Fundamentals of Programming
Languages VII

Program Semantics

Guogiang Li

School of Software, Shanghai Jiao Tong University

Why Formal Semantics?

To understand how programs behave.

To build a mathematical model useful for program analysis and
verification.

Three Kinds of Semantics

Operational semantics: describing the meaning of a programming
language by specifying how it executes on an abstract machine.
Gordon Plotkin

Denotational semantics: defining the meaning of programming
languages by mathematical concepts.
Christopher Strachey, Dana Scott

Axiomatic semantics: giving the meaning of a programming construct
by axioms or proof rules in a program logic.
R.W. Floyd, C.A.R. Hoare

Three Kinds of Semantics

Operational semantics: very helpful in implementation

Denotational semantics: provides deep and widely applicable
techniques for various languages

Axiomatic semantics: useful in developing and verifying programs

Three Kinds of Semantics

Different styles of semantics are dependent on each other. E.g.

Three Kinds of Semantics

Different styles of semantics are dependent on each other. E.g.

To show the proof rules of an axiomatic semantics are correct, use an
underlying denotational or operational semantics.

To show an implementation correct wrt denotational semantics, need
to show the operational and denotational semantics agree.

To justify an operational semantics, use a denotational semantics to
abstract away from unimportant implementation details so to
understand high-level computational behavior.

Basic Set Theory

Sets

{x | P(x)}: specify a set with property P(x)

Russell’s paradox: R = {x | x & x} is not a set.

So we assume all sets in this lecture are properly constructed.
(): the null or empty set

a0 2. ..}

Sets

Powerset: Pow(X) ={Y | Y C X}.

Indexed set: {x; | i € I'}.

Sets

Powerset: Pow(X) ={Y | Y C X}.
Indexed set: {x; | i € I'}.
Big union: Let X be a setof sets. [JX = {a | Ix € X.a € x}

When X = {x; | i € I} for some indexing set I we write | J X as

User i-

Sets

Powerset: Pow(X) ={Y | Y C X}.
Indexed set: {x; | i € I'}.
Big union: Let X be a setof sets. [JX = {a | Ix € X.a € x}

When X = {x; | i € I} for some indexing set I we write [J X as

User i-

Big intersection: Let X be a nonempty set of sets.
X ={a|Vxe€Xacx}

When X = {x; | i € I} for a nonempty indexing set / we write [X as

miel X

Sets
Product: X x Y = {(a,b) |lae X &be Y}.

More generally, X1 X X, X ... X X, consists of the set of n-tuples
) — (01, (%2, (%3, -..))).

Sets
Product: X x Y = {(a,b) |lae X &be Y}.

More generally, X; X X> X ... X X, consists of the set of n-tuples
B) — (1, (x2, (x3,-.-))).

Disjoint union:
X()L‘HXltH-”H'JXn:({O} XX())U({I} XX])U...U({H} XX,,)

Set difference: X\Y = {x |x e X &x ¢ Y}

Sets
Product: X x Y = {(a,b) |lae X &be Y}.

More generally, X1 X X, X ... X X, consists of the set of n-tuples
) — (01, (%2, (%3, -..))).

Disjoint union:
X()L‘HXlL‘H-”H'JXn:({O} XX())U({I} XX])U...U({H} XX,,)

Set difference: X\Y = {x |x e X &x ¢ Y}
The axiom of foundation: Any descending chain of memberships
..b,e...€ b €b

must be finite. Thus no set can be a member of itself. It is an
assumption generally made in set theory.

Relations and Functions

A binary relation between X and Y is an element of Pow(X x Y).

When R is a relation R C X x Y, we write xRy for (x,y) € R.

Relations and Functions

A binary relation between X and Y is an element of Pow(X x Y).
When R is a relation R C X x Y, we write xRy for (x,y) € R.
A partial function from X to Y is a relation f C X x Y with

Vx,y,y.(x,y) ef& (x,y) ef =>y=Y

We write f (x) = y when (x,y) € f for some y and say f(x) is defined,
otherwise f(x) is undefined. Sometimes we write f : x — y or x — y
when f is understood, for y = f(x)

Relations and Functions

A binary relation between X and Y is an element of Pow(X x Y).
When R is a relation R C X x Y, we write xRy for (x,y) € R.
A partial function from X to Y is a relation f C X x Y with

Vx,y,y.(x,y) ef& (x,y) ef =>y=Y

We write f (x) = y when (x,y) € f for some y and say f(x) is defined,
otherwise f(x) is undefined. Sometimes we write f : x — y or x — y
when f is understood, for y = f(x)

A (total) function from X to Y is a special partial function such that
Vx e X Jy el f(x)=y.

