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The probabilistic method

• The probabilistic method is a 

nonconstructive method, 

primarily used in combinatorics

and pioneered by Paul Erdős.

• For proving the existence of a

prescribed kind of mathematical

object. It works by showing that

if one randomly chooses objects

from a specified class, the

probability that the result is of

the prescribed kind is more than

zero.

Paul Erdős (26 March 1913 – 20 

September 1996) 
Hungarian mathematician. Erdős published more 

papers than any other mathematician in history,

working with hundreds of collaborators. He 

worked on problems in combinatorics, graph 

theory, number theory, classical analysis, 

approximation theory, set theory, and probability 

theory.
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Basic Counting Argument

The Expectation Argument

Lovasz Local Lemma
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1. Cards Shuffling
• Consider a new deck of 52

cards. We will shuffle the

cards by so-called dovetail

shuffling (a.k.a. ‘riffle’).

• Is 4 rounds of dovetail 

shuffling enough to yield a 

random order of the cards?
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2. Difficult Boolean Functions
• 𝑛 variable Boolean functions: 

𝑓: 0,1 𝑛 → 0, 1 .

• Logical formula in 𝑛 variables:

– Symbols: 𝑥1, 𝑥2, … , 𝑥𝑛;

– Parenthesis：(, );

– Logical connectives: ∧, ∨, ⇒, ⇔,¬;
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Proposition. There exists a Boolean 

function of 𝑛 variables that cannot be 

defined by any formula with fewer than 

2𝑛/ log2(𝑛 + 8) symbols. 



• Proof:
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Proposition. There exists a Boolean of 𝑛 variables that 

cannot be defined by any formula with fewer than 

2𝑛/ log2(𝑛 + 8) symbols. 

The number of all Boolean 

functions of 𝑛 variables:
= 22

𝑛

The number of formulas in 𝑛 

variables written by at most 

𝑚 symbols is:

≤ 𝑛 + 8 𝑚

Complications will emerge when: 22
𝑛
> 𝑛 + 8 𝑚

𝑚 < 2𝑛/ log2(𝑛 + 8)



The existence of certain objects
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≤ 4-

shuffling

Possible shuffling

Small-
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on

𝑛-variable BFs



3. Edge Coloring 

(a.k.a. Ramsey number 𝑅(𝑘, 𝑘)) 
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⋯

A Ramsey Number, 𝑛 = 𝑅(𝑟, 𝑏), is the smallest

integer 𝑛 such that the 2-colored graph 𝐾𝑛, using

the colors red and blue for edges, implies

① a red monochromatic subgraph 𝐾𝑟 ,or ② a

blue monochromatic subgraph 𝐾𝑏.

𝑅 3, 3 = 6
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3. Edge Coloring 
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Erdős asks us to imagine an alien force, vastly more powerful than us, landing on Earth

and demanding the value of R(5, 5) or they will destroy our planet. In that case, he claims,

we should marshal all our computers and all our mathematicians and attempt to find the

value. But suppose, instead, that they ask for R(6, 6). In that case, he believes, we should

attempt to destroy the aliens.

— Joel Spencer
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Theorem. If 
𝑛
𝑘

2
−

𝑘
2
+1

< 1, then it is possible to color the 

edges of 𝐾𝑛 with two colors so that it has no single-colored 

(monochromatic) 𝐾𝑘subgraphs.

• Proof.

For each  𝑒 = {𝑢, 𝑣}
Head： 𝑓 𝑒 =RED

Tail：   𝑓 𝑒 = BLUE

A certain 𝐾𝑘 subgraph is monochromatic: = 2 ⋅
1

2
𝑘
2

The probability that one of  𝐾𝑘 

subgraph is monochromatic:
≤

𝑛
𝑘

⋅ 2 ⋅
1

2
𝑘
2

=
𝑛
𝑘

2
−

𝑘
2
+1

< 𝟏



4. Coloring set systems by two colors(*)

• 𝑋 is a finite set, 𝑀 ⊆ 𝑃(𝑋).

