Introduction to Random Graphs

longhuan@sjtu.edu.cn

- World Wide Web
- Internet
- Social networks
- Journal citations

Statistical properties VS Exact answer to questions

The $G(n, p)$ model

Properties of almost all graphs

Phase transition

$\boldsymbol{G}(n, p)$ Model

- $\boldsymbol{G}(n, p)$ Model [Erdös and Rényi1960]: $|\mathrm{V}|=n$ is the number of vertices, and for and different $u, v \in V, \operatorname{Pr}(\{u, v\} \in E)=p$.
- Example. If $p=\frac{d}{n}$.

Then $\boldsymbol{E}(\operatorname{deg}(v))=\frac{d}{n}(n-1) \approx d$

$$
n \approx n-1
$$

Example: $\boldsymbol{G}(n, 1 / 2)$

$$
\begin{aligned}
& K=\operatorname{deg}(v) \\
& \operatorname{Pr}(K=k)=\binom{n-1}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{n-k} \\
& \approx\binom{n}{k}\left(\frac{1}{2}\right)^{k}\left(\frac{1}{2}\right)^{n-k}=\frac{1}{2^{n}}\binom{n}{k}
\end{aligned}
$$

$E(K)=n / 2$
$\operatorname{Var}(K)=n / 4$

Independence!
Binomial Distribution

Recall: Central Limit Theorem

Normal distribution (Gauss Distribution): $X \sim N\left(\mu, \sigma^{2}\right)$, with density function:

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<+\infty
$$

As long as $\left\{X_{i}\right\}$ is independent identically distributed with $E\left(X_{i}\right)=\mu, D\left(X_{i}\right)=\sigma^{2}$, then $\sum_{i=1}^{n} X_{i}$ can be approximated by normal distribution ($n \mu, n \sigma^{2}$) when n is large enough.

- $\boldsymbol{G}(n, 1 / 2)$

$$
\begin{aligned}
& \mu=n \mu^{\prime}=E(K)=\frac{n}{2} \\
& \sigma^{2}=n\left(\sigma^{\prime}\right)^{2}=\operatorname{Var}(K)=n / 4
\end{aligned}
$$

(CLT) Near the mean, the binomial distribution is well approximated by the normal distribution.

$$
\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(k-n \mu)^{2}}{2 \sigma^{2}}}=\frac{1}{\sqrt{\pi n / 2}} e^{-\frac{(k-n / 2)^{2}}{n / 2}}
$$

It works well when $k=\Theta(n)$.

- $\boldsymbol{G}(n, 1 / 2)$: for any $\epsilon>0$, the degree of each vertex almost surely is within
$(1 \pm \epsilon) \frac{n}{2}$.
Proof. As we can approximate the distribution by

- $\boldsymbol{G}(n, p)$: for any $\epsilon>0$, if p is $\Omega\left(\frac{\ln n}{n \epsilon^{2}}\right)$, then the degree of each vertex almost surely is within $(1 \pm \epsilon) n p$.
Proof. Omitted
$\boldsymbol{G}(n, p)$ Model: independent set and clique
Lemma. For all integers n, k with $n \geq k \geq 2$; the probability that $\mathrm{G} \in \boldsymbol{G}(n, p)$ has a set of k independent vertices is at most

$$
\operatorname{Pr}(\alpha(G) \geq k) \leq\binom{ n}{k}(1-p)^{\binom{k}{2}}
$$

the probability that $\mathrm{G} \in \boldsymbol{G}(n, p)$ has a set of k clique is at most

$$
\operatorname{Pr}(\omega(G) \geq k) \leq\binom{ n}{k}(p)^{\binom{k}{2}}
$$

Lemma. The expected number of k-cycles in $G \in \boldsymbol{G}(n, p)$ is $E(x)=\frac{(n)_{k}}{2 k} p^{k}$.
Proof. The expectation of certain n vertices $v_{0}, v_{1}, \cdots, v_{k-1}, v_{0}$ form a length k cycle is: p^{k}