Write (X — Y) for the set of all partial function from X to ¥, and
(X — Y) for the set of all total functions.

Relations and Functions

Lambda notation To write a function without naming it.
MxeXe = {(x,e) | xeX}

LetR C X x Yand S C Y X Z be two relations. Their composition is
SoR =as {(x,2) EXxZ|Jy€eY.(x,y) €eR& (y,2) €5}

For functions f : X — Y and g : Y — Z, their composition is the
functiongof : X — Z.

Each set X is associated with an identity function
Idy = {(x,x) | x € X}.

A function f : X — Y has an inverse g : ¥ — X iff g(f(x)) = x for all
x € Xandf(g(y)) =yforally € Y. Then X and Y are said to be in
1 — 1 correspondence.

Relations and Functions

LetR: X x Y and A C X. The direct image of A under R
RA={yeY|3IxecA. (x,y) €R}

Let B C Y. The inverse image of B under R
R'B—{xeX|3JyeB. (x,y €R}

If R is an equivalence relation on X, then the (R—)equivalence class of
an element x € X is {x}r =4 {y € X | yRx}.

Let R = Idy, define R*t! = R o R” for all n > 0. The transitive
closure of Ris Rt = |J, ., R"*!. The reflexive, transitive closure of R
iRe=ild | IR" =] R

new

new

Georg Cantor’s Diagonal Argument

Theorem
Let X be any set, X and Pow(X) are never in 1 — 1 correspondence.

Georg Cantor’s Diagonal Argument

Theorem
Let X be any set, X and Pow(X) are never in 1 — 1 correspondence.

Proof

Suppose there exists a 1-1 correspondence 6 : X — Pow(X). Form
thesetY = {x € X | x € 6(x)}. Now Y € Pow(X) and is in
correspondence with some y € X, i.e. 8(y) =Y.

Georg Cantor’s Diagonal Argument

Theorem
Let X be any set, X and Pow(X) are never in 1 — 1 correspondence.

Proof

Suppose there exists a 1-1 correspondence 6 : X — Pow(X). Form
thesetY = {x € X | x € 6(x)}. Now Y € Pow(X) and is in
correspondence with some y € X, i.e. 8(y) =Y.

sIfyeYtheny €6(y) =Y.
s IfygY =06(y)theny € Y.
So the correspondence 6 does not exist at all.

Georg Cantor’s Diagonal Argument

O(xo) 6(x1) 6(x2) 0(x;)
xo | O 1 1 1
x| 1 1 1 1
X2 | 0 0 0 0
i || O 1 0 A |
x |0 1 0 aao |

In the ith row and jth column is placed 1 if x; € 6(x;) and O otherwise.

Operational semantics

IMP- A Simple Imperative
Language

Some syntactic sets in IMP.

* numbers N, consisting of all integer numbers, ranged over by
metavariables n, m

* truth values T={true, false},

* locations Loc, ranged over by X, Y

* arithmetic expressions Aexp, ranged over by a
* boolean expressions Bexp, ranged over by b

* commands Com, ranged over by ¢

Sometimes we use metavariable which are primed or subscripted, e.g.
X', Xy for locations.

IMP- A Simple Imperative
Language

The syntax of IMP defined by BNF (Backus-Naur form).
* ForAexp: a:=n|X|ao+ai|ao—ai|aoxa
* For Bexp:
b ::=true | false | ap = a; | ap < ay | —b | by Aby | by V by

e For Com:
c ==skip | X :=a | co; c; | if b then ¢ else ¢; | while b do ¢

IMP- A Simple Imperative
Language

The syntax of IMP defined by BNF (Backus-Naur form).

For Aexp: a:=n|X|ay+aj|ay—ai|ayxa
For Bexp:
b:::true\false]ao:al \aogal ’ﬁb’bo/\b] ‘boVbl

For Com:
¢ ==skip | X :=a | co;c; | if b then ¢ else c¢; | while b do ¢

From set-theoretic point of view, this notation gives an inductive
definition of the syntactic sets, the least sets closed under the
formation rules.

Syntactic equivalence =. e.g. 3+ 4 # 4 + 3.

Evaluation of Arithmetic
Expressions

¢ The set of states consists of functions o : Loc — N.

* A configuration is a pair {a, o), where a is an arithmetic
expression and o a state.