• Coloring function 𝑓: 𝑋 → {RED, BLUE} 

• 2-Colorability. if there is a coloring 

function such that every 𝑆 ∈ 𝑀 contains 

points of both colors. Then 𝑀 is 2-

colorable.
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• Example. 𝑋 = 1,2,3 ,𝑀 =
{ 1,2 , 1,3 , 2,3 } then 𝑀 is not 2-

colorable. 
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• 𝑋 is a finite set, 𝑀 ⊆ 𝑃(𝑋).

• Coloring function 𝑓: 𝑋 → {RED, BLUE} 

• 2-Colorability. if there is a coloring function 

such that every 𝑆 ∈ 𝑀 contains points of both 

colors. Then 𝑀 is 2-colorable.

• ∀ 𝑆 ∈ 𝑀 𝑆 = 𝑘

• 𝑠(𝑘) is the smallest number of sets in a system 

𝑀 (i.e., |𝑀| ) that is not 2-colorable.

• Example: 𝑠 2 = 3. 

21

Theorem. 𝑠 𝑘 ≥ 2𝑘−1, i.e. any system 

consisting of fewer than 2𝑘−1sets of size 𝑘 

admits a 2-coloring.



• Proof.

22

Theorem. 𝑠 𝑘 ≥ 2𝑘−1, i.e. any system 

consisting of fewer than 2𝑘−1sets of size 𝑘 

admits a 2-coloring.

𝑀 ⊆
𝑋

𝑘
， 𝑀 = 𝑚

For each  𝑥 ∈ 𝑋
Head： 𝑓 𝑥 =RED

Tail：   𝑓 𝑥 = BLUE

𝑆 ∈ 𝑀, the probability that 𝑆 is single-colored  is:
1

2𝑘
+

1

2𝑘
= 21−k

The probability that at least one of the 𝑚 sets 

in 𝑀 is monochromatic (single-color) is: ≤ 𝑚 ⋅ 21−k

If 𝑚 < 2𝑘−1 the probability is strictly less than 1.

Some 𝑀 is 2-colorable. ∴ 𝑠 𝑘 ≥ 2𝑘−1.



Basic Counting Argument

The Expectation Argument

Lovasz Local Lemma
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1. Dense Partition



Theorem. Let 𝐺 be a graph with an even number, 2𝑛, of 

vertices and with 𝑚 > 0 edges. Then the set 𝑉 = 𝑉(𝐺) can 

be divided into two disjoint 𝑛-element subsets 𝐴 and 𝐵 in 

such a way that more than 
𝑚

2
 edges go between 𝐴 and 𝐵.

25

Proof. Randomly choose 𝑛 vertex to form set  𝐴. 

Then 𝐵 = 𝑉\A. 

For any edge 𝑒 = 𝑢, 𝑣 , the probability 

of 𝑒 being lying ‘across’ 𝐴 and 𝐵 is: 

2 2𝑛−2
𝑛−1
2𝑛
𝑛

=
𝑛

2𝑛 − 1
>
1

2

|𝐸(𝐺)| = 𝑚, the expectation of the number 

of edges lying ‘across’ : 𝐸 𝐶 𝐴, 𝐵 = 𝑚 ⋅
𝑛

2𝑛 − 1
>
𝑚

2

There must exist a choice of 𝐴 with more than half of the

edges going across.



A Las Vegas algorithm for 

finding an partition

26

Let 𝑝 = Pr 𝐶 𝐴, 𝐵 ≥
𝑚

2
,

𝑚

2
<𝐸 𝐶 𝐴, 𝐵 = 

𝑖≤
𝑚
2−1

𝑖 ⋅ Pr 𝐶 𝐴, 𝐵 = 𝑖 +

𝑖≥
𝑚
2

𝑖 ⋅ Pr 𝐶 𝐴, 𝐵 = 𝑖

≤ 1 − 𝑝
𝑚

2
− 1 + 𝑝𝑚

∴ 𝑝 ≥
1

𝑚
2
+ 1

The expected number of samples before finding a cut 

with value at least 𝑚/2 is therefore just  
𝑚

2
+ 1.

Sample and testing.



Derandomization using conditional expectation

27

Placing the vertices deterministically, in an arbitrary order 𝑣1, 𝑣2, … , 𝑣𝑛.

For each 𝑣𝑖, define 𝑥𝑖 ∈ {𝐴, 𝐵} to be the set where 𝑣𝑖 is placed.