The possible ways to choose k vertices to form a cycle C is $\frac{(n)_{k}}{2 k}$.
The expectation of the number of all cycles:

$$
X=\sum_{C} X_{C}=\frac{(n)_{k}}{2 k} p^{k}
$$

The $G(n, p)$ model

Properties of almost all graphs

Phase transition

Properties of almost all graphs

- For a graph property P, when $n \rightarrow \infty$, If the limit of the probability of $G \in \boldsymbol{G}(n, p)$ having the property tends to
- 1: we say than the property holds for almost all (almost every / almost surely) $G \in \boldsymbol{G}(n, p)$.
-0 : we say than the property holds for almost no $G \in \boldsymbol{G}(n, p)$.

Proposition. For every constant $p \in(0,1)$

 and every graph H, almost every $G \in \boldsymbol{G}(n, p)$ contains an induced copy of H .

Proposition. For every constant $p \in(0,1)$ and every graph H, almost every $G \in \boldsymbol{G}(n, p)$ contains an induced copy of H .
Proof. $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}, k=|H|$
Fix some $U \in\binom{V(G)}{k}$, then $\operatorname{Pr}(U \cong H)=r>0$ r depends on p, k not on n.
There are $\lfloor n / k\rfloor$ disjoint such U.
The probability that none of the
$G[U]$ is isomorphic to H is: $=(1-r)^{[n / k]}$

$$
\operatorname{Pr}[\neg(H \subseteq G \text { induced })]: \leq(1-r)^{[n / k]}
$$

$$
\downarrow^{n \rightarrow \infty}
$$

Property $\boldsymbol{P}_{i, j}:$ for any disjoint vertex set U, W with $|U| \leq i,|W| \leq j$; exists a vertex $v \notin U \cup W ; v$ is adjacent to all vertices in U but to none in W.

Proposition. For every constant $p \in(0,1)$ and $i, j \in N$, almost every graph $G \in \boldsymbol{G}(n, p)$ has the property $P_{i, j}$.

Proposition. For every constant $p \in(0,1)$ and $i, j \in N$, almost every graph $G \in \boldsymbol{G}(n, p)$ has the property $P_{i, j}$.

Proof. Fix U, W and $v \in G-(U \cup W), q=1-p$,
The probability that $P_{i, j}$ holds for v : $\quad p^{|U|} q^{|W|} \geq p^{i} q^{j}$
The probability there's no such v for chosen U, W :

$$
=\left(1-p^{|U|} q^{|W|}\right)^{n-|U|-|W|} \leq\left(1-p^{i} q^{j}\right)^{n-i-j}
$$

The upper bound for the number of different choice of $U, W: n^{i+j}$
The probability there exists some U, W without suitable v :

$$
\leq n^{i+j}\left(1-p^{i} q^{j}\right)^{n-i-j} \xrightarrow{n \rightarrow \infty} 0
$$

Coloring

- Vertex coloring: to $G=(V, E)$, a vertex coloring is a map $c: V \rightarrow S$ such that $c(v) \neq$ $c(w)$ whenever v and w are adjacent.
- Chromatic number $\chi(G)$: the smallest size of S.

$$
\chi(G)=3
$$

Coloring

- Vertex coloring: to $G=(V, E)$, a vertex coloring is a map $c: V \rightarrow S$ such that $c(v) \neq$ $c(w)$ whenever v and w are adjacent.
- Chromatic number $\chi(\boldsymbol{G})$: the smallest size of S.
- Some famous results:
- Whether $\chi(G)=k$ is NP-complete.
- Every Planar graph is 4-colourable.
- [Grtözsch 1959] Every Planar graph not containing a triangle is 3-colourable.

Proposition. For every constant $p \in(0,1)$ and every $\epsilon>0$, almost every graph $G \in \boldsymbol{G}(n, p)$ has chromatic number $\chi(G)>\frac{\log (1 / q)}{2+\epsilon} \cdot \frac{n}{\log n}$.