* An evaluation relation between pairs and numbers (a,c) — n

Structural Operational Semantics

Evaluation of numbers (n,o) = n

Evaluation of locations (X,0) = o(X)

Evaluation of sums

{ap,0) = ny (a1,0) = n; nisthe sum of ny and n;

(ap +ai,o) = n
Evaluation of subtractions

{(ap,0) —ny (a1,0) — n; nis the result of subtracting n; from ng

{ap — ay,0) = n
Evaluation of products
(ap,0) = nyg (aj,o) — n; nisthe product of ng and n|

{ap x ay,0) = n

Derivation Tree

<I}’lil‘7 0’0> — 0 <5,0’0> —5 <770'()> — 7 <970'()> —9

((Init + 5),00) — 5 (749,00) — 16

((Init +5) + (71+9),00) — 21

Equivalence of Arithmetic
Expressions

Two arithmetic expressions are equivalent if they evaluate to the same
value in all states.
ap ~ ay iff Yo € ¥Vn € N. (ap,0) = n< (a1,0) = n

The Evaluation of Boolean

Expressions
(true,o) — true (false, o) — false
(ag,o0) = n (aj,0) > n (ap,0) = n (aj,0) >m nZm
(ap = a1, c) — true (ap = a1, o) — false
(ap,0) = n {aj,o) = m if nisless than or equal to m
(ap < ay,o) — true
(ap,0) = n (aj,o) —m if nis not less than or equal to m
(ap < ay, o) — false
(b,o) — true (b, o) — false
(=b, o) — false (=b,0) — true
(bo,0) =ty (b1,0) —t; iftistrueiff iy = 7] = true
<b0 A by, O’> == U
(bo,o) —1t9 (b1,0) — 1, ifrisfalseiff 1) = 1; = false
(bo V by, 0> =

The Execution of Commands

A (command) configuration is a pair {(c, o) where ¢ is a command and

o a state. The execution of commands are defined via relations
(c,0) = o

Notation. Write o[m/X] for the state satisfying

m iy =X
"[’"/X](Y):{ oY) ifY #X

The Execution of Commands

Atomic commands

(a,0) = m

(X :=a,0) > U[m/X]
(co,0) = " {c1,0") = o’

(skip, o) — o

S ;
equencing T

Conditionals
(b,o) — true {(cp,0) = o’ (b,o) — false {(c1,0) — o’
(if b then ¢ else ¢;,0) — o’ (if b then ¢ else ¢;,0) — o’

While-loops
(b, o) — false
(while bdo c,0) — o
(b,o) > true (c,0) > 0
(while b do ¢,0) — o’

1 /

(while bdo c,0") — o

Big Step Semantics

To see the semantics just defined is a big step semantics, consider the

following program:

Factorial = o=l
while X > 1 do
{Y =Y xX; X := Xe-Sl§i=
% 5=

Let o be a state with o(X) = 3, what is the state o’ such that
(Factorial, o) — ¢’ ? Construct the derivation tree.

Equivalence of Commands

Definition
co ~ ¢; iff Vo,0’ € ¥. (cp,0) = 0’ < (c1,0) = ¢

Equivalence of Commands

co ~ ¢ iff Vo,0’ € X. (co,0) = o' & (c1,0) = o’

Let w = while b do ¢ with b € Bexp and ¢ € Com. Then

w ~ if b then c; w else skip.

Equivalence of Commands

Definition
co ~ ¢ iff Vo,0’ € X. (co,0) = o' & (c1,0) = o’

Let w = while b do ¢ with b € Bexp and ¢ € Com. Then

w ~ if b then c; w else skip.

Proof
Show that (w, o) — o’ iff (if b then c; w else skip, o) — ¢’ for all
states o, o’. Inspecting the rules with matching conclusions.

Small Step Semantics

For example,
a0, 0) =1 (dp, 0)
ao + ai, o) =1 (ap +a1,0)

ai,0) =1 {(ay,0)

n+a1, >—>1 (n+aj,o)

(
(
(
(
(n+m,0) =1 (p,o) pisthe sume of n and m

DY — 1.0) 1 (Y = 1,0[5/X]} =1 a5 /2X][1F0E

Principles of Induction

Mathematical Induction

The principle of mathematical induction: Let P(n) be a property of
the natural number n. To show P(n) holds for all natural numbers # it
is sufficient to show

* P(n) is true
* If P(m) is true then so is P(m + 1) for any natural number m.

Mathematical Induction

The principle of mathematical induction: Let P(n) be a property of
the natural number n. To show P(n) holds for all natural numbers # it
is sufficient to show

* P(n) is true

* If P(m) is true then so is P(m + 1) for any natural number m.

