
Fundamentals of Programming
Languages VII

Program Semantics

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Why Formal Semantics?

To understand how programs behave.

To build a mathematical model useful for program analysis and
verification.

Three Kinds of Semantics

Operational semantics: describing the meaning of a programming
language by specifying how it executes on an abstract machine.
Gordon Plotkin

Denotational semantics: defining the meaning of programming
languages by mathematical concepts.
Christopher Strachey, Dana Scott

Axiomatic semantics: giving the meaning of a programming construct
by axioms or proof rules in a program logic.
R.W. Floyd, C.A.R. Hoare

Three Kinds of Semantics

Operational semantics: very helpful in implementation

Denotational semantics: provides deep and widely applicable
techniques for various languages

Axiomatic semantics: useful in developing and verifying programs

Three Kinds of Semantics

Different styles of semantics are dependent on each other. E.g.

To show the proof rules of an axiomatic semantics are correct, use an
underlying denotational or operational semantics.

To show an implementation correct wrt denotational semantics, need
to show the operational and denotational semantics agree.

To justify an operational semantics, use a denotational semantics to
abstract away from unimportant implementation details so to
understand high-level computational behavior.

Three Kinds of Semantics

Different styles of semantics are dependent on each other. E.g.

To show the proof rules of an axiomatic semantics are correct, use an
underlying denotational or operational semantics.

To show an implementation correct wrt denotational semantics, need
to show the operational and denotational semantics agree.

To justify an operational semantics, use a denotational semantics to
abstract away from unimportant implementation details so to
understand high-level computational behavior.

Basic Set Theory

Sets

{x | P(x)}: specify a set with property P(x)

Russell’s paradox: R = {x | x 6∈ x} is not a set.

So we assume all sets in this lecture are properly constructed.

∅: the null or empty set

ω = {0, 1, 2, ...}

Sets

Powerset: Pow(X) = {Y | Y ⊆ X}.

Indexed set: {xi | i ∈ I}.

Big union: Let X be a set of sets.
⋃

X = {a | ∃x ∈ X.a ∈ x}

When X = {xi | i ∈ I} for some indexing set I we write
⋃

X as⋃
i∈I xi.

Big intersection: Let X be a nonempty set of sets.⋂
X = {a | ∀x ∈ X.a ∈ x}

When X = {xi | i ∈ I} for a nonempty indexing set I we write
⋂

X as⋂
i∈I xi.

Sets

Powerset: Pow(X) = {Y | Y ⊆ X}.

Indexed set: {xi | i ∈ I}.

Big union: Let X be a set of sets.
⋃

X = {a | ∃x ∈ X.a ∈ x}

When X = {xi | i ∈ I} for some indexing set I we write
⋃

X as⋃
i∈I xi.

Big intersection: Let X be a nonempty set of sets.⋂
X = {a | ∀x ∈ X.a ∈ x}

When X = {xi | i ∈ I} for a nonempty indexing set I we write
⋂

X as⋂
i∈I xi.

Sets

Powerset: Pow(X) = {Y | Y ⊆ X}.

Indexed set: {xi | i ∈ I}.

Big union: Let X be a set of sets.
⋃

X = {a | ∃x ∈ X.a ∈ x}

When X = {xi | i ∈ I} for some indexing set I we write
⋃

X as⋃
i∈I xi.

Big intersection: Let X be a nonempty set of sets.⋂
X = {a | ∀x ∈ X.a ∈ x}

When X = {xi | i ∈ I} for a nonempty indexing set I we write
⋂

X as⋂
i∈I xi.

Sets
Product: X × Y = {(a, b) | a ∈ X & b ∈ Y}.

More generally, X1 × X2 × ...× Xn consists of the set of n-tuples
(x1, x2, ..., xn) = (x1, (x2, (x3, ...))).

Disjoint union:
X0] X1] · · ·] Xn = ({0} × X0) ∪ ({1} × X1) ∪ . . . ∪ ({n} × Xn)

Set difference: X\Y = {x | x ∈ X & x 6∈ Y}

The axiom of foundation: Any descending chain of memberships

. . . bn ∈ . . . ∈ b1 ∈ b0

must be finite. Thus no set can be a member of itself. It is an
assumption generally made in set theory.

Sets
Product: X × Y = {(a, b) | a ∈ X & b ∈ Y}.

More generally, X1 × X2 × ...× Xn consists of the set of n-tuples
(x1, x2, ..., xn) = (x1, (x2, (x3, ...))).

Disjoint union:
X0] X1] · · ·] Xn = ({0} × X0) ∪ ({1} × X1) ∪ . . . ∪ ({n} × Xn)

Set difference: X\Y = {x | x ∈ X & x 6∈ Y}

The axiom of foundation: Any descending chain of memberships

. . . bn ∈ . . . ∈ b1 ∈ b0

must be finite. Thus no set can be a member of itself. It is an
assumption generally made in set theory.

Sets
Product: X × Y = {(a, b) | a ∈ X & b ∈ Y}.

More generally, X1 × X2 × ...× Xn consists of the set of n-tuples
(x1, x2, ..., xn) = (x1, (x2, (x3, ...))).

Disjoint union:
X0] X1] · · ·] Xn = ({0} × X0) ∪ ({1} × X1) ∪ . . . ∪ ({n} × Xn)

Set difference: X\Y = {x | x ∈ X & x 6∈ Y}

The axiom of foundation: Any descending chain of memberships

. . . bn ∈ . . . ∈ b1 ∈ b0

must be finite. Thus no set can be a member of itself. It is an
assumption generally made in set theory.

Relations and Functions
A binary relation between X and Y is an element of Pow(X × Y).

When R is a relation R ⊆ X × Y , we write xRy for (x, y) ∈ R.

A partial function from X to Y is a relation f ⊆ X × Y with

∀x, y, y′.(x, y) ∈ f & (x, y′) ∈ f ⇒ y = y′

We write f (x) = y when (x, y) ∈ f for some y and say f (x) is defined,
otherwise f (x) is undefined. Sometimes we write f : x 7→ y or x 7→ y
when f is understood, for y = f (x)

A (total) function from X to Y is a special partial function such that
∀x ∈ X.∃y ∈ Y .f (x) = y.

Write (X ⇀ Y) for the set of all partial function from X to Y , and
(X → Y) for the set of all total functions.

Relations and Functions
A binary relation between X and Y is an element of Pow(X × Y).

When R is a relation R ⊆ X × Y , we write xRy for (x, y) ∈ R.