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘  is the conditional expectation of the value of 

the cut  given the location 𝑥1, 𝑥2, … , 𝑥𝑘 of the first 𝑘 vertices.

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 ≤ 𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑥𝑘+1

We can always place the next vertex so that

Then 

𝑚

2
≤ 𝑬 𝐶 𝐴, 𝐵 = 𝑬 𝐶 𝐴, 𝐵 | 𝑥1 ≤ 𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑛
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To get 𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 ≤ 𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑥𝑘+1

Consider placing 𝑣𝑘+1 in 𝐴 or 𝐵 with equal probability 
1

2
. Let 𝑌𝑘+1 be a 

random variable representing the set where 𝑣𝑘+1 is places. Then 

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 =
1

2
𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐴

                                                  +
1

2
𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐵

Therefore,

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 ≤ max
𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐴 ,

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐵

Therefore, we just need to decide which of 

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐴 and 𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐵  

is larger. And then set 𝑌𝑘+1 accordingly.

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝑍 where 𝑍 ∈ 𝐴, 𝐵 , is the number of 
edges ① crossing the cut whose endpoints are both among the first 

𝑘 + 1 vertices, plus ② half of the remaining edges. 
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𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 ≤ 𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑥𝑘+1

Thus, the larger of 𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐴 and 

𝑬 𝐶 𝐴, 𝐵 | 𝑥1, 𝑥2, … , 𝑥𝑘 , 𝑌𝑘+1 = 𝐵  is simply determined by whether 

𝑣𝑘+1 has more neighbors in 𝐴 or 𝐵.

The derandomized algorithm:

• Take the vertices in some  order;

• Place the first vertex arbitrarily in 𝐴.

• Place each successive vertex to maximize the number of edges 

crossing the cut. (Equivalently, place each vertex on the side with 

fewer neighbors.) 



2. Independent set

30



Theorem. (Tur ư𝒂n’s theorem). For any graph 𝐺 on 𝑛 

vertices, we have 𝛼 𝐺 ≥
𝑛2

2 𝐸 𝐺 +𝑛
.

where 𝛼 𝐺 denotes the size of the largest independent set 

of vertices in the graph 𝐺.

31

Lemma. For any graph 𝐺, we have 

𝛼 𝐺 ≥ 

𝑣∈𝑉(𝐺)

1

deg𝐺 𝑣 + 1
.



• Proof.
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Lemma. For any graph 𝐺, we have 

𝛼 𝐺 ≥ 

𝑣∈𝑉(𝐺)

1

deg𝐺 𝑣 + 1
.

𝑉 = {1,2,… , 𝑛}

Randomly pick a permutation 𝜋: V → 𝑉,

𝑀 ≝ 𝑀 𝜋 ⊆ 𝑉;𝑀 = 𝑣 ∀𝑢 ( 𝑢, 𝑣 ∈ 𝐸(𝐺) → 𝜋 𝑢 > 𝜋 𝑣 ) },

𝑀(𝜋) is an independent set in 𝐺, ∴ for any 𝜋, 𝑀 𝜋 ≤ 𝛼 𝐺 .

𝐴𝑣: the event  “𝑣 ∈ 𝑀(𝜋)”

𝑃 𝐴𝑣 =
1

1 + |𝑁𝑣|
=

1

degG 𝑣 + 1

𝛼 𝐺 ≥ 𝐸 𝑀 = 

𝑣∈𝑉

𝐸[𝐼𝐴𝑣] = 

𝑣∈𝑉

𝑃(𝐴𝑣) = 

𝑣∈𝑉

1

deg𝐺 𝑣 + 1



Theorem. (Tur ư𝒂n’s theorem). For any graph 𝐺 on 𝑛 

vertices, we have 𝛼 𝐺 ≥
𝑛2

2 𝐸 𝐺 +𝑛
.
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Lemma. For any graph 𝐺, we have 

𝛼 𝐺 ≥ 

𝑣∈𝑉(𝐺)

1

deg𝐺 𝑣 + 1
.

σ𝑣∈𝑉(𝐺)
1

deg𝐺 𝑣 +1
   

will be minimal, when 𝑑1 = 𝑑2 = ⋯ = 𝑑𝑛 =
2 𝐸 𝐺

𝑛
.