=R (0)
* P(0)
* P(m) the induction hypothesis
* (Vm € w. P(m) = P(m + 1)) the induction step.

& (Vm € w. P(m) = P(m+1))) = Vn € w. P(n) where

1s the induction basis

Course-of-Values Induction

If a property Q’s truth at m 4+ 1 depends on not just its truth at m but
also its truth at other numbers preceding m as well, we strengthen the
induction hypothesis to be Vk < m. Q(k). Then

* the basis: Vk < 0. Q(k): vacuously true.

* the induction step:
Vm € w. (Vk <m. Q(k)) = (Vk <m+ 1. Q(k))) equivalent to
Vm € w. (Vk <m. Q(k)) = Q(m)

Course-of-Values Induction

If a property Q’s truth at m 4+ 1 depends on not just its truth at m but
also its truth at other numbers preceding m as well, we strengthen the
induction hypothesis to be Vk < m. Q(k). Then

* the basis: Vk < 0. Q(k): vacuously true.

* the induction step:
Vm € w. (Vk <m. Q(k)) = (Vk <m+ 1. Q(k))) equivalent to
Vm € w. (Vk <m. Q(k)) = Q(m)

So as a special form of mathematical induction is course-of-values
induction: (Vm € w. (Vk < m. Q(k)) = Q(m)) = Vn € w. Q(n).

Structural Induction

Let P(a) be a property of arithmetic expression a. To show P(a) holds
for all arithmetic expressions a it is sufficient to show:

* For all numerals m, P(m) holds.
* For all locations X, P(X) holds.

* For all arithmetic expressions ag and ay, if P(ap) and P(a;) hold
then so does P(ag + ay).

* Similarly with P(ap — a;) and P(ap X ay).

Structural Induction: an Example

For all arithmetic expressions a, states o and numbers m, m’,

(a,0) > m & {a,0) = m' = m=m'

Structural Induction: an Example

For all arithmetic expressions a, states o and numbers m, m’,
(a,0) > m & {a,0) = m' = m=m'

Proof
By structural induction on arithmetic expressions a using induction
hypothesis P(a) where
P(a) iff Vo,m,m’. ((a,0) > m & {(a,0) > m' = m=m')
* a = n: since there is only one rule for evaluating (n, o), trivial.

* a = ap + a;: Again one rule for evaluating (a9 + aj, o). So
(ap, o) — mgy and (a;,0) — m; with m = mg + m
{ap, o) — m(and (ay, o) — m} with m’ = m{ + m|

By induction hypothesis applied to ag, a; we obtain my = my
and m; = m}. Thusm = m'.

Structural Induction: an Example

For all arithmetic expressions a, states o and numbers m, m’,
(a,0) > m & {a,0) = m' = m=m'

Proof
By structural induction on arithmetic expressions a using induction
hypothesis P(a) where
P(a) iff Vo,m,m’. ((a,0) > m & {(a,0) > m' = m=m')
* a = n: since there is only one rule for evaluating (n, o), trivial.

* a = ap + a;: Again one rule for evaluating (a9 + aj, o). So
(ap, o) — mgy and (a;,0) — m; with m = mg + m
{ap, o) — m(and (ay, o) — m} with m’ = m{ + m|

By induction hypothesis applied to ag, a; we obtain my = my,
and m; = m}. Thusm = m'.

* The remaining cases are similar.

Well-Founded Relation

A well-founded relation is a binary relation < on a set A such that
there are no infinite descending chains

oo KL @l K 000 X @ X @y

. If a < b then a is a predecessor of b.

Well-Founded Relation

Proposition
The relation < on set A is well-founded iff any nonempty subset Q of
A has a minimal element, i.e. an element m with

meQ & Vb <mb¢gQ

Well-Founded Relation

Proposition
The relation < on set A is well-founded iff any nonempty subset Q of
A has a minimal element, i.e. an element m with

meQ & Vb <mb¢gQ

Proof

(<) Suppose every nonempty subset of A has a minimal element, but
there is an infinite chain - - - < a; < ag. The set {q; | i € w} would
have no minimal element, a contradiction.

Well-Founded Relation

Proposition
The relation < on set A is well-founded iff any nonempty subset Q of
A has a minimal element, i.e. an element m with

meQ & Vb <mb¢gQ

Proof

(<) Suppose every nonempty subset of A has a minimal element, but
there is an infinite chain - - - < a; < ag. The set {q; | i € w} would
have no minimal element, a contradiction.

