEERIO) P2 () (e

converges to Ifp(F) in finite steps.

The lemma implies that our analysis terminates.

Quiz:
* What if we drop the finiteness requirement

* Modify the lemma for greatest fixpoint

Main Concerns

Q1: Does a fixpoint of F exist?

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F' is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

e Use finite D.

Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.

Q2: Is a fixpoint of F a correct answer?

Q3: Does our algorithm always terminate? If not, what should we do?

e Use finite D.

Galois Connection

The Sign Example

assume(x == 2);
while (nondet()) { x =x+2; }
assert(x > 0);

* D = Sign = {L,pos,neg,Z} where L = ()
* F(d) = pos U (if (d = neg) then Z else d).
e\ B) — Pos.

The Sign Example

assume(x == 2);
while (nondet()) { x =x+2; }
assert(x > 0);

* D = Sign = {L,pos,neg,Z} where L = ()

* F(d) = pos U (if (d = neg) then Z else d).

* Ifp(F) = Pos. Correct. It overapproximates all possible values of
x at the loop entry.

The Sign Example

assume(x < 0);
while (nondet()) { x =x+2; }
assert(x > 0);

* D = Sign = {L,pos,neg,Z} where L =)
* F(d) = pos U (if (d = neg) then Z else d).
* Ifp(F) = Pos. Correct?

The Guarantee of Correctness

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

D = Sign, F(d) = pos U (if (d = neg) then Z else d)

The Guarantee of Correctness

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

D = Sign, F(d) = pos U (if (d = neg) then Z else d)

Define the concrete semantics (called collecting semantics):

C=P(2),E(c)={2}U{i+2|icc}

Connect C and D via Galois connection

Show that F is a sound abstraction of E

Then, correct by fixpoint transfer theorem

Galois Connection

Let (C,C) and (D, C) be presets. A Galois connection from C to D is
a pair of monotone functions:

a: C — D (abstraction), ~:D — C (concretization)
such that for all cin C and d in D,

a(c) Cd & c Cvy(d)

Galois Connection

Let (C,C) and (D, C) be presets. A Galois connection from C to D is
a pair of monotone functions:

a: C — D (abstraction), ~:D — C (concretization)
such that for all cin C and d in D,

a(c) Cd & c Cvy(d)

Intuition: elements in D abstract those in C. a(c) is the best
abstraction of ¢. y(d) is the meaning of d.

Galois Connection

Quiz: Galois Connection

/N
pos neg
Sign:)
Powerset of Z : P(Z)
Interval: (0 U {[n,m] | n,m € ZU {—o00,+00} An < m},C)

Quiz: Galois Connection

/N
pos neg
Sign:)
Powerset of Z : P(Z)
Interval: (0 U {[n,m] | n,m € ZU {—o00,+00} An < m},C)

Find Galois connections
e From Powersets to Intervals
* From Intervals to Signs

* From Powersets to Signs

Soundness of Transfer Functions

Assume C, D: Complete lattices, and Galois connection from C to D:
@ 5 € = 1Dy 8 ID) =@

Soundness of Transfer Functions

Assume C, D: Complete lattices, and Galois connection from C to D:
@ 5 € = 1Dy 8 ID) =@

LetE : C — C and F : D — D be monotonic functions. F is a sound
abstraction of E if

(Eo7)(d) S (yoF)(d)
for all d € D, diagrammatically,

b— b

Y| Y
<»

c—E “¢&

Quiz: Which One 1s Sound

R @NE(c) — {2} U {i+2 |i € c} D = {L,pos,negiZik

Quiz: Which One 1s Sound

R @NE(c) — {2} U {i+2 |i € c} D = {L,pos,negiZik

il
eais(d)
()

if (d = neg) then Z else (d L pos)
pos
Z

Best Abstraction

LetE : C — C and F : D — D be monotonic functions.

F is the best abstraction of E if

aoFEoy=F
diagrammatically,
| F
D D
v| o
c—E—c

Fixpoint Transfer

LetE : C — C and F : D — D be monotonic functions. If

D—F D

Y| Y
<

c—E “¢&

then Ifp(E) E v(Ifp(F))

Fixpoint Transfer

LetE : C — C and F : D — D be monotonic functions. If

D—F D

Y| Y
<

c—E “¢&

then Ifp(E) E v(Ifp(F))

Same condition. Preset D. For all d in D, if F(d) C d, then
Ifp(E) C v(d).

Guarantee for Correctness

Given data:
* Program analysis (D, F : D — D)
* Concrete semantics (C,E : C — C)

® Find a Galois connection from C to D
@® Show that F is a sound abstraction of E

© Then, correct by fixpoint transfer theorem

Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.
Q2: Is a fixpoint of F a correct answer?
e Yes, if Galois connection, and sound transfer.
Q3: Does our algorithm always terminate? If not, what should we do?

e Use finite D.

Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F is monotonic.
Q2: Is a fixpoint of F a correct answer?
e Yes, if Galois connection, and sound transfer.
Q3: Does our algorithm always terminate? If not, what should we do?

e Use finite D.

Widening and Narrowing

Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0QU{[n,m] | n,m € ZU{—00,+00} An<m}
« F(d) = [2,2] U (if (d = [i,]) then [i + 2, + 2] else 0).
s lfp(F) 73 [27 +OO]'

Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0QU{[n,m] | n,m € ZU{—00,+00} An<m}

« F(d) = [2,2] U (if (d = [i,j]) then [i + 2,j + 2] else B).

* Ifp(F) = [2,+00]. But it cannot be reached in finite steps. So,
the analysis will not terminate.

