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Theoretical Computer Sciences
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Direct image, inverse image, equivalence relation, equivalence class,
transitive closure

Georg Cantor’s Diagonal Argument



Set Theory

Powerset, Indexed set, Big union, Big intersection

Product, Disjoint union, Set difference, The axiom of foundation

Binary relation, Partial function Total function

Lambda notation, composition of functions, identity function, inverse,
1− 1 correspondence

Direct image, inverse image, equivalence relation, equivalence class,
transitive closure

Georg Cantor’s Diagonal Argument



Set Theory

Powerset, Indexed set, Big union, Big intersection

Product, Disjoint union, Set difference, The axiom of foundation

Binary relation, Partial function Total function

Lambda notation, composition of functions, identity function, inverse,
1− 1 correspondence

Direct image, inverse image, equivalence relation, equivalence class,
transitive closure

Georg Cantor’s Diagonal Argument



Set Theory

Powerset, Indexed set, Big union, Big intersection

Product, Disjoint union, Set difference, The axiom of foundation

Binary relation, Partial function Total function

Lambda notation, composition of functions, identity function, inverse,
1− 1 correspondence

Direct image, inverse image, equivalence relation, equivalence class,
transitive closure

Georg Cantor’s Diagonal Argument



Set Theory

Powerset, Indexed set, Big union, Big intersection

Product, Disjoint union, Set difference, The axiom of foundation

Binary relation, Partial function Total function

Lambda notation, composition of functions, identity function, inverse,
1− 1 correspondence

Direct image, inverse image, equivalence relation, equivalence class,
transitive closure

Georg Cantor’s Diagonal Argument



Set Theory

Powerset, Indexed set, Big union, Big intersection

Product, Disjoint union, Set difference, The axiom of foundation

Binary relation, Partial function Total function

Lambda notation, composition of functions, identity function, inverse,
1− 1 correspondence

Direct image, inverse image, equivalence relation, equivalence class,
transitive closure

Georg Cantor’s Diagonal Argument



Set Theory

Powerset, Indexed set, Big union, Big intersection

Product, Disjoint union, Set difference, The axiom of foundation

Binary relation, Partial function Total function

Lambda notation, composition of functions, identity function, inverse,
1− 1 correspondence

Direct image, inverse image, equivalence relation, equivalence class,
transitive closure

Georg Cantor’s Diagonal Argument



Abstract Algebra

Preorder and partial order

• preorder: reflexivity, transitivity
• partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem



Abstract Algebra

Preorder and partial order

• preorder: reflexivity, transitivity
• partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem



Abstract Algebra

Preorder and partial order

• preorder: reflexivity, transitivity
• partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem



Abstract Algebra

Preorder and partial order

• preorder: reflexivity, transitivity
• partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem



Abstract Algebra

Preorder and partial order

• preorder: reflexivity, transitivity
• partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem



Abstract Algebra

Preorder and partial order

• preorder: reflexivity, transitivity
• partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem



Abstract Algebra

Preorder and partial order

• preorder: reflexivity, transitivity
• partial order: reflexivity, transitivity, antisymmetry

well-quasi order

Preset, poset

lub, glb

group, ring, domain, lattice, complete lattice

Tarski’s fixpoint theorem



Automata Theory

Finite automata: DFA, NFA

Infinite automata: Büchi automata

Pushdown automata and pushdown systems

Computation on automata

Pumping lemma

Antichain



Automata Theory

Finite automata: DFA, NFA

Infinite automata: Büchi automata

Pushdown automata and pushdown systems

Computation on automata

Pumping lemma

Antichain



Automata Theory

Finite automata: DFA, NFA

Infinite automata: Büchi automata

Pushdown automata and pushdown systems

Computation on automata

Pumping lemma

Antichain



Automata Theory

Finite automata: DFA, NFA

Infinite automata: Büchi automata

Pushdown automata and pushdown systems

Computation on automata

Pumping lemma

Antichain



Proof Theory

Mathematical induction

Course-of-values induction

Structural induction

Well-founded induction, or Noetherian induction

Induction on derivations

Definition by induction



Proof Theory

Mathematical induction

Course-of-values induction

Structural induction

Well-founded induction, or Noetherian induction

Induction on derivations

Definition by induction



Proof Theory

Mathematical induction

Course-of-values induction

Structural induction

Well-founded induction, or Noetherian induction

Induction on derivations

Definition by induction



Proof Theory

Mathematical induction

Course-of-values induction

Structural induction

Well-founded induction, or Noetherian induction

Induction on derivations

Definition by induction



Proof Theory

Mathematical induction

Course-of-values induction

Structural induction

Well-founded induction, or Noetherian induction

Induction on derivations

Definition by induction



Proof Theory

Mathematical induction

Course-of-values induction

Structural induction

Well-founded induction, or Noetherian induction

Induction on derivations

Definition by induction



Program Analysis



Slogan

Program Analysis = Abstract Interpretation + Model Checking



Abstraction Interpretation

Specify an analysis in terms of the following data:

1 Preset D (abstract domain).

2 Monotone function F (abstract transfer function).

3 Widening operator∇ (unless D is finite).

4 Narrowing operator ∆ (optional).

5 Galois connection from C (concrete domain) to D.

6 Soundness of F wrt. E (concrete transfer function).

Then, the analysis terminates and is correct (sound).



Abstraction Interpretation



Model Checking: Model

• Kripke structure: M = (S, S0,R,L)
• S, finite set of state
• S0 ⊆ S, initial state
• R ⊆ S × S, transition relations
• L : S → 2AP, status label function

(AP: atomic propositions)
• Finite automata: A = (Σ,Q,Q0,F, δ)

• A, finite set of input alphabet
• Q, finite set of control location
• Q0 ⊆ Q, initial control locations
• F ⊆ Q, final control locations
• δ ⊆ Q× Σ× Q, transitions

a b

b c c

1

a b

b c

b c

c

c

c

1



Model Checking: Temporal Logic

• Next

Basic Temporal Operators on Paths
• Next 

• Finally

• Globally

• Until

Note：Fψ＝true Uψ
Gψ＝¬F¬ψ

Wψ=   Uψ∨G
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CTL Vs. LTL

• CTL: temporal operators must be immediately followed by path
quantifiers.

• e.g., AFϕ,EGϕ,AXEGϕ,EXA(ϕUψ)

• LTL: path quantifiers are allowed only at the outermost position.
• e.g., AGFϕ,EX(ϕUψ),A(Fϕ ∨ Gψ)

• Except for fairness, most properties are expressed in CTL ∩ LTL.
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CTL: Polynomial algorithms

LTL: PSPACE complete
• by tableau
• by Büchi automata: on-the-fly model checking
• by SAT: bounded model checking
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Craig interpolation
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Program Semantics

operational semantics

denotational semantics

axiomatic semantics
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Functional Programming Languages



Lambda Calculus and Types

Lambda calculus syntax

β reduction and η reduction

Full β-reduction, normal order strategy, call by name, call by value

Programming in Lambda calculus

Church-Rosser Property

De Bruijn representation of Lambda calculus

Simple types of Lambda calculus

Progress and preservation



What We Did Not and Should Learn?
How to program in functional programming languages, such as SML,
Ocaml, Haskell

Algorithms in functional programming languages

Structured types

Type checking and inferences

Normalization, References and Exceptions

Subtyping, recursive types

Higher order systems