A partial function from X to Y is a relation f ⊆ X × Y with

∀x, y, y′.(x, y) ∈ f & (x, y′) ∈ f ⇒ y = y′

We write f (x) = y when (x, y) ∈ f for some y and say f (x) is defined,
otherwise f (x) is undefined. Sometimes we write f : x 7→ y or x 7→ y
when f is understood, for y = f (x)

A (total) function from X to Y is a special partial function such that
∀x ∈ X.∃y ∈ Y .f (x) = y.

Write (X ⇀ Y) for the set of all partial function from X to Y , and
(X → Y) for the set of all total functions.

Relations and Functions
A binary relation between X and Y is an element of Pow(X × Y).

When R is a relation R ⊆ X × Y , we write xRy for (x, y) ∈ R.

A partial function from X to Y is a relation f ⊆ X × Y with

∀x, y, y′.(x, y) ∈ f & (x, y′) ∈ f ⇒ y = y′

We write f (x) = y when (x, y) ∈ f for some y and say f (x) is defined,
otherwise f (x) is undefined. Sometimes we write f : x 7→ y or x 7→ y
when f is understood, for y = f (x)

A (total) function from X to Y is a special partial function such that
∀x ∈ X.∃y ∈ Y .f (x) = y.

Write (X ⇀ Y) for the set of all partial function from X to Y , and
(X → Y) for the set of all total functions.

Relations and Functions
Lambda notation To write a function without naming it.
λx ∈ X.e = {(x, e) | x ∈ X}

Let R ⊆ X × Y and S ⊆ Y × Z be two relations. Their composition is
S ◦ R =def {(x, z) ∈ X × Z | ∃y ∈ Y .(x, y) ∈ R & (y, z) ∈ S}

For functions f : X → Y and g : Y → Z , their composition is the
function g ◦ f : X → Z .

Each set X is associated with an identity function
IdX = {(x, x) | x ∈ X}.

A function f : X → Y has an inverse g : Y → X iff g(f (x)) = x for all
x ∈ X and f (g(y)) = y for all y ∈ Y . Then X and Y are said to be in
1− 1 correspondence.

Relations and Functions

Let R : X × Y and A ⊆ X. The direct image of A under R
RA = {y ∈ Y | ∃x ∈ A. (x, y) ∈ R}

Let B ⊆ Y . The inverse image of B under R
R−1B = {x ∈ X | ∃y ∈ B. (x, y) ∈ R}

If R is an equivalence relation on X, then the (R−)equivalence class of
an element x ∈ X is {x}R =def {y ∈ X | yRx}.

Let R0 = IdX , define Rn+1 = R ◦ Rn for all n ≥ 0. The transitive
closure of R is R+ =

⋃
n∈ω Rn+1. The reflexive, transitive closure of R

is R∗ = IdX ∪ R+ =
⋃

n∈ω Rn.

Georg Cantor’s Diagonal Argument

Theorem
Let X be any set, X and Pow(X) are never in 1− 1 correspondence.

Proof
Suppose there exists a 1-1 correspondence θ : X → Pow(X). Form
the set Y = {x ∈ X | x 6∈ θ(x)}. Now Y ∈ Pow(X) and is in
correspondence with some y ∈ X, i.e. θ(y) = Y .

• If y ∈ Y then y 6∈ θ(y) = Y .
• If y 6∈ Y = θ(y) then y ∈ Y .

So the correspondence θ does not exist at all.

Georg Cantor’s Diagonal Argument

Theorem
Let X be any set, X and Pow(X) are never in 1− 1 correspondence.

Proof
Suppose there exists a 1-1 correspondence θ : X → Pow(X). Form
the set Y = {x ∈ X | x 6∈ θ(x)}. Now Y ∈ Pow(X) and is in
correspondence with some y ∈ X, i.e. θ(y) = Y .

• If y ∈ Y then y 6∈ θ(y) = Y .
• If y 6∈ Y = θ(y) then y ∈ Y .

So the correspondence θ does not exist at all.

Georg Cantor’s Diagonal Argument

Theorem
Let X be any set, X and Pow(X) are never in 1− 1 correspondence.

Proof
Suppose there exists a 1-1 correspondence θ : X → Pow(X). Form
the set Y = {x ∈ X | x 6∈ θ(x)}. Now Y ∈ Pow(X) and is in
correspondence with some y ∈ X, i.e. θ(y) = Y .

• If y ∈ Y then y 6∈ θ(y) = Y .
• If y 6∈ Y = θ(y) then y ∈ Y .

So the correspondence θ does not exist at all.

Georg Cantor’s Diagonal Argument

θ(x0) θ(x1) θ(x2) · · · θ(xj) · · ·
x0 0 1 1 · · · 1 · · ·
x1 1 1 1 · · · 1 · · ·
x2 0 0 0 · · · 0 · · ·
...

...
...

...
...

xi 0 1 0 · · · 1 · · ·
...

...
...

...
...

xi 0 1 0 · · · 1 · · ·

In the ith row and jth column is placed 1 if xi ∈ θ(xj) and 0 otherwise.

Operational semantics

IMP- A Simple Imperative
Language

Some syntactic sets in IMP.
• numbers N, consisting of all integer numbers, ranged over by

metavariables n,m
• truth values T={true, false},
• locations Loc, ranged over by X,Y
• arithmetic expressions Aexp, ranged over by a
• boolean expressions Bexp, ranged over by b
• commands Com, ranged over by c

Sometimes we use metavariable which are primed or subscripted, e.g.
X ′,X0 for locations.

IMP- A Simple Imperative
Language

The syntax of IMP defined by BNF (Backus-Naur form).
• For Aexp: a ::= n | X | a0 + a1 | a0 − a1 | a0 × a1

• For Bexp:
b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

• For Com:
c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c

IMP- A Simple Imperative
Language

The syntax of IMP defined by BNF (Backus-Naur form).
• For Aexp: a ::= n | X | a0 + a1 | a0 − a1 | a0 × a1

• For Bexp:
b ::= true | false | a0 = a1 | a0 ≤ a1 | ¬b | b0 ∧ b1 | b0 ∨ b1

• For Com:
c ::= skip | X := a | c0; c1 | if b then c0 else c1 | while b do c

• From set-theoretic point of view, this notation gives an inductive
definition of the syntactic sets, the least sets closed under the
formation rules.

• Syntactic equivalence ≡. e.g. 3 + 4 6≡ 4 + 3.