(=) Take any element ag from Q. Inductively, assume a chain

a, < --- < ag has been constructed inside Q. If there is b < a,, with
b € Q, take a,+1 = b, otherwise stop the construction. As < is
well-founded, the chain is finite whose least element is minimal in Q.

Principle of Well-Founded Induction

Proposition
Let < be well founded on set A, and P be a property. Then

Va.P(a) iff Ya € A.(Vb < a. P(b)) = P(a))

Principle of Well-Founded Induction

Proposition
Let < be well founded on set A, and P be a property. Then

Va.P(a) iff Ya € A.(Vb < a. P(b)) = P(a))

Proof
(=) Trivial.

Principle of Well-Founded Induction

Proposition
Let < be well founded on set A, and P be a property. Then

Va.P(a) iff Ya € A.(Vb < a. P(b)) = P(a))

Proof

(=) Trivial.

(<) Suppose Va € A.((Vb < a. P(b)) = P(a)) but —=P(a) for some
a € A. The set {a € A | -P(a)} has a minimal element m. Then

Vb < m.P(b) but =P (m), contradicting the assumption.

Principle of Well-Founded Induction

Proposition
Let < be well founded on set A, and P be a property. Then

Va.P(a) iff Ya € A.(Vb < a. P(b)) = P(a))

Proof

(=) Trivial.

(<) Suppose Va € A.((Vb < a. P(b)) = P(a)) but =P(a) for some
a € A. The set {a € A | -P(a)} has a minimal element m. Then
Vb < m.P(b) but =P (m), contradicting the assumption.

In mathematics this principle is called Noetherian induction after the
German algebraist Emmy Noether.

Principle of Well-Founded Induction

The proposition provides an alternative to proofs by well-founded
induction.

To show property P holds for every element in a well-founded set A, it
is sufficient to show the subset of counterexamples {a € A | =P(a)} is
empty.

Suppose it is nonempty, there is a minimal element m contradicting
the assumption (Vb < m.P(b)) = P(m).

An Example

Euclid’s algorithm for the greatest common divisor of M, N.
Euclid = while (M = N) do
ifM < NthenN =N —MelseM =M — N

An Example

Theorem
For all states 0, 0(M) > 1 & o(N) > 1 = 30’. (Euclid, o) — o’

An Example

For all states 0, 0(M) > 1 & o(N) > 1 = 30’. (Euclid, o) — o’

Proof
LetS={ceX|oM)> o(N) > 1} and < by

o <o iff (/M) <oM) & ¢'(N) <o(N)) &
—(0'(M) = o(M) & o'(N) = o(N)).

An Example

For all states 0, 0(M) > 1 & o(N) > 1 = 30’. (Euclid, o) — o’

Proof
LetS={ocecX|oM)>1 & o(N)> 1} and < by
)

o <o iff (/M) <oM) & ¢'(N) <o(N)) &

Then < is well-founded. Let P(o) = 3o’ .(Euclid, c) — o’. Suppose
Vo' < 0.P(0’), we show P (o) with two cases:

An Example

For all states 0, 0(M) > 1 & o(N) > 1 = 30’. (Euclid, o) — o’

Proof
LetS={ocecX|oM)>1 & o(N)> 1} and < by
)

o <o iff (/M) <oM

Then < is well-founded. Let P(o) = 3o’ .(Euclid, c) — o’. Suppose
Vo' < 0.P(0’), we show P (o) with two cases:
L o(M)=oc(N)andIL. o(M) # o(N)

An Example

Theorem
For all states 0, 0(M) > 1 & o(N) > 1 = 30’. (Euclid, o) — o’

Proof
LetS={ocecX|oM)>1 & o(N)> 1} and < by
)

o <o iff (/M) <oM) & ¢'(N) <o(N)) &

Then < is well-founded. Let P(o) = 3o’ .(Euclid, c) — o’. Suppose
Vo' < 0.P(0’), we show P (o) with two cases:

L o(M)=oc(N)andIL. o(M) # o(N)
Argue in both cases that (Euclid, o) — ¢’ for some ¢’. Then conclude
Vo € S.P(o0) by well-founded induction.

Induction on Derivations

A rule instance is a pair X /y with premises X and conclusion y.
Usually we write X /y as

X1

7... ,xn
0 and it X — [l

Y Y

Let R be a set of rule instances. An R-derivation of y is either a rule
instance ()/y or a pair {dy, - - - ,d,}/y where {x1,- - ,x,}/y is a rule
instance and d; an R-derivation of x; forall 1 < i < n.