Proof. The size of the maximum independent set in $G: \alpha(G)$

$$
\begin{aligned}
\operatorname{Pr}(\alpha(G) \geq k) & \leq\binom{ n}{k} q^{\binom{k}{2}} \leq n^{k} q^{\binom{k}{2}} \\
& =q^{k \frac{\log n}{\log q^{2} k k(k-1)}}=q^{\frac{k}{2}\left(-\frac{2 \log n}{\log (1 / q)}+k-1\right)}
\end{aligned}
$$

Take $k=(2+\epsilon) \frac{\log n}{\log (1 / q)}$ then ($\left.{ }^{*}\right)$ tends to ∞ with n.
$\therefore \operatorname{Pr}(\alpha(G) \geq k) \xrightarrow{n \rightarrow \infty} 0 \Rightarrow$ No k vertices can have the same color.
$\therefore \chi(G)>\frac{n}{k}=\frac{\log (1 / q)}{2+\epsilon} \cdot \frac{n}{\log n}$

The $G(n, p)$ model

Properties of almost all graphs

Phase transition

Phase transition

The interesting thing about the $\boldsymbol{G}(n, p)$ model is that even though edges are chosen independently, certain global properties of the graph emerge from the independent choice.

Phase transition

Definition. If there exists a function $p(n)$ such that

- when $\lim _{n \rightarrow \infty}\left(\frac{p_{1}(n)}{p(n)}\right)=0, \quad \boldsymbol{G}\left(n, p_{1}(n)\right)$ almost surely does not have the property.
- when $\lim _{n \rightarrow \infty}\left(\frac{p_{2}(n)}{p(n)}\right)=\infty, \quad \boldsymbol{G}\left(n, p_{2}(n)\right)$ almost surely has the property.
Then we say phase transition occurs and $p(n)$ is the threshold.

Phase transition

Probability	Transition
$p=o\left(\frac{1}{n}\right)$	Forest of trees, no component of size greater than $O(\log n)$
$p=\frac{d}{n}, d<1$	All components of size $O(\log n)$
$p=\frac{d}{n}, d=1$	Components of size $O\left(n^{\frac{2}{3}}\right)$
$p=\frac{d}{n}, d>1$	Giant component plus $O(\log n)$ components
$p=\sqrt{\frac{2 \ln n}{n}}$	Diameter two
$p=\frac{1}{2} \frac{\ln n}{n}$	Giant component plus isolated vertices
$p=\frac{\ln n}{n}$	Disappearance of isolated vertices Appearance of Hamilton circuit Diameter $O(\log n)$
$p=\frac{1}{2}$	Clique of size $(2-\epsilon) \ln n$

A graph with 40 vertices and 24 edges

A randomly generated $G(n, p)$ graph with 40 vertices and 24 edges

First moment method

Markov's Inequality: Let x be a random variable that assumes only nonnegative values. Then for all $a>0$

$$
\operatorname{Pr}(x \geq a) \leq \frac{E[x]}{a}
$$

First moment method : for non-negative, integer valued variable x

$$
\begin{gathered}
\quad \operatorname{Pr}(x>0)=\operatorname{Pr}(x \geq 1) \leq \boldsymbol{E}(x) \\
\therefore \operatorname{Pr}(x=0)=1-\operatorname{Pr}(x>0) \geq 1-\boldsymbol{E}(x)
\end{gathered}
$$

First moment method : for non-negative , integer valued variable x

$$
\begin{gathered}
\quad \operatorname{Pr}(x>0)=\operatorname{Pr}(x \geq 1) \leq \boldsymbol{E}(x) \\
\therefore \operatorname{Pr}(x=0)=1-\operatorname{Pr}(x>0) \geq 1-\boldsymbol{E}(x)
\end{gathered}
$$

- If the expectation goes to 0 : the property almost surely does not happen.
- If the expectation does not goes to 0 :
e.g. Expectation $=\frac{1}{n} \times n^{2}+\frac{n-1}{n} \times 0=n$
i.e., a vanishingly small fraction of the sample contribute a lot to the expectation.