Evaluation of Arithmetic
Expressions

• The set of states consists of functions σ : Loc→ N.
• A configuration is a pair 〈a, σ〉, where a is an arithmetic

expression and σ a state.
• An evaluation relation between pairs and numbers 〈a, σ〉 → n

Structural Operational Semantics

Evaluation of numbers 〈n, σ〉 → n
Evaluation of locations 〈X, σ〉 → σ(X)
Evaluation of sums
〈a0, σ〉 → n0 〈a1, σ〉 → n1 n is the sum of n0 and n1

〈a0 + a1, σ〉 → n
Evaluation of subtractions
〈a0, σ〉 → n0 〈a1, σ〉 → n1 n is the result of subtracting n1 from n0

〈a0 − a1, σ〉 → n
Evaluation of products
〈a0, σ〉 → n0 〈a1, σ〉 → n1 n is the product of n0 and n1

〈a0 × a1, σ〉 → n

Derivation Tree

〈Init, σ0〉 → 0 〈5, σ0〉 → 5
〈(Init + 5), σ0〉 → 5

〈7, σ0〉 → 7 〈9, σ0〉 → 9
〈7 + 9, σ0〉 → 16

〈(Init + 5) + (7 + 9), σ0〉 → 21

Equivalence of Arithmetic
Expressions

Two arithmetic expressions are equivalent if they evaluate to the same
value in all states.
a0 ∼ a1 iff ∀σ ∈ Σ ∀n ∈ N. 〈a0, σ〉 → n⇔ 〈a1, σ〉 → n

The Evaluation of Boolean
Expressions

〈true, σ〉 → true 〈false, σ〉 → false
〈a0, σ〉 → n 〈a1, σ〉 → n
〈a0 = a1, σ〉 → true

〈a0, σ〉 → n 〈a1, σ〉 → m n 6≡ m
〈a0 = a1, σ〉 → false

〈a0, σ〉 → n 〈a1, σ〉 → m if n is less than or equal to m
〈a0 ≤ a1, σ〉 → true
〈a0, σ〉 → n 〈a1, σ〉 → m if n is not less than or equal to m
〈a0 ≤ a1, σ〉 → false
〈b, σ〉 → true
〈¬b, σ〉 → false

〈b, σ〉 → false
〈¬b, σ〉 → true

〈b0, σ〉 → t0 〈b1, σ〉 → t1 if t is true iff t0 ≡ t1 ≡ true
〈b0 ∧ b1, σ〉 → t
〈b0, σ〉 → t0 〈b1, σ〉 → t1 if t is false iff t0 ≡ t1 ≡ false
〈b0 ∨ b1, σ〉 → t

The Execution of Commands

A (command) configuration is a pair 〈c, σ〉 where c is a command and
σ a state. The execution of commands are defined via relations
〈c, σ〉 → σ′

Notation. Write σ[m/X] for the state satisfying

σ[m/X](Y) =

{
m if Y = X
σ(Y) if Y 6= X

The Execution of Commands

Atomic commands

〈skip, σ〉 → σ
〈a, σ〉 → m
〈X := a, σ〉 → σ[m/X]

Sequencing
〈c0, σ〉 → σ′′ 〈c1, σ

′′〉 → σ′

〈c0; c1, σ〉 → σ′

Conditionals
〈b, σ〉 → true 〈c0, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′
〈b, σ〉 → false 〈c1, σ〉 → σ′

〈if b then c0 else c1, σ〉 → σ′

While-loops
〈b, σ〉 → false
〈while b do c, σ〉 → σ
〈b, σ〉 → true 〈c, σ〉 → σ′′ 〈while b do c, σ′′〉 → σ′

〈while b do c, σ〉 → σ′

Big Step Semantics

To see the semantics just defined is a big step semantics, consider the
following program:

Factorial ≡ Y := 1;
while X > 1 do
{Y := Y × X; X := X − 1};

Z := Y

Let σ be a state with σ(X) = 3, what is the state σ′ such that
〈Factorial, σ〉 → σ′ ? Construct the derivation tree.

Equivalence of Commands

Definition
c0 ∼ c1 iff ∀σ, σ′ ∈ Σ. 〈c0, σ〉 → σ′ ⇔ 〈c1, σ〉 → σ′

Let w ≡ while b do c with b ∈ Bexp and c ∈ Com. Then

w ∼ if b then c; w else skip.

Proof
Show that 〈w, σ〉 → σ′ iff 〈if b then c; w else skip, σ〉 → σ′ for all
states σ, σ′. Inspecting the rules with matching conclusions.

Equivalence of Commands

Definition
c0 ∼ c1 iff ∀σ, σ′ ∈ Σ. 〈c0, σ〉 → σ′ ⇔ 〈c1, σ〉 → σ′

Let w ≡ while b do c with b ∈ Bexp and c ∈ Com. Then

w ∼ if b then c; w else skip.

Proof
Show that 〈w, σ〉 → σ′ iff 〈if b then c; w else skip, σ〉 → σ′ for all
states σ, σ′. Inspecting the rules with matching conclusions.

Equivalence of Commands

Definition
c0 ∼ c1 iff ∀σ, σ′ ∈ Σ. 〈c0, σ〉 → σ′ ⇔ 〈c1, σ〉 → σ′

Let w ≡ while b do c with b ∈ Bexp and c ∈ Com. Then

w ∼ if b then c; w else skip.

Proof
Show that 〈w, σ〉 → σ′ iff 〈if b then c; w else skip, σ〉 → σ′ for all
states σ, σ′. Inspecting the rules with matching conclusions.

Small Step Semantics

For example,

〈a0, σ〉 →1 〈a′0, σ〉
〈a0 + a1, σ〉 →1 〈a′0 + a1, σ〉

〈a1, σ〉 →1 〈a′1, σ〉
〈n + a1, σ〉 →1 〈n + a′1, σ〉

〈n + m, σ〉 →1 〈p, σ〉 p is the sume of n and m

〈X := 5; Y := 1, σ〉 →1 〈Y := 1, σ[5/X]〉 →1 σ[5/X][1/Y]

Principles of Induction

Mathematical Induction

The principle of mathematical induction: Let P(n) be a property of
the natural number n. To show P(n) holds for all natural numbers n it
is sufficient to show

• P(n) is true
• If P(m) is true then so is P(m + 1) for any natural number m.

i.e. (P(0) & (∀m ∈ ω. P(m)⇒ P(m + 1)))⇒ ∀n ∈ ω. P(n) where
• P(0) is the induction basis
• P(m) the induction hypothesis
• (∀m ∈ ω. P(m)⇒ P(m + 1)) the induction step.