Write d |Fg y to mean d is an R-derivation of y.

Induction on Derivations

A rule instance is a pair X /y with premises X and conclusion y.
Usually we write X /y as

X1

7... ,xn
0 and it X — [l
y y

Let R be a set of rule instances. An R-derivation of y is either a rule
instance ()/y or a pair {dy, - - - ,d,}/y where {x1,- - ,x,}/y is a rule
instance and d; an R-derivation of x; forall 1 <i < n.

Write d |Fg y to mean d is an R-derivation of y.
* (0/y) Ik yif (0/y) € R

y ({d17 7dn}/y) ”_Rylf({xla ,Xn}/y) GRand
d1 II—Rxl,...,dn II—Rxn

Induction on Derivations

A derivation d’ is an immediate subderivation of d, written d’ < d,
iff d has the form D/y with d’ € D.

Let < be the transitive closure of < (<T). We say d’ is a proper
subderivation of d iff d’ < d.

Since derivations are finite, both <; and < are well-founded.

Induction on Derivations

Theorem

Let ¢ be a command and oy a state. If {c, 59) — & and (¢, 09) — o,
theno = 0.

Proof

By well-founded induction on the proper subderivation relation <.
For any derivation d, let P(d) be the following property

Ve € Com,0¢,0,01 € X.d IF {c,00) = 0 & {c,00) = 01 = 0 =0}

Show that Vd' < d.P(d’) implies P(d) by inspecting the structure of c.

Induction on Derivations

Proposition

Ve € Com, 0,0’ € X. (while true do c, o) 4 o’

Proof

Abbreviate w = while true do c. Suppose the set

{d| 30,0’ € X.d IF (w,0) — ¢’} is nonempty. There is a minimal
derivation d in the form

(true,0) — true (c,0) > o (w,0") =’

{w,0) = o’

But this contains a proper subderivation d’ I (w, ") — ¢’,

contradicting the minimality of d.

Definition by Induction

Definition by well-founded induction, also called well-founded
recursion, e.g.

1 ifa=norX
size(a) = { 1+ size(ao) + size(a1) ifa=ap+a,

The Denotational Semantics of IMP

Motivation

Operational semantics is too concrete, built out of syntax, is hard to
compare two programs written in different programming languages.

e.g.

co ~ ¢y iff (Vo,d’. {co,0) = 0') & {(c1,0) = o’
iff

{(07 U/) | <C070> = U,} L {(07 U/) | <C1’U> = UI}
i.e. cg and c; determine the same partial function on states.

So we take the denotation of a command to be a partial function on
states.

Denotations of Aexp

Define the semantic function 4 : Aexp — (X — N)

Aln] = {(o,n)|o € X}

AlX] = {(o,0(X)) |0 €}
.Aﬂao +a1]] = {(J no + ny) ‘ (O’,no) € .A[[a()]] & (U,rl]) € A[al]]}
Afao —ai] = {(o,n0 —m) | (o,n0) € Alao] & (o,n1) € Ala1]}
.A[[a() X (11]] = {(O’ ng X n1) ‘ (J, I’lo) € .A[[a()]] & (O’,nl) € .A[[al]]}

The “+" on the left-hand side represents syntactic sign in IMP
whereas the sign on the right represents sum on numbers. Similarly

13 n o n

TP e e

Denotations of Aexp

The denotation of arithmetic expressions are actually total functions.
Using A-notation,

Aln] = doeX.n

A[X] = Mo € X o(X)
Alao +ai] = Mo € X. (Afao]o + Alai]o)
Aflag —a1] = Mo € X. (Alaog)o — Alai]o)
.A[[a() X (11]] = Ao €. (.A[[(ZQ]]J X A[[al]]a)

Denotations of Bexp

Define the semantic function 5 : Bexp — (X — T)

B[true] = {(o,true)|oc X}
B[false] = {(o,false)|oc € X}
Blap =a1] = {(o,true)|oceX & Alag]o = AJai]o}U
{(o,false) | c € ¥ & Alag]o # Alai]o}U
B[-b] = A{(o,—rt)|oceX & (o,t) € B[b]}
B[[b()/\b]]] = {O’toATtl)|U€2& (O’ l‘o)GB[[bo]] &

(O’ l‘]) (S B[[blﬂ}

The sign “Ar" is the conjunction operation on truth values.