Chebyshev's Inequality

- For any $a>0$,

$$
\operatorname{Pr}(|X-E(X)| \geq a) \leq \frac{\operatorname{Var}[X]}{a^{2}}
$$

Second moment method

Theorem. Let $x(n)$ be a random variable with $\boldsymbol{E}(x)>0$. If

$$
\operatorname{Var}(x)=o\left(\boldsymbol{E}^{2}(x)\right)
$$

Then x is almost surely greater than zero.
Proof. If $\boldsymbol{E}(x)>0$, then for $x \leq 0$,

$$
\begin{aligned}
\operatorname{Pr}(x \leq 0) & \leq \operatorname{Pr}(|x-E(x)| \geq E(x)) \\
& \leq \frac{\operatorname{Var}(x)}{E^{2}(x)} \rightarrow 0
\end{aligned}
$$

Example : Threshold for graph diameter two (two degrees of separation)

Probability	Transition
$p=o\left(\frac{1}{n}\right)$	Forest of trees, no component of size greater than $O(\log n)$
$p=\frac{d}{n}, d<1$	All components of size $O(\log n)$
$p=\frac{d}{n}, d=1$	Components of size $O\left(n^{\frac{2}{3}}\right)$
$p=\frac{d}{n}, d>1$	Giant component plus $O(\log n)$ components
$p=\sqrt{\frac{2 \ln n}{n}}$	Diameter two
$p=\frac{1}{2} \frac{\ln n}{n}$	Giant component plus isolated vertices
$p=\frac{\ln n}{n}$	Disappearance of isolated vertices Appearance of Hamilton circuit Diameter $O(\log n)$
$p=\frac{1}{2}$	Clique of size $(2-\epsilon) \ln n$

Example : Threshold for graph diameter two

 (two degrees of separation)- Diameter: the maximum length of the shortest path between a pair of nodes.
- Theorem: The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=$
$\sqrt{2} \sqrt{\frac{\ln n}{n}}$.

Example : Threshold for graph diameter two (two degrees of separation)

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

Proof. For any two different vertices $i<j$, $I_{i j}= \begin{cases}1 & \{i, j\} \notin E, \text { no other vertex is adjacent to both } i \text { and } j \\ 0 & \text { otherwise }\end{cases}$
$x=\sum_{i<j} I_{i j}$
If $E(x) \xrightarrow{n \rightarrow \infty} 0$, then for large n, almost surely the diameter is at most two.

Example : Threshold for graph diameter two (two degrees of separation)

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$ Proof. For any two different vertices $i<j$, $I_{i j}= \begin{cases}1 & \{\mathrm{i}, j\} \notin E, \text { no other vertex is adjacent to both } i \text { and } j \\ 0 & \text { otherwise }\end{cases}$ $x=\sum_{i<j} I_{i j} \quad \boldsymbol{E}(x)=\binom{n}{2}(1-p)\left(1-p^{2}\right)^{n-2}$
Take $p=c \sqrt{\frac{\ln n}{n}}, E(x) \cong \frac{n^{2}}{2}\left(1-c \sqrt{\frac{\ln n}{n}}\right)\left(1-c^{2} \frac{\ln n}{n}\right)^{n}$

$$
\cong \frac{n^{2}}{2} e^{-c^{2} \ln n}=\frac{1}{2} n^{2-c^{2}}
$$

Example : Threshold for graph diameter two (two degrees of separation)

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$ Proof. For any two different vertices $i<j$, $I_{i j}= \begin{cases}1 & \{\mathrm{i}, \mathrm{j}\} \notin E, \text { no other vertex is adjacent to both } i \text { and } j \\ 0 & \text { otherwise }\end{cases}$ $x=\sum_{i<j} I_{i j} \quad \boldsymbol{E}(x)=\binom{n}{2}(1-p)\left(1-p^{2}\right)^{n-2}$
Take $p=c \sqrt{\frac{\ln n}{n}}, c>\sqrt{2}, \lim _{n \rightarrow \infty} \boldsymbol{E}(x)=0$
For large n, almost surely the diameter is at most two.