Mathematical Induction

The principle of mathematical induction: Let P(n) be a property of
the natural number n. To show P(n) holds for all natural numbers n it
is sufficient to show

• P(n) is true
• If P(m) is true then so is P(m + 1) for any natural number m.

i.e. (P(0) & (∀m ∈ ω. P(m)⇒ P(m + 1)))⇒ ∀n ∈ ω. P(n) where
• P(0) is the induction basis
• P(m) the induction hypothesis
• (∀m ∈ ω. P(m)⇒ P(m + 1)) the induction step.

Course-of-Values Induction

If a property Q’s truth at m + 1 depends on not just its truth at m but
also its truth at other numbers preceding m as well, we strengthen the
induction hypothesis to be ∀k < m. Q(k). Then

• the basis: ∀k < 0. Q(k): vacuously true.
• the induction step:
∀m ∈ ω. ((∀k < m. Q(k))⇒ (∀k < m + 1. Q(k))) equivalent to
∀m ∈ ω. (∀k < m. Q(k))⇒ Q(m)

So as a special form of mathematical induction is course-of-values
induction: (∀m ∈ ω. (∀k < m. Q(k))⇒ Q(m))⇒ ∀n ∈ ω. Q(n).

Course-of-Values Induction

If a property Q’s truth at m + 1 depends on not just its truth at m but
also its truth at other numbers preceding m as well, we strengthen the
induction hypothesis to be ∀k < m. Q(k). Then

• the basis: ∀k < 0. Q(k): vacuously true.
• the induction step:
∀m ∈ ω. ((∀k < m. Q(k))⇒ (∀k < m + 1. Q(k))) equivalent to
∀m ∈ ω. (∀k < m. Q(k))⇒ Q(m)

So as a special form of mathematical induction is course-of-values
induction: (∀m ∈ ω. (∀k < m. Q(k))⇒ Q(m))⇒ ∀n ∈ ω. Q(n).

Structural Induction

Let P(a) be a property of arithmetic expression a. To show P(a) holds
for all arithmetic expressions a it is sufficient to show:

• For all numerals m, P(m) holds.
• For all locations X , P(X) holds.
• For all arithmetic expressions a0 and a1, if P(a0) and P(a1) hold

then so does P(a0 + a1).
• Similarly with P(a0 − a1) and P(a0 × a1).

Structural Induction: an Example
For all arithmetic expressions a, states σ and numbers m,m′,

〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′

Proof
By structural induction on arithmetic expressions a using induction
hypothesis P(a) where
P(a) iff ∀σ,m,m′. (〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′)

• a ≡ n: since there is only one rule for evaluating 〈n, σ〉, trivial.
• a ≡ a0 + a1: Again one rule for evaluating 〈a0 + a1, σ〉. So

〈a0, σ〉 → m0 and 〈a1, σ〉 → m1 with m = m0 + m1

〈a0, σ〉 → m′0 and 〈a1, σ〉 → m′1 with m′ = m′0 + m′1

By induction hypothesis applied to a0, a1 we obtain m0 = m′0
and m1 = m′1. Thus m = m′.

• The remaining cases are similar.

Structural Induction: an Example
For all arithmetic expressions a, states σ and numbers m,m′,

〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′

Proof
By structural induction on arithmetic expressions a using induction
hypothesis P(a) where
P(a) iff ∀σ,m,m′. (〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′)

• a ≡ n: since there is only one rule for evaluating 〈n, σ〉, trivial.
• a ≡ a0 + a1: Again one rule for evaluating 〈a0 + a1, σ〉. So

〈a0, σ〉 → m0 and 〈a1, σ〉 → m1 with m = m0 + m1

〈a0, σ〉 → m′0 and 〈a1, σ〉 → m′1 with m′ = m′0 + m′1

By induction hypothesis applied to a0, a1 we obtain m0 = m′0
and m1 = m′1. Thus m = m′.

• The remaining cases are similar.

Structural Induction: an Example
For all arithmetic expressions a, states σ and numbers m,m′,

〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′

Proof
By structural induction on arithmetic expressions a using induction
hypothesis P(a) where
P(a) iff ∀σ,m,m′. (〈a, σ〉 → m & 〈a, σ〉 → m′ ⇒ m = m′)

• a ≡ n: since there is only one rule for evaluating 〈n, σ〉, trivial.
• a ≡ a0 + a1: Again one rule for evaluating 〈a0 + a1, σ〉. So

〈a0, σ〉 → m0 and 〈a1, σ〉 → m1 with m = m0 + m1

〈a0, σ〉 → m′0 and 〈a1, σ〉 → m′1 with m′ = m′0 + m′1

By induction hypothesis applied to a0, a1 we obtain m0 = m′0
and m1 = m′1. Thus m = m′.

• The remaining cases are similar.

Well-Founded Relation

A well-founded relation is a binary relation ≺ on a set A such that
there are no infinite descending chains

· · · ≺ ai ≺ · · · ≺ a1 ≺ a0

. If a ≺ b then a is a predecessor of b.

Well-Founded Relation
Proposition
The relation ≺ on set A is well-founded iff any nonempty subset Q of
A has a minimal element, i.e. an element m with

m ∈ Q & ∀b ≺ m.b 6∈ Q

Proof
(⇐) Suppose every nonempty subset of A has a minimal element, but
there is an infinite chain · · · ≺ a1 ≺ a0. The set {ai | i ∈ ω} would
have no minimal element, a contradiction.

(⇒) Take any element a0 from Q. Inductively, assume a chain
an ≺ · · · ≺ a0 has been constructed inside Q. If there is b ≺ an with
b ∈ Q, take an+1 = b, otherwise stop the construction. As ≺ is
well-founded, the chain is finite whose least element is minimal in Q.

Well-Founded Relation
Proposition
The relation ≺ on set A is well-founded iff any nonempty subset Q of
A has a minimal element, i.e. an element m with

m ∈ Q & ∀b ≺ m.b 6∈ Q

Proof
(⇐) Suppose every nonempty subset of A has a minimal element, but
there is an infinite chain · · · ≺ a1 ≺ a0. The set {ai | i ∈ ω} would
have no minimal element, a contradiction.

(⇒) Take any element a0 from Q. Inductively, assume a chain
an ≺ · · · ≺ a0 has been constructed inside Q. If there is b ≺ an with
b ∈ Q, take an+1 = b, otherwise stop the construction. As ≺ is
well-founded, the chain is finite whose least element is minimal in Q.

Well-Founded Relation
Proposition
The relation ≺ on set A is well-founded iff any nonempty subset Q of
A has a minimal element, i.e. an element m with

m ∈ Q & ∀b ≺ m.b 6∈ Q

Proof
(⇐) Suppose every nonempty subset of A has a minimal element, but
there is an infinite chain · · · ≺ a1 ≺ a0. The set {ai | i ∈ ω} would
have no minimal element, a contradiction.

