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Homework is MUCH MORE IMPORTANT than report!
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* simple type of lambda calculus



Theoretical Computer Sciences




Propositional Logic



Propositional Logic

Syntax and semantics



Propositional Logic

Syntax and semantics

Satisfiability and validity



Propositional Logic

Syntax and semantics
Satisfiability and validity

Normal form



Propositional Logic

Syntax and semantics
Satisfiability and validity

Normal form

* Tseitin’s Encoding



Propositional Logic

Syntax and semantics
Satisfiability and validity
Normal form

* Tseitin’s Encoding

Proof system

e Natural deduction

* Sequent calculus
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Georg Cantor’s Diagonal Argument
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Preorder and partial order

» preorder: reflexivity, transitivity

* partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem
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Infinite automata: Biichi automata
Pushdown automata and pushdown systems
Computation on automata

Pumping lemma

Antichain
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Proof Theory

Mathematical induction

Course-of-values induction

Structural induction

Well-founded induction, or Noetherian induction
Induction on derivations

Definition by induction
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Slogan

Program Analysis = Abstract Interpretation + Model Checking



Abstraction Interpretation

Specify an analysis in terms of the following data:

@ Preset D (abstract domain).

@® Monotone function F (abstract transfer function).
©® Widening operator V (unless D is finite).

@ Narrowing operator A (optional).

©® Galois connection from C (concrete domain) to D.

@ Soundness of F wrt. E (concrete transfer function).

Then, the analysis terminates and is correct (sound).



Abstraction Interpretation

Patrick Cousot awarded John von
Neumann Medal

Patrick Cousot is the recipient of the IEEE John von Neumann medal, given “for outstanding
achievements in computer-related science and technology". The medal citation states that he is
being recognized “for introducing abstract interpretation, a powerful framewaork for automatically
calculating program properties with broad application to verification and optimization."
Congratulations!



Model Checking: Model

* Kripke structure: M = (S, So, R, L) ‘
» S, finite set of state a
e So C S, initial state / \
* R C S x §, transition relations @%@

o L:S — 24P gtatus label function

* A, finite set of input alphabet
* Q, finite set of control location
* Qo C Q, initial control locations

* F C Q, final control locations %
be

(AP: atomic propositions)
* Finite automata: A = (3, Q, Qo, F, 0) é
‘(ah
* § C O x X x Q, transitions @ e \©



Model Checking: Temporal Logic

» Next
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CTL Vs. LTL

* CTL: temporal operators must be immediately followed by path
quantifiers.

* e.g., AFp, EGp, AXEGp, EXA(pU)
» LTL: path quantifiers are allowed only at the outermost position.
* e.g., AGFp, EX(oU%),A(Fp V GY)

» Except for fairness, most properties are expressed in CTL N LTL.
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Decidability of CTL and LTL

CTL: Polynomial algorithms

LTL: PSPACE complete
* by tableau
* by Biichi automata: on-the-fly model checking
* by SAT: bounded model checking
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What We Did Not and Should Learn?

Symbolic model checking: ordered binary decision diagram (OBDD)
partial reduction: Spin

on-the-fly model checking

bounded model checking

counter-example guided abstract refinement (CEGAR)

Craig interpolation

antichain

Timed automata, well-structured transition systems (WSTS)



Program Semantics

operational semantics
denotational semantics

axiomatic semantics
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What We Did Not and Should Learn?

Hoare logic, separation logic
Domain theory

Category theory basics
Recursion theory

Godel incompleteness



Functional Programming Languages




Lambda Calculus and Types

Lambda calculus syntax

5 reduction and 7 reduction

Full -reduction, normal order strategy, call by name, call by value
Programming in Lambda calculus

Church-Rosser Property

De Bruijn representation of Lambda calculus

Simple types of Lambda calculus

Progress and preservation



What We Did Not and Should Learn?

How to program in functional programming languages, such as SML,
Ocaml, Haskell

Algorithms in functional programming languages
Structured types

Type checking and inferences

Normalization, References and Exceptions
Subtyping, recursive types

Higher order systems