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c>\sqrt{2}, \lim _{n \rightarrow \infty} \boldsymbol{E}(x)=0$

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c<\sqrt{2}$,

$$
\boldsymbol{E}\left(x^{2}\right)=\boldsymbol{E}\left(\sum_{i<j} I_{i j}\right)^{2} \quad \begin{aligned}
& \text { If } \operatorname{Var}(x)=o\left(\boldsymbol{E}^{2}(x)\right) \text {, then for large } n, \\
& \text { almost surely the diameter will be larger } \\
& \text { than two. }
\end{aligned}
$$

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c<\sqrt{2}$

$$
\begin{aligned}
& \boldsymbol{E}\left(x^{2}\right)=\boldsymbol{E}\left(\sum_{i<j} I_{i j}\right)^{2}=\boldsymbol{E}\left(\sum_{i<j} I_{i j} \sum_{k<l} I_{k l}\right)=\boldsymbol{E}\left(\sum_{\substack{i<j \\
k<l}} I_{i j} I_{k l}\right)=\sum_{\substack{i<j \\
k<l}} \boldsymbol{E}\left(I_{i j} I_{k l}\right) \\
& a=|\{i, j, k, l\}|
\end{aligned}
$$

$$
\boldsymbol{E}\left(x^{2}\right)=\sum_{\substack{i<j \\ k<l \\ a=4}} \boldsymbol{E}\left(I_{i j} I_{k l}\right)+\sum_{\substack{\{i, j, k\} \\ i<j \\ a=3}} \boldsymbol{E}\left(I_{i j} I_{i k}\right)+\sum_{i<j} \boldsymbol{E}\left(I_{i j}^{2}\right)
$$

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c<\sqrt{2}$
$\boldsymbol{E}\left(x^{2}\right)=\sum_{\substack{i<j \\ k<l \\ a=4}} \boldsymbol{E}\left(I_{i j} I_{k l}\right)+\sum_{\substack{\{i, j, k\} \\ i<j \\ a=3}} \boldsymbol{E}\left(I_{i j} I_{i k}\right)+\sum_{i<j} \boldsymbol{E}\left(I_{i j}^{2}\right)$

$$
\boldsymbol{E}\left(I_{i j} I_{k l}\right) \leq\left(1-p^{2}\right)^{2(n-4)} \leq\left(1-c^{2} \frac{\ln n}{n}\right)^{2 n}(1+o(1)) \leq n^{-2 c^{2}}(1+o(1))
$$

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c<\sqrt{2}$

$$
\begin{array}{l|l}
a=3 & a=2
\end{array}
$$

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c<\sqrt{2}$

$$
\begin{array}{l|l|l}
k<l \\
a=4 & \begin{array}{l}
i<j \\
a=3
\end{array} & a=2 \\
\cline { 1 - 3 }
\end{array}
$$

$$
\operatorname{Pr}\left(I_{i j} I_{i k}=1\right) \leq 1-p+p(1-p)^{2}=1-2 p^{2}+p^{3} \approx 1-2 p^{2}
$$

$$
E\left(I_{i j} I_{i k}\right) \leq\left(1-2 p^{2}\right)^{n-3}=\left(1-\frac{2 c^{2} \ln \eta}{n}\right)^{n-3}
$$

$$
\cong e^{-2 c^{2} \ln n}=n^{-2 c^{2}}
$$

$$
\sum_{\{i, j, k\}, i<j, a=3} E\left(I_{i j} I_{i k}\right) \leq n^{3-2 c^{2}}
$$

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c<\sqrt{2}$

$$
\boldsymbol{E}\left(x^{2}\right)=\sum_{\substack{i<j \\ k<l \\ a=4}} \boldsymbol{E}\left(I_{i j} I_{k l}\right)+\sum_{\substack{i<j \\ k<l \\ a=3}} \boldsymbol{E}\left(I_{i j} I_{k l}\right)+\sum_{i<j} \boldsymbol{E}\left(I_{i j}^{2}\right)
$$