(⇒) Take any element a0 from Q. Inductively, assume a chain
an ≺ · · · ≺ a0 has been constructed inside Q. If there is b ≺ an with
b ∈ Q, take an+1 = b, otherwise stop the construction. As ≺ is
well-founded, the chain is finite whose least element is minimal in Q.

Principle of Well-Founded Induction

Proposition
Let ≺ be well founded on set A, and P be a property. Then

∀a.P(a) iff ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a))

Proof
(⇒) Trivial.

(⇐) Suppose ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a)) but ¬P(a) for some
a ∈ A. The set {a ∈ A | ¬P(a)} has a minimal element m. Then
∀b ≺ m.P(b) but ¬P(m), contradicting the assumption.

In mathematics this principle is called Noetherian induction after the
German algebraist Emmy Noether.

Principle of Well-Founded Induction

Proposition
Let ≺ be well founded on set A, and P be a property. Then

∀a.P(a) iff ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a))

Proof
(⇒) Trivial.

(⇐) Suppose ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a)) but ¬P(a) for some
a ∈ A. The set {a ∈ A | ¬P(a)} has a minimal element m. Then
∀b ≺ m.P(b) but ¬P(m), contradicting the assumption.

In mathematics this principle is called Noetherian induction after the
German algebraist Emmy Noether.

Principle of Well-Founded Induction

Proposition
Let ≺ be well founded on set A, and P be a property. Then

∀a.P(a) iff ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a))

Proof
(⇒) Trivial.

(⇐) Suppose ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a)) but ¬P(a) for some
a ∈ A. The set {a ∈ A | ¬P(a)} has a minimal element m. Then
∀b ≺ m.P(b) but ¬P(m), contradicting the assumption.

In mathematics this principle is called Noetherian induction after the
German algebraist Emmy Noether.

Principle of Well-Founded Induction

Proposition
Let ≺ be well founded on set A, and P be a property. Then

∀a.P(a) iff ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a))

Proof
(⇒) Trivial.

(⇐) Suppose ∀a ∈ A.((∀b ≺ a. P(b))⇒ P(a)) but ¬P(a) for some
a ∈ A. The set {a ∈ A | ¬P(a)} has a minimal element m. Then
∀b ≺ m.P(b) but ¬P(m), contradicting the assumption.

In mathematics this principle is called Noetherian induction after the
German algebraist Emmy Noether.

Principle of Well-Founded Induction

The proposition provides an alternative to proofs by well-founded
induction.

To show property P holds for every element in a well-founded set A, it
is sufficient to show the subset of counterexamples {a ∈ A | ¬P(a)} is
empty.

Suppose it is nonempty, there is a minimal element m contradicting
the assumption (∀b ≺ m.P(b))⇒ P(m).

An Example

Euclid’s algorithm for the greatest common divisor of M,N .
Euclid ≡ while ¬(M = N) do

if M ≤ N then N := N −M else M := M − N

An Example

Theorem
For all states σ, σ(M) ≥ 1 & σ(N) ≥ 1⇒ ∃σ′. 〈Euclid, σ〉 → σ′.

Proof
Let S = {σ ∈ Σ | σ(M) ≥ 1 & σ(N) ≥ 1} and ≺ by

σ′ ≺ σ iff (σ′(M) ≤ σ(M) & σ′(N) ≤ σ(N)) &
¬(σ′(M) = σ(M) & σ′(N) = σ(N)).

Then ≺ is well-founded. Let P(σ) = ∃σ′.〈Euclid, σ〉 → σ′. Suppose
∀σ′ ≺ σ.P(σ′), we show P(σ) with two cases:

I. σ(M) = σ(N) and II. σ(M) 6= σ(N)

Argue in both cases that 〈Euclid, σ〉 → σ′ for some σ′. Then conclude
∀σ ∈ S.P(σ) by well-founded induction.

An Example

Theorem
For all states σ, σ(M) ≥ 1 & σ(N) ≥ 1⇒ ∃σ′. 〈Euclid, σ〉 → σ′.

Proof
Let S = {σ ∈ Σ | σ(M) ≥ 1 & σ(N) ≥ 1} and ≺ by

σ′ ≺ σ iff (σ′(M) ≤ σ(M) & σ′(N) ≤ σ(N)) &
¬(σ′(M) = σ(M) & σ′(N) = σ(N)).

Then ≺ is well-founded. Let P(σ) = ∃σ′.〈Euclid, σ〉 → σ′. Suppose
∀σ′ ≺ σ.P(σ′), we show P(σ) with two cases:

I. σ(M) = σ(N) and II. σ(M) 6= σ(N)

Argue in both cases that 〈Euclid, σ〉 → σ′ for some σ′. Then conclude
∀σ ∈ S.P(σ) by well-founded induction.

An Example

Theorem
For all states σ, σ(M) ≥ 1 & σ(N) ≥ 1⇒ ∃σ′. 〈Euclid, σ〉 → σ′.

Proof
Let S = {σ ∈ Σ | σ(M) ≥ 1 & σ(N) ≥ 1} and ≺ by

σ′ ≺ σ iff (σ′(M) ≤ σ(M) & σ′(N) ≤ σ(N)) &
¬(σ′(M) = σ(M) & σ′(N) = σ(N)).

Then ≺ is well-founded. Let P(σ) = ∃σ′.〈Euclid, σ〉 → σ′. Suppose
∀σ′ ≺ σ.P(σ′), we show P(σ) with two cases:

I. σ(M) = σ(N) and II. σ(M) 6= σ(N)

Argue in both cases that 〈Euclid, σ〉 → σ′ for some σ′. Then conclude
∀σ ∈ S.P(σ) by well-founded induction.

An Example

Theorem
For all states σ, σ(M) ≥ 1 & σ(N) ≥ 1⇒ ∃σ′. 〈Euclid, σ〉 → σ′.

Proof
Let S = {σ ∈ Σ | σ(M) ≥ 1 & σ(N) ≥ 1} and ≺ by

σ′ ≺ σ iff (σ′(M) ≤ σ(M) & σ′(N) ≤ σ(N)) &
¬(σ′(M) = σ(M) & σ′(N) = σ(N)).