3. Maximum Satisfaction

• Logical formula:
𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥3 ∧ 𝑥1 ∨ 𝑥2 ∨ 𝑥4 ∧ 𝑥4 ∨ 𝑥3 ∧ (𝑥4 ∨ 𝑥1)

• SAT is NP-hard

• MAXSAT: Given a SAT formula, satisfying 

as many clauses as possible.

34



• Proof

35

Theorem. Given a set of 𝑚 clauses, let 𝑘𝑖 be the number of 

literals in the 𝑖th clause for 𝑖 = 1,… ,𝑚. Let 𝑘 = min
1≤𝑖≤𝑚

𝑘𝑖 . Then 

there is a truth assignment that satisfies at least



𝑖=1

𝑚

1 − 2−𝑘𝑖 ≥ 𝑚 1 − 2−𝑘 .

Assign values independently and uniformly at random to 

the variables.

The probability that the 𝑖th clause 

with 𝑘𝑖 literals is satisfied is 
1 − 2−𝑘𝑖

The expected number of 

satisfied clauses is 


𝑖=1

𝑚

1 − 2−𝑘𝑖 ≥ 𝑚 1 − 2−𝑘 .



Basic Counting Argument

The Expectation Argument

Lovasz Local Lemma
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László Lovász (Hungarian: born March 9, 
1948) is a Hungarian mathematician and 
professor emeritus at Eötvös Loránd 
University,  best  known for his work 
in combinatorics, for which he was awarded 
the 2021 Abel Prize jointly with Avi 
Wigderson. He was the president of 
the International Mathematical Union from 
2 0 0 7  t o  2 0 1 0  a n d  th e  p r e s i d e n t  o f 
the Hungarian Academy of Sciences from 
2014 to 2020. 

Lovász in 2017

László Lovász - Wikipedia

https://en.wikipedia.org/wiki/L%C3%A1szl%C3%B3_Lov%C3%A1sz


• 𝐸1, 𝐸2, … , 𝐸𝑛  is a set of bad events.

• The probability that none of the bad events 

occurs is

Pr ሩ

𝑖=1

𝑛

ഥ𝐸𝑖

38

• Mutual independence is rare in real 

applications.

• What if the dependency is limited.



Mutually independent of a set 

• Event 𝐹 is mutually independent of the 

events 𝐹1, 𝐹2, … , 𝐹𝑛 if, for any subset 𝐼 ⊆
1, 𝑛 :

Pr 𝐹|ځ𝑗∈𝐼𝐹𝑗 = Pr(𝐹) 

• Dependency graph. for a set of events 

𝐸1, 𝐸2, … , 𝐸𝑛, define graph 𝐺 = 𝑉, 𝐸 such 

that 𝑉 = 1,2, … , 𝑛 and, for 𝑖 = 1, … , 𝑛,
event 𝐸𝑖 is mutually independent of the 

events 𝐸𝑗 | 𝑖, 𝑗 ∉𝐸 . 
39



Theorem[Lovasz Local Lemma]: 

Let 𝐸1, 𝐸2, … , 𝐸𝑛 be a set of events, and 

assume that the following holds:

1. For all 𝑖, Pr 𝐸𝑖 ≤ 𝑝;

2. The degree of the dependency graph 

given by 𝐸1, 𝐸2, … , 𝐸𝑛 is bounded by 𝑑;

3. 4𝑑𝑝 ≤ 1.

Then Pr 𝑖=1ځ
𝑛 ഥ𝐸𝑖 > 0.

40



Application 1: Edge-disjoint path

41

𝐹1

𝐹3𝐹2



• Scenario 

– 𝑛 pairs of users need to 

communicate using edge-

disjoint paths on a given 

network.

– Each pair 𝑖 = 1,… , 𝑛 can 

choose a path from a collection 

𝐹𝑖 of 𝑚 path (i.e. |𝐹𝑖| = 𝑚).