Denotations of Com

Define the compositional semantic function C : Aexp — (X —)

Clskip] = {(o,0) |0 € X}
C[X :=a] = {(o,0n/X])| o€ & n= Ala]o}
C[[Co;cl]] = C[[C]]] OC[[C()ﬂ
C[if b then co else ;] = {(o0,0") | B[b]o = true & (o,0’) € C[eco]}

U{(o,0") | B[b]o = false & (c,0") € C[e1]]

C[while b do] fix(T)

where

I(p) = {(o,0') | B[b]o = true & (0,0') € poC|c]} U
{(0,0) | B[b]o = false}

Denotation of while -Loops

Let w = while b do c. Inspired by the equivalence
w ~ if b then c; w else skip. We should have

Clw] = {(o,0') | B[p]o = true & (o,0") € C[c;w]} U
{(0,0) | B[b]o = false}

Equivalence of the Semantics

Lemma
For all a € Aexp, Ala] = {(o,n) | {a,0) — n}.

Equivalence of the Semantics

Lemma
For all a € Aexp, Ala] = {(o,n) | {a,0) — n}.

Proof
Define the property P by P(a) =4.r Ala] = {(o,n) | (a,0) — n} and
proceed by structural induction on arithmetic expressions.

Equivalence of the Semantics

Lemma
For all a € Aexp, Ala] = {(o,n) | {a,0) — n}.

Proof
Define the property P by P(a) =4.r Ala] = {(o,n) | (a,0) — n} and
proceed by structural induction on arithmetic expressions.

[Lemma

For all b € Bexp, B[b] = {(0,1) | (b, o) — 1}

Equivalence of the Semantics

Lemma
For all commands ¢ and states 0,0, (¢,0) = o' = (0,0") € C[c].

Equivalence of the Semantics

Lemma
For all commands ¢ and states 0,0, (¢,0) = o' = (0,0") € C[c].

Proof
Let P(c,0,0") =4 (0,0") € C[c]. Use rule induction for commands.

Equivalence of the Semantics

Theorem
For all commands c, C[c] = {(o,0") | {c,0) = ¢'}.

The Axiomatic Semantics of IMP

The Idea

Assertions in programs.

S =0 =1

W= 0& N =1}

while -(N = 101)do S :=S+ N;N :=N + 1
{s= Zlgmgloom}

Partial Correctness

Let A, B be assertions like those in Bexp, and ¢ a command. We write

{A}e{B}

to mean: for all states o which satisfy A (precondition) if the
execution ¢ from state ¢ terminates in state ¢’ then o’ satisfies B
(postcondition).

Partial Correctness

Let A, B be assertions like those in Bexp, and ¢ a command. We write

{A}e{B}

to mean: for all states o which satisfy A (precondition) if the
execution ¢ from state ¢ terminates in state ¢’ then o’ satisfies B
(postcondition).

{true}while true do skip{false}

Partial Correctness

Let A, B be assertions like those in Bexp, and ¢ a command. We write

{A}e{B}

to mean: for all states o which satisfy A (precondition) if the
execution ¢ from state ¢ terminates in state ¢’ then o’ satisfies B
(postcondition).

{true}while true do skip{false}
In contrast to total correctness assertions [A]c[B] — the execution of ¢

from any state which satisfies A will terminate in a state which
satisfies B.

Partial Correctness

Consider C[c] as a total function in (¥ — X,) instead of partial
function in (X — X).

Partial Correctness

Consider C[c] as a total function in (¥ — X,) instead of partial
function in (X — X).

Write o = A to mean the state o satisfies assertion A. Let L = A for
any A. Then the meaning of {A}c{B} will be

Vo € ¥.0 EA=C|c]o EB.

The Assertion Language Assn

Let i range over integer variables, Intvar. Extending Aexp with
integer variables to be Aexpv:

ax=n|X|i|lap+a|ap—ai|apxa

Extending Bexp to be Assn:

PAW:=— true|false]a0:a1 \aogal ’Ao/\A1 |
A()\/A1|—|A|A() = A |Vi.A|E|i.A

Free Integer Variables

Define free integer variables in Aexpv or Assn expressions by
structural induction.