Then ≺ is well-founded. Let P(σ) = ∃σ′.〈Euclid, σ〉 → σ′. Suppose
∀σ′ ≺ σ.P(σ′), we show P(σ) with two cases:

I. σ(M) = σ(N) and II. σ(M) 6= σ(N)

Argue in both cases that 〈Euclid, σ〉 → σ′ for some σ′. Then conclude
∀σ ∈ S.P(σ) by well-founded induction.

An Example

Theorem
For all states σ, σ(M) ≥ 1 & σ(N) ≥ 1⇒ ∃σ′. 〈Euclid, σ〉 → σ′.

Proof
Let S = {σ ∈ Σ | σ(M) ≥ 1 & σ(N) ≥ 1} and ≺ by

σ′ ≺ σ iff (σ′(M) ≤ σ(M) & σ′(N) ≤ σ(N)) &
¬(σ′(M) = σ(M) & σ′(N) = σ(N)).

Then ≺ is well-founded. Let P(σ) = ∃σ′.〈Euclid, σ〉 → σ′. Suppose
∀σ′ ≺ σ.P(σ′), we show P(σ) with two cases:

I. σ(M) = σ(N) and II. σ(M) 6= σ(N)

Argue in both cases that 〈Euclid, σ〉 → σ′ for some σ′. Then conclude
∀σ ∈ S.P(σ) by well-founded induction.

Induction on Derivations
A rule instance is a pair X/y with premises X and conclusion y.
Usually we write X/y as

y
if X = ∅, and

x1, · · · , xn

y
if X = {x1, · · · , xn}

Let R be a set of rule instances. An R-derivation of y is either a rule
instance ∅/y or a pair {d1, · · · , dn}/y where {x1, · · · , xn}/y is a rule
instance and di an R-derivation of xi for all 1 ≤ i ≤ n.

Write d
R y to mean d is an R-derivation of y.

• (∅/y)
R y if (∅/y) ∈ R
• ({d1, · · · , dn}/y)
R y if ({x1, · · · , xn}/y) ∈ R and

d1
R x1, . . . , dn
R xn

Induction on Derivations
A rule instance is a pair X/y with premises X and conclusion y.
Usually we write X/y as

y
if X = ∅, and

x1, · · · , xn

y
if X = {x1, · · · , xn}

Let R be a set of rule instances. An R-derivation of y is either a rule
instance ∅/y or a pair {d1, · · · , dn}/y where {x1, · · · , xn}/y is a rule
instance and di an R-derivation of xi for all 1 ≤ i ≤ n.

Write d
R y to mean d is an R-derivation of y.
• (∅/y)
R y if (∅/y) ∈ R
• ({d1, · · · , dn}/y)
R y if ({x1, · · · , xn}/y) ∈ R and

d1
R x1, . . . , dn
R xn

Induction on Derivations

A derivation d′ is an immediate subderivation of d, written d′ ≺1 d,
iff d has the form D/y with d′ ∈ D.

Let ≺ be the transitive closure of ≺1 (≺+
1). We say d′ is a proper

subderivation of d iff d′ ≺ d.

Since derivations are finite, both ≺1 and ≺ are well-founded.

Induction on Derivations

Theorem
Let c be a command and σ0 a state. If 〈c, σ0〉 → σ and 〈c, σ0〉 → σ′,
then σ = σ1.
Proof
By well-founded induction on the proper subderivation relation ≺.
For any derivation d, let P(d) be the following property

∀c ∈ Com, σ0, σ, σ1 ∈ Σ.d
 〈c, σ0〉 → σ & 〈c, σ0〉 → σ1 ⇒ σ = σ1

Show that ∀d′ ≺ d.P(d′) implies P(d) by inspecting the structure of c.

Induction on Derivations
Proposition

∀c ∈ Com, σ, σ′ ∈ Σ. 〈while true do c, σ〉 6→ σ′

Proof
Abbreviate w ≡ while true do c. Suppose the set
{d | ∃σ, σ′ ∈ Σ. d
 〈w, σ〉 → σ′} is nonempty. There is a minimal
derivation d in the form

...

〈true, σ〉 → true

...

〈c, σ〉 → σ′′

...

〈w, σ′′〉 → σ′

〈w, σ〉 → σ′

But this contains a proper subderivation d′
 〈w, σ′′〉 → σ′,
contradicting the minimality of d.

Definition by Induction

Definition by well-founded induction, also called well-founded
recursion, e.g.

size(a) =


1 if a ≡ n or X
1 + size(a0) + size(a1) if a = a0 + a1,
...

The Denotational Semantics of IMP

Motivation

Operational semantics is too concrete, built out of syntax, is hard to
compare two programs written in different programming languages.

e.g.
c0 ∼ c1 iff (∀σ, σ′. 〈c0, σ〉 → σ′)⇔ 〈c1, σ〉 → σ′

iff
{(σ, σ′) | 〈c0, σ〉 → σ′} = {(σ, σ′) | 〈c1, σ〉 → σ′}

i.e. c0 and c1 determine the same partial function on states.

So we take the denotation of a command to be a partial function on
states.

Denotations of Aexp

Define the semantic function A : Aexp→ (Σ→ N)

A[[n]] = {(σ, n) | σ ∈ Σ}
A[[X]] = {(σ, σ(X)) | σ ∈ Σ}

A[[a0 + a1]] = {(σ, n0 + n1) | (σ, n0) ∈ A[[a0]] & (σ, n1) ∈ A[[a1]]}
A[[a0 − a1]] = {(σ, n0 − n1) | (σ, n0) ∈ A[[a0]] & (σ, n1) ∈ A[[a1]]}
A[[a0 × a1]] = {(σ, n0 × n1) | (σ, n0) ∈ A[[a0]] & (σ, n1) ∈ A[[a1]]}

The “+" on the left-hand side represents syntactic sign in IMP
whereas the sign on the right represents sum on numbers. Similarly
for “−", “×".

Denotations of Aexp

The denotation of arithmetic expressions are actually total functions.
Using λ-notation,

A[[n]] = λσ ∈ Σ. n
A[[X]] = λσ ∈ Σ. σ(X)

A[[a0 + a1]] = λσ ∈ Σ. (A[[a0]]σ +A[[a1]]σ)
A[[a0 − a1]] = λσ ∈ Σ. (A[[a0]]σ −A[[a1]]σ)
A[[a0 × a1]] = λσ ∈ Σ. (A[[a0]]σ ×A[[a1]]σ)

Denotations of Bexp

Define the semantic function B : Bexp→ (Σ→ T)

B[[true]] = {(σ, true) | σ ∈ Σ}
B[[false]] = {(σ, false) | σ ∈ Σ}

B[[a0 = a1]] = {(σ, true) | σ ∈ Σ & A[[a0]]σ = A[[a1]]σ}∪
{(σ, false) | σ ∈ Σ & A[[a0]]σ 6= A[[a1]]σ}∪

B[[¬b]] = {(σ,¬T t) | σ ∈ Σ & (σ, t) ∈ B[[b]]}
B[[b0 ∧ b1]] = {(σ, t0 ∧T t1) | σ ∈ Σ & (σ, t0) ∈ B[[b0]] &

(σ, t1) ∈ B[[b1]]}
· · ·

The sign “∧T " is the conjunction operation on truth values.