42

𝐹1

𝐹3𝐹2

Theorem: If any path in 𝐹𝑖 shares edges with 

no more than 𝑘 paths in 𝐹𝑗, where 𝑖 ≠ 𝑗 and 
8𝑛𝑘

𝑚
< 1, then there is a way to choose 𝑛 

edge-disjoint paths connecting the 𝑛 pairs. 
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𝐹1

𝐹3𝐹2

Theorem: If any path in 𝐹𝑖 shares edges with no 

more than 𝑘 paths in 𝐹𝑗, where 𝑖 ≠ 𝑗 and 
8𝑛𝑘

𝑚
≤ 1, 

then there is a way to choose 𝑛 edge-disjoint paths 

connecting the 𝑛 pairs. 

Proof.  Each pair 𝑖 chooses a path independently 

and uniformly at random from 𝐹𝑖.

𝐸𝑖,𝑗: the event that the path chosen by pairs 𝑖 and 𝑗

share at least one edge.

Obviously, 𝑝 = Pr 𝐸𝑖,𝑗 ≤
𝑘

𝑚
,

Dependency graph, 𝑑 < 2𝑛.

4𝑑𝑝 <
8𝑛𝑘

𝑚
≤ 1

∴ Pr 𝑖≠𝑗ځ 𝐸𝑖,𝑗 > 0 by Lovasz local lemma. 



Application 2: Satisfiability

• If no variable in a 𝑘 −SAT formula appears 

in more than 𝑇 =
2𝑘

4𝑘
clauses, then the 

formula has a satisfying assignment.

44

• Proof. 

– 𝐸𝑖: the 𝑖th clause is not satisfied. 

– 𝑝 = 2−𝑘, 𝑑 ≤ 𝑘 ⋅ 𝑇 ≤ 2𝑘−2
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Theorem[Lovasz Local Lemma]: Let 𝐸1, 𝐸2, … , 𝐸𝑛 be a set of events, and assume 

that the following holds:

1. For all 𝑖, Pr 𝐸𝑖 ≤ 𝑝;
2. The degree of the dependency graph given by 𝐸1, 𝐸2, … , 𝐸𝑛 is bounded by 𝑑;
3. 4𝑑𝑝 ≤ 1.
Then Pr 𝑖=1ځ

𝑛 ഥ𝐸𝑖 > 0.

Proof.

Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  

for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 
then for all 𝑘 ∉ 𝑆: 

Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝

𝑃𝑟 ሩ

𝑖=1

𝑛

ഥ𝐸𝑖 =

=ෑ

𝑖=1

𝑛

1 − Pr 𝐸𝑖 𝑗=1ځ
𝑖−1 ഥ𝐸𝑗

ෑ

𝑖=1

𝑛

Pr ഥ𝐸𝑖 𝑗=1ځ
𝑖−1 ഥ𝐸𝑗

≥ෑ

𝑖=1

𝑛

1 − 2𝑝 > 0



Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 

then for all 𝑘 ∉ 𝑆:    Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝 .

Proof. (by induction on 𝑠) 

Base case: 𝑠 = 0, the results holds for the assumption Pr 𝐸𝑘 ≤ 𝑝;

Inductive step: 𝑠 > 0, first we show Pr 𝑗∈𝑆ځ
ഥ𝐸𝑗 > 0

𝑃𝑟 𝑗∈𝑆ځ
ഥ𝐸𝑗 = ς𝑖=1

s Pr ഥ𝐸𝑖 𝑗=1ځ
𝑖−1 ഥ𝐸𝑗

= ς𝑖=1
s 1 − Pr 𝐸𝑖 𝑗=1ځ

𝑖−1 ഥ𝐸𝑗

≥ ς𝑖=1
s 1 − 2𝑝 > 0 by I.H. 

𝑠 = 1:  it is true for Pr ഥ𝐸𝑗 ≥ 1 − 𝑝 > 0

𝑠 > 1:  w.l.o.g. 𝑆 = {1,2, … , 𝑠}, then 
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Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 

then for all 𝑘 ∉ 𝑆:    Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝 .

Proof. (by induction on 𝑠) 

Base case: 𝑠 = 0, the results holds for the assumption Pr 𝐸𝑘 ≤ 𝑝;

Inductive step: 𝑠 > 0, we know Pr 𝑗∈𝑆ځ
ഥ𝐸𝑗 > 0

47

Let 𝑆1 = 𝑗 ∈ 𝑆 𝑘, 𝑗 ∈ 𝐸}, and 𝑆2 = 𝑆 − 𝑆1,

Case 1:  𝑆2 = 𝑆, (i.e. 𝑆1 = ∅)  

Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑖 = Pr 𝐸𝑘 ≤ 𝑝 ≤ 2𝑝 holds.

then 𝐸𝑘 is mutually independent of ഥ𝐸𝑖 , 𝑖 ∈ 𝑆, and

Case 2:  |𝑆2| < 𝑠.  



Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 

then for all 𝑘 ∉ 𝑆:    Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝 .

Proof. (by induction on 𝑠) 

Inductive step: 𝑠 > 0, we know Pr 𝑗∈𝑆ځ
ഥ𝐸𝑗 > 0
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Let 𝑆1 = 𝑗 ∈ 𝑆 𝑘, 𝑗 ∈ 𝐸}, and 𝑆2 = 𝑆 − 𝑆1,

Case 2:  |𝑆2| < 𝑠.  Let 𝐹𝑆 = 𝑗∈𝑆ځ
ഥ𝐸𝑗, 𝐹𝑆1 = 𝑗∈𝑆1ځ

ഥ𝐸𝑗, 𝐹𝑆2 = 𝑗∈𝑆2ځ
ഥ𝐸𝑗

Obviously,  𝐹𝑆 = 𝐹𝑆1 ∩ 𝐹𝑆2

Pr 𝐸𝑘 𝐹𝑆 =
Pr 𝐸𝑘 ∩ 𝐹𝑆
Pr(𝐹𝑆)

=
Pr 𝐸𝑘 ∩ 𝐹𝑆1 ∩ 𝐹𝑆2
Pr(𝐹𝑆1 ∩ 𝐹𝑆2)

=
Pr 𝐸𝑘 ∩ 𝐹𝑆1 𝐹𝑆2 Pr(𝐹𝑆2)

Pr 𝐹𝑆1 𝐹𝑆2 Pr(𝐹𝑆2)

=
Pr 𝐸𝑘 ∩ 𝐹𝑆1 𝐹𝑆2
Pr 𝐹𝑆1 𝐹𝑆2



Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 

then for all 𝑘 ∉ 𝑆:    Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝 .

Proof. (by induction on 𝑠) 

Inductive step: 𝑠 > 0, we know Pr 𝑗∈𝑆ځ
ഥ𝐸𝑗 > 0
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Let 𝑆1 = 𝑗 ∈ 𝑆 𝑘, 𝑗 ∈ 𝐸}, and 𝑆2 = 𝑆 − 𝑆1,

Case 2:  |𝑆2| < 𝑠.  Let 𝐹𝑆 = 𝑗∈𝑆ځ
ഥ𝐸𝑗, 𝐹𝑆1 = 𝑗∈𝑆1ځ

ഥ𝐸𝑗, 𝐹𝑆2 = 𝑗∈𝑆2ځ
ഥ𝐸𝑗, 𝐹𝑆 = 𝐹𝑆1 ∩ 𝐹𝑆2

Pr 𝐸𝑘 𝐹𝑆 =
Pr 𝐸𝑘 ∩ 𝐹𝑆1 𝐹𝑆2
Pr 𝐹𝑆1 𝐹𝑆2



Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 

then for all 𝑘 ∉ 𝑆:    Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝 .

Proof. (by induction on 𝑠) 

Inductive step: 𝑠 > 0, we know Pr 𝑗∈𝑆ځ
ഥ𝐸𝑗 > 0
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Let 𝑆1 = 𝑗 ∈ 𝑆 𝑘, 𝑗 ∈ 𝐸}, and 𝑆2 = 𝑆 − 𝑆1,

Case 2:  |𝑆2| < 𝑠.  Let 𝐹𝑆 = 𝑗∈𝑆ځ
ഥ𝐸𝑗, 𝐹𝑆1 = 𝑗∈𝑆1ځ

ഥ𝐸𝑗, 𝐹𝑆2 = 𝑗∈𝑆2ځ
ഥ𝐸𝑗, 𝐹𝑆 = 𝐹𝑆1 ∩ 𝐹𝑆2

Pr 𝐸𝑘 𝐹𝑆 =
Pr 𝐸𝑘 ∩ 𝐹𝑆1 𝐹𝑆2
Pr 𝐹𝑆1 𝐹𝑆2

Pr 𝐸𝑘 ∩ 𝐹𝑆1 𝐹𝑆2 ≤ Pr 𝐸𝑘 𝐹𝑆2

= Pr(𝐸𝑘) ≤ 𝑝 by assumption.



Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 

then for all 𝑘 ∉ 𝑆:    Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝 .

Proof. (by induction on 𝑠) 

Inductive step: 𝑠 > 0, we know Pr 𝑗∈𝑆ځ
ഥ𝐸𝑗 > 0
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Let 𝑆1 = 𝑗 ∈ 𝑆 𝑘, 𝑗 ∈ 𝐸}, and 𝑆2 = 𝑆 − 𝑆1,

Case 2:  |𝑆2| < 𝑠.  Let 𝐹𝑆 = 𝑗∈𝑆ځ
ഥ𝐸𝑗, 𝐹𝑆1 = 𝑗∈𝑆1ځ

ഥ𝐸𝑗, 𝐹𝑆2 = 𝑗∈𝑆2ځ
ഥ𝐸𝑗, 𝐹𝑆 = 𝐹𝑆1 ∩ 𝐹𝑆2

Pr 𝐸𝑘 𝐹𝑆 =
Pr 𝐸𝑘 ∩ 𝐹𝑆1 𝐹𝑆2
Pr 𝐹𝑆1 𝐹𝑆2

Pr 𝐹𝑆1 𝐹𝑆2 = Pr 𝑖∈𝑆1ځ
ഥ𝐸𝑖 𝑗∈𝑆2ځ

ഥ𝐸𝑗

≥ 1 − 

𝑖∈𝑆1

Pr 𝐸𝑖 𝑗∈𝑆2ځ
ഥ𝐸𝑗

≥ 1 − σ𝑖∈𝑆1
2𝑝 by I.H.

≥ 1 − 2𝑝𝑑 ≥
1

2



Let 𝑆 ⊂ {1,… , 𝑛}. We prove that  for all 𝑠 = 0,… , 𝑛 − 1, if 𝑆 ≤ 𝑠, 

then for all 𝑘 ∉ 𝑆:    Pr 𝐸𝑘 𝑗∈𝑆ځ
ഥ𝐸𝑗 ≤ 2𝑝

Proof. (by induction on 𝑠) 

Inductive step: 𝑠 > 0, we know Pr 𝑗∈𝑆ځ
ഥ𝐸𝑗 > 0
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Let 𝑆1 = 𝑗 ∈ 𝑆 𝑘, 𝑗 ∈ 𝐸}, and 𝑆2 = 𝑆 − 𝑆1,

Case 2:  |𝑆2| < 𝑠.  Let 𝐹𝑆 = 𝑗∈𝑆ځ
ഥ𝐸𝑗, 𝐹𝑆1 = 𝑗∈𝑆1ځ

ഥ𝐸𝑗, 𝐹𝑆2 = 𝑗∈𝑆2ځ
ഥ𝐸𝑗, 𝐹𝑆 = 𝐹𝑆1 ∩ 𝐹𝑆2

Pr 𝐸𝑘 𝐹𝑆 =
Pr 𝐸𝑘 ∩ 𝐹𝑆1 𝐹𝑆2
Pr 𝐹𝑆1 𝐹𝑆2

≤ 𝑝

≥
1

2

≤ 2𝑝



Lovasz Local Lemma: The General Form

Theorem: Let 𝐸1, … , 𝐸𝑛 be a set of events in an arbitrary 

probability space, and let 𝐺 = 𝑉, 𝐸  be the dependency 

graph for these events. Assume there exist 𝑥1, … , 𝑥𝑛 ∈ [0,1) 
such that, for all 𝑖 ≤ 𝑖 ≤ 𝑛,

Pr 𝐸𝑖 ≤ 𝑥𝑖 ⋅ ෑ

𝑖,𝑗 ∈𝐸

(1 − 𝑥𝑗)

Then 

𝑃𝑟 ሩ

𝑖=1

𝑛

ഥ𝐸𝑖 ≥ෑ

𝑖=1

𝑛

1 − 𝑥𝑖 .
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