FV(n)=FV(X)=10
FV (i) = {i}

FV(a() +a1) = FV(aO = al) = FV(aO X al) = FV(ao) UFV(al)

FV(true) = FV(false) = ()

(ap =a1) = FV(ap < a1) = FV(ap) UFV(a;)

FV(A() NA) FV(A() \/Al):FV(AQ :>A1) :FV(A())UFV(Al)
(~4) = F
(

A)
oA — FV(EIl A) = FV(A)\{i}

Substitution

Define substitution for Aexpv or Assn expressions by structural
induction.

true[a/ | =true false[a/i] = false
(a0 = ar)la/i] = (aola/i] = airla/i])

(A0 A Ar)la/i] = (Aola/i] A Arlali]
(—A)a/i] = ﬁ([a/i])

(Vj.A)la/i] =Vj.(Ala/i]) (ViA)|a/i] = Vi.A
(Fj.A)[a/i] = EIJ (Ala/i]) (JiA)[a/i]l=3TiA

The Meaning of Expressions, Aexpv

An interpretation is a function / : Intvar — N assigning an integer to
each integer variable. The value of an expression a € Aexpv in an
interpretation I and state o is written Av[a]lo or (Av[a](I))(o).

Av[n]lo =n

Av[X])lo = o(X)

Av[illo = I(i)

Avlap + a1]lo = Av]ao]lo + Av[a]lo
Avlap — a1]lo = Av]ao]lo — Av[a]lo
Avlap x a1]lo = Av]ao]lo x Av[a]lo

The Meaning of Assertions, Assn

Write /[n/i] for the interpretation given by I[n/i](j) = nif j = i, and
I(j) otherwise.
For A € Assn, write ¢ = A to mean ¢ satisfies A in interpretation /.

o ! true

o E! (ap = a1) if Av]ag)lo = Av]a]lo
cE='AANBifo = Aando = B
cE'A=Bifoc [Aoro ' B

o = ViAif o =1 Aforalln € N

o = 3iAif o =1 A for some n € N
=

Partial Correctness Assertions

Writt A’ = {oc € X, | 0 ! A}.
« o =l {A}e{B}iff (c &' A = C[c]o ' B).
o ! {Alc{B}iff Vo € X, .0 = {A}c{B}

* Validity: = {A}c{B} iff
o ! {A}c{B} for all interpretations and states o

« Similarly, A is valid, = A, means o |=! A for all interpretations I
and states o.

Proof Rules for Partial Correctness

The proof rules are called Hoare rules and the proof system Hoare
logic.

{A} skip {A}

{Bla/X]} X := a {B}
{A}co{C} {C}ci{B}
{A} cosc1 {B}

{A Ab}co{B} {AA-b}ci{B}

{A} if b then ¢ else ¢; {B}

{A ANDb}c{A}

{A} while b do ¢ {A N —b}

= = AR e =)
{A} ¢ {B}

Soundness of the Proof System

A rule is sound in the sense that if the rule’s premise is valid then so is
its conclusion. The proof system is sound if every rule is sound. Then
by rule induction, every theorem obtained from the proof system is a
valid partial correctness assertion.

Soundness of the Proof System

A rule is sound in the sense that if the rule’s premise is valid then so is
its conclusion. The proof system is sound if every rule is sound. Then
by rule induction, every theorem obtained from the proof system is a
valid partial correctness assertion.

Lemma
Let I be an interpretation, o a state, and X € Loc.

* Leta,ap € Aexpv. Then

Avlagla/X]]lo = Av]ao]lo[Av]a]lo/X]
* Let B € Assn. Then

o ! Bla/X] iff o[Ala]o/X] E' B

Soundness of the Proof System

A rule is sound in the sense that if the rule’s premise is valid then so is
its conclusion. The proof system is sound if every rule is sound. Then
by rule induction, every theorem obtained from the proof system is a
valid partial correctness assertion.

Lemma
Let I be an interpretation, o a state, and X € Loc.

* Leta,ap € Aexpv. Then

Avlagla/X]]lo = Av]ao]lo[Av]a]lo/X]
* Let B € Assn. Then

o ! Bla/X] iff o[Ala]o/X] E' B
Proof
By structural induction on ag and B respectively.

Soundness of the Proof System

Theorem
Let {A}c{B} be a partial correctness assertion. If - {A}c{B} then

- {A)e{B}.

Using the Hoare Rules

Letw = (whileX >0doY :=X x Y;X := X — 1), and show

{X=n&n>0&Y =1}w{Y =n!}

Take I = (Y x X! =n! & X > 0), then
{IANX>0}Y =X xV;X =X — 1{I}
and so {I}w{I AX # 0}.

Note X =n&n>0&Y=1=landIAX $0=Y =n!

Report

Rep8. Semantics and Key Properties of CCS. (Maximal 3 Students)

Rep9. Semantics and Key Properties of CSP. (Maximal 3 Students)

	Basic Set Theory