Denotations of Com

Define the compositional semantic function C : Aexp→ (Σ ⇀ Σ)

C[[skip]] = {(σ, σ) | σ ∈ Σ}
C[[X := a]] = {(σ, σ[n/X]) | σ ∈ Σ & n = A[[a]]σ}
C[[c0; c1]] = C[[c1]] ◦ C[[c0]]

C[[if b then c0 else c1]] = {(σ, σ′) | B[[b]]σ = true & (σ, σ′) ∈ C[[c0]]}
∪{(σ, σ′) | B[[b]]σ = false & (σ, σ′) ∈ C[[c1]]}

C[[while b do c]] = fix(Γ)

where

Γ(ϕ) = {(σ, σ′) | B[[b]]σ = true & (σ, σ′) ∈ ϕ ◦ C[[c]]} ∪
{(σ, σ) | B[[b]]σ = false}

Denotation of while -Loops

Let w ≡ while b do c. Inspired by the equivalence
w ∼ if b then c; w else skip. We should have

C[[w]] = {(σ, σ′) | B[[b]]σ = true & (σ, σ′) ∈ C[[c; w]]} ∪
{(σ, σ) | B[[b]]σ = false}

Equivalence of the Semantics

Lemma
For all a ∈ Aexp, A[[a]] = {(σ, n) | 〈a, σ〉 → n}.

Proof
Define the property P by P(a) =def A[[a]] = {(σ, n) | 〈a, σ〉 → n} and
proceed by structural induction on arithmetic expressions.

Lemma
For all b ∈ Bexp, B[[b]] = {(σ, t) | 〈b, σ〉 → t}.

Equivalence of the Semantics

Lemma
For all a ∈ Aexp, A[[a]] = {(σ, n) | 〈a, σ〉 → n}.

Proof
Define the property P by P(a) =def A[[a]] = {(σ, n) | 〈a, σ〉 → n} and
proceed by structural induction on arithmetic expressions.

Lemma
For all b ∈ Bexp, B[[b]] = {(σ, t) | 〈b, σ〉 → t}.

Equivalence of the Semantics

Lemma
For all a ∈ Aexp, A[[a]] = {(σ, n) | 〈a, σ〉 → n}.

Proof
Define the property P by P(a) =def A[[a]] = {(σ, n) | 〈a, σ〉 → n} and
proceed by structural induction on arithmetic expressions.

Lemma
For all b ∈ Bexp, B[[b]] = {(σ, t) | 〈b, σ〉 → t}.

Equivalence of the Semantics

Lemma
For all commands c and states σ, σ′, 〈c, σ〉 → σ′ ⇒ (σ, σ′) ∈ C[[c]].

Proof
Let P(c, σ, σ′) =def (σ, σ′) ∈ C[[c]]. Use rule induction for commands.

Equivalence of the Semantics

Lemma
For all commands c and states σ, σ′, 〈c, σ〉 → σ′ ⇒ (σ, σ′) ∈ C[[c]].

Proof
Let P(c, σ, σ′) =def (σ, σ′) ∈ C[[c]]. Use rule induction for commands.

Equivalence of the Semantics

Theorem
For all commands c, C[[c]] = {(σ, σ′) | 〈c, σ〉 → σ′}.

The Axiomatic Semantics of IMP

The Idea

Assertions in programs.

S := 0; N := 1
{S = 0 & N = 1}
while ¬(N = 101) do S := S + N ; N := N + 1
{S =

∑
1≤m≤100 m}

Partial Correctness

Let A,B be assertions like those in Bexp, and c a command. We write

{A}c{B}

to mean: for all states σ which satisfy A (precondition) if the
execution c from state σ terminates in state σ′ then σ′ satisfies B
(postcondition).

{true}while true do skip{false}

In contrast to total correctness assertions [A]c[B] — the execution of c
from any state which satisfies A will terminate in a state which
satisfies B.

Partial Correctness

Let A,B be assertions like those in Bexp, and c a command. We write

{A}c{B}

to mean: for all states σ which satisfy A (precondition) if the
execution c from state σ terminates in state σ′ then σ′ satisfies B
(postcondition).

{true}while true do skip{false}

In contrast to total correctness assertions [A]c[B] — the execution of c
from any state which satisfies A will terminate in a state which
satisfies B.

Partial Correctness

Let A,B be assertions like those in Bexp, and c a command. We write

{A}c{B}

to mean: for all states σ which satisfy A (precondition) if the
execution c from state σ terminates in state σ′ then σ′ satisfies B
(postcondition).

{true}while true do skip{false}

In contrast to total correctness assertions [A]c[B] — the execution of c
from any state which satisfies A will terminate in a state which
satisfies B.

Partial Correctness

Consider C[[c]] as a total function in (Σ→ Σ⊥) instead of partial
function in (Σ ⇀ Σ).

Write σ |= A to mean the state σ satisfies assertion A. Let ⊥ |= A for
any A. Then the meaning of {A}c{B} will be

∀σ ∈ Σ. σ |= A⇒ C[[c]]σ |= B.

Partial Correctness

Consider C[[c]] as a total function in (Σ→ Σ⊥) instead of partial
function in (Σ ⇀ Σ).

Write σ |= A to mean the state σ satisfies assertion A. Let ⊥ |= A for
any A. Then the meaning of {A}c{B} will be

∀σ ∈ Σ. σ |= A⇒ C[[c]]σ |= B.

The Assertion Language Assn

Let i range over integer variables, Intvar. Extending Aexp with
integer variables to be Aexpv:

a ::= n | X | i | a0 + a1 | a0 − a1 | a0 × a1

Extending Bexp to be Assn:

A ::= true | false | a0 = a1 | a0 ≤ a1 | A0 ∧ A1 |
A0 ∨ A1 | ¬A | A0 ⇒ A1 | ∀i.A | ∃i.A

Free Integer Variables

Define free integer variables in Aexpv or Assn expressions by
structural induction.