Analysis with Intervals

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0QU{[n,m] | n,m € ZU{—00,+00} An<m}

« F(d) = [2,2] U (if (d = [i,j]) then [i + 2,j + 2] else B).

* Ifp(F) = [2,+00]. But it cannot be reached in finite steps. So,
the analysis will not terminate.

« 0,F(0) = [2,2], F2(0) = [2,4], F3(0) = [2,6],...

Widening Operator V

binary operator V : D x D — D

Widening Operator V

binary operator V : D x D — D

such that
* d; Cd\Vd, fori € {1,2}; and
* for every sequence {d, }, in D, the following sequence {wy }, has

wy with wy = wyq:

Wwo = do, Wnr1 = WnVdny1

Widening Operator V

binary operator V : D x D — D

such that
* d; Cd\Vd, fori € {1,2}; and

* for every sequence {d, }, in D, the following sequence {wy }, has
wy with wy = wyq:

wo = do, Whpt1 = WannJrl

Intuition: d; Vd, extrapolates the change from dj to ds.

Quiz: Which One 1s Widening

Interval = DU {[i,j] | i,j € ZU{—o00,+00} Ai <j}

L 0Vd =dV0 =d,[i,jIV[’,j] = [i",j"] where
(=)7 : —0
*J' =0 <)% 4o

l¥Nd —dlld

1. Vd = dV0 = d, [i,j]V[{,j'] = [i",j"] where
o " = (min(i,i") < L)? — oo : min(i,i’)
SN (max(j,j/) > U)? aF 69 § max(j,j/)

Program Analysis with Widening

Analysis: (D,C, 1, F,V)

Algorithm: Generate wy according to the following rule until
Wit+1 = Wk
wo = L, wir1 = wi VF(wy)

Program Analysis with Widening

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0U{[n,m] | n,m € ZU{—00,+00} An<m}
* F(d) = [2,2] U (if (d = [i,j]) then [i +2,j + 2] else 0).
* OVd =dVi =d,
el J]V[b= il where
"=({<i?%i:—c0
*J =0 <)Y oo

Program Analysis with Widening

assume(x == 2);
while (nondet()) { x = x +2; }
assert(x > 0);

* D=0U{[n,m] | n,m € ZU{—00,+00} An<m}
* F(d) = [2,2] U (if (d = [i,j]) then [i +2,j + 2] else 0).
* OVd =dVi =d,
[,J]V[b= il where
"=({<i?%i:—c0
*JT =0 <)Y 4o

Q: Simulate the analysis algorithm.

Program Analysis with Widening

Analysis: (D,C, L,F,V)
Algorithm: Generate wy according to the following rule until

Wigl = Wg.
wo = L, Wip1 = wi VF (wy)

Theorem The algorithm terminates.

Theorem On termination, F(wy) T wy. Thus, correct if 3-Galois
connection and F is a sound abstraction.

Modification

Analysis: (D,C, 1, F,V)
Algorithm: Generate wy according to the following rule until

F(wg) C wy.
wo = L, wir1 = wi VF (wy)

Theorem The algorithm terminates.

Theorem On termination, F(wy) T wy. Thus, correct if 3-Galois
connection and F is a sound abstraction.

Narrowing Operation A

Binary operator A : D x D — D
such that

e diMdy C diAdy C dy and

* for every decreasing sequence {d, }, in D, the following
sequence {v,}, has vg with vy = vy:

vo = do, Vil = VnAdn—l—l

Intuition: d Ad, interpolates the change from d; to dj M d,.

Example

Interval = QU {[i,j] | i,j € Z U {—00,+o0} Ai < j}
OAd = dAD = ()

BRG] = [(i = —00)?i .+ i,\(j = Feoliisl

Program Analysis with Widening
and Narrowing

Analysis: (D,C, L,F,V,A)

Algorithm:

@ Generate wy according to the following rule until w1 = wy.

wo = L, wir1 = wi VF(wy)

® Refine wy by narrowing, Generate v,, according to the following
rule until vy, 11 = vy,

Vo = Wi, Vi1 = ViAW M F(vi))

Example

assume(x == 2);
while (x < {x=x+2;}

* D=0U{[n,m] | n,m € ZU{—o00,+00} An < m}

e F(d) = [2,2]U((d N [~00,9] = [i,j])?[i +2,j +2] :).
* LAV =[G <)% —o0, (' <)% : 400]

* BAAR] = [= —00)?' 1 i, (j = +00) 7 1]]

Example

assume(x == 2);
while (x < {x=x+2;}

DZQU{[, m] | n,m € Z U {—o0,+o0} An < m}
F(d)=[2,2]U((dN[~00,9] = [i,/])?[i +2,j +2] : D).

R = [<)7« —o0, (' <)% : +o0]

 [LAA[] = [(i = —00)? 1 i, (j = +00) 7 :]

Q: Simulate the analysis algorithm.

Correctness

Why is the narrowing step correct?

Main Concerns

Q1: Does a fixpoint of F exist?
* Yes, if D is a complete lattice and F' is monotonic.
Q2: Is a fixpoint of F a correct answer?
* Yes, if Galois connection, and sound transfer.
Q3: Does our algorithm always terminate? If not, what should we do?

* Use finite D. Or use widening.

Roadmap

Specify an analysis in terms of the following data:

@ Preset D (abstract domain).

® Monotone function F (abstract transfer function).
©® Widening operator V (unless D is finite).

@ Narrowing operator A (optional).

©® Galois connection from C (concrete domain) to D.

@ Soundness of F wrt. E (concrete transfer function).

Then, our analysis terminates and is correct (sound).

Report

Rep6. Algorithms for widening and narrowing (Maximal 3 students)