FV(n) = FV(X) = ∅
FV(i) = {i}
FV(a0 + a1) = FV(a0 − a1) = FV(a0 × a1) = FV(a0) ∪ FV(a1)

FV(true) = FV(false) = ∅
FV(a0 = a1) = FV(a0 ≤ a1) = FV(a0) ∪ FV(a1)
FV(A0 ∧ A1) = FV(A0 ∨ A1) = FV(A0 ⇒ A1) = FV(A0) ∪ FV(A1)
FV(¬A) = FV(A)
FV(∀i.A) = FV(∃i.A) = FV(A)\{i}

Substitution

Define substitution for Aexpv or Assn expressions by structural
induction.

n[a/i] ≡ n X[a/i] ≡ X
j[a/i] ≡ j i[a/i] ≡ a
(a0 + a1)[a/i] ≡ (a0[a/i] + a1[a/i])
· · ·
true[a/i] ≡ true false[a/i] ≡ false
(a0 = a1)[a/i] ≡ (a0[a/i] = a1[a/i])
(A0 ∧ A1)[a/i] ≡ (A0[a/i] ∧ A1[a/i])
(¬A)[a/i] ≡ ¬(A[a/i])
(∀j.A)[a/i] ≡ ∀j.(A[a/i]) (∀i.A)[a/i] ≡ ∀i.A
(∃j.A)[a/i] ≡ ∃j.(A[a/i]) (∃i.A)[a/i] ≡ ∃i.A

The Meaning of Expressions, Aexpv

An interpretation is a function I : Intvar→ N assigning an integer to
each integer variable. The value of an expression a ∈ Aexpv in an
interpretation I and state σ is written Av[[a]]Iσ or (Av[[a]](I))(σ).

Av[[n]]Iσ = n
Av[[X]]Iσ = σ(X)
Av[[i]]Iσ = I(i)
Av[[a0 + a1]]Iσ = Av[[a0]]Iσ +Av[[a1]]Iσ
Av[[a0 − a1]]Iσ = Av[[a0]]Iσ −Av[[a1]]Iσ
Av[[a0 × a1]]Iσ = Av[[a0]]Iσ ×Av[[a1]]Iσ

The Meaning of Assertions, Assn

Write I[n/i] for the interpretation given by I[n/i](j) = n if j ≡ i, and
I(j) otherwise.
For A ∈ Assn, write σ |=I A to mean σ satisfies A in interpretation I .

σ |=I true
σ |=I (a0 = a1) if Av[[a0]]Iσ = Av[[a1]]Iσ
σ |=I A ∧ B if σ |=I A and σ |=I B
σ |=I A⇒ B if σ 6|=I A or σ |=I B
σ |=I ∀i.A if σ |=I[n/i] A for all n ∈ N
σ |=I ∃i.A if σ |=I[n/i] A for some n ∈ N
⊥ |=I A
· · ·

Partial Correctness Assertions

Write AI = {σ ∈ Σ⊥ | σ |=I A}.

• σ |=I {A}c{B} iff (σ |=I A⇒ C[[c]]σ |=I B).

• |=I {A}c{B} iff ∀σ ∈ Σ⊥. σ |=I {A}c{B}

• Validity: |= {A}c{B} iff
σ |=I {A}c{B} for all interpretations I and states σ

• Similarly, A is valid, |= A, means σ |=I A for all interpretations I
and states σ.

Proof Rules for Partial Correctness
The proof rules are called Hoare rules and the proof system Hoare
logic.

{A} skip {A}

{B[a/X]} X := a {B}

{A}c0{C} {C}c1{B}
{A} c0; c1 {B}

{A ∧ b}c0{B} {A ∧ ¬b}c1{B}
{A} if b then c0 else c1 {B}

{A ∧ b}c{A}
{A} while b do c {A ∧ ¬b}

|= (A⇒ A′) {A′}c{B′} |= (B′ ⇒ B)

{A} c {B}

Soundness of the Proof System
A rule is sound in the sense that if the rule’s premise is valid then so is
its conclusion. The proof system is sound if every rule is sound. Then
by rule induction, every theorem obtained from the proof system is a
valid partial correctness assertion.

Lemma
Let I be an interpretation, σ a state, and X ∈ Loc.

• Let a, a0 ∈ Aexpv. Then

Av[[a0[a/X]]]Iσ = Av[[a0]]Iσ[Av[[a]]Iσ/X]

• Let B ∈ Assn. Then

σ |=I B[a/X] iff σ[A[[a]]σ/X] |=I B
Proof
By structural induction on a0 and B respectively.

Soundness of the Proof System
A rule is sound in the sense that if the rule’s premise is valid then so is
its conclusion. The proof system is sound if every rule is sound. Then
by rule induction, every theorem obtained from the proof system is a
valid partial correctness assertion.

Lemma
Let I be an interpretation, σ a state, and X ∈ Loc.

• Let a, a0 ∈ Aexpv. Then

Av[[a0[a/X]]]Iσ = Av[[a0]]Iσ[Av[[a]]Iσ/X]

• Let B ∈ Assn. Then

σ |=I B[a/X] iff σ[A[[a]]σ/X] |=I B

Proof
By structural induction on a0 and B respectively.

Soundness of the Proof System
A rule is sound in the sense that if the rule’s premise is valid then so is
its conclusion. The proof system is sound if every rule is sound. Then
by rule induction, every theorem obtained from the proof system is a
valid partial correctness assertion.

Lemma
Let I be an interpretation, σ a state, and X ∈ Loc.

• Let a, a0 ∈ Aexpv. Then

Av[[a0[a/X]]]Iσ = Av[[a0]]Iσ[Av[[a]]Iσ/X]

• Let B ∈ Assn. Then

σ |=I B[a/X] iff σ[A[[a]]σ/X] |=I B
Proof
By structural induction on a0 and B respectively.

Soundness of the Proof System

Theorem
Let {A}c{B} be a partial correctness assertion. If ` {A}c{B} then
|= {A}c{B}.

Using the Hoare Rules

Let w ≡ (while X > 0 do Y := X × Y ; X := X − 1), and show

{X = n & n ≥ 0 & Y = 1}w{Y = n!}

Take I ≡ (Y × X! = n! & X ≥ 0), then

{I ∧ X > 0}Y := X × Y ; X := X − 1{I}

and so {I}w{I ∧ X 6> 0}.

Note X = n & n ≥ 0 & Y = 1⇒ I and I ∧ X 6> 0⇒ Y = n!

Report

Rep8. Semantics and Key Properties of CCS. (Maximal 3 Students)

Rep9. Semantics and Key Properties of CSP. (Maximal 3 Students)

	Basic Set Theory