$E\left(I_{i j}^{2}\right)=E\left(I_{i j}\right)$
$\sum_{i j} E\left(I_{i j}^{2}\right)=E(x) \cong \frac{1}{2} n^{2-c^{2}}$

Theorem. The property that $\boldsymbol{G}(n, p)$ has diameter two has a sharp threshold at $p=\sqrt{2} \sqrt{\frac{\ln n}{n}}$

- Take $p=c \sqrt{\frac{\ln n}{n}}, c<\sqrt{2}$

$$
\boldsymbol{E}\left(x^{2}\right) \leq \boldsymbol{E}^{2}(x)(1+o(1))
$$

A graph almost surely has at least one bad pair of vertices and thus diameter greater than two.

Phase transition

Definition. If there exists a function $p(n)$ such that

- when $\lim _{n \rightarrow \infty}\left(\frac{p_{1}(n)}{p(n)}\right)=0, \quad \boldsymbol{G}\left(n, p_{1}(n)\right)$ almost surely does not have the property.
- when $\lim _{n \rightarrow \infty}\left(\frac{p_{2}(n)}{p(n)}\right)=\infty, \quad \boldsymbol{G}\left(n, p_{2}(n)\right)$ almost surely has the property.
Then we say phase transition occurs and $p(n)$ is the threshold.
Every increasing property has a threshold.

Increasing property

- Definition: The probability of a graph having the property increases as edges are added to the graph.
- Example:
- Connectivity
- Having no isolated vertices
- Having a cycle

Lemma: If Q is an increasing property of graphs and $0 \leq p \leq q \leq 1$, then the probability that $\boldsymbol{G}(n, q)$ has property Q is greater than or equal to the probability that $\boldsymbol{G}(n, p)$ has property Q.

Proof:

Independently generate graph $\boldsymbol{G}(n, p)$ and $\boldsymbol{G}\left(n, \frac{q-p}{1-p}\right)$. $H=\boldsymbol{G}(n, p) \cup \boldsymbol{G}\left(n, \frac{q-p}{1-p}\right)$ (the union of the edge set). Graph H has the same distribution as $\boldsymbol{G}(n, q)$:

$$
\operatorname{Pr}(\{u, v\} \in E(H))=p+(1-p) \frac{q-p}{1-p}=q
$$

And edges in H are independent.
The result follows naturally.

Replication

m-fold replication of $\boldsymbol{G}(n, p)$:

- Independently generate m copies of $\boldsymbol{G}(n, p)$ (on the same vertex set);
- Take the union of the m copies;

The result graph H has the same distribution as $G(n, q)$, where $q=1-(1-p)^{m}$.

copies of G
If any graph has three or more edges, then the m-fold replication has three or more edges.

Even if no graph has three or more edges, the m-fold replication might have three or more edges.

The m-fold replication H

The m-fold replication H

Replication

m-fold replication of $\boldsymbol{G}(n, p)$:

- Independently generate m copies of $\boldsymbol{G}(n, p)$ (on the same vertex set);
- Take the union of the m copies;

The result graph H has the same distribution as $G(n, q)$, where $q=1-(1-p)^{m}$.

One of the copies of $\boldsymbol{G}(n, p)$ has the increasing property \downarrow
$G(n, q)$ has the increasing property.
As $q \leq 1-(1-m p)=m p$
$\therefore \operatorname{Pr}(\boldsymbol{G}(n, m p)$ has $Q) \geq \operatorname{Pr}(\boldsymbol{G}(n, q)$ has $Q)$

Theorem: Every increasing property Q of $\boldsymbol{G}(n, p)$ has a phase transition at $p(n)$, where for each n, $p(n)$ is the minimum real number a_{n} for which the probability that $\boldsymbol{G}\left(n, a_{n}\right)$ has property Q is $\frac{1}{2}$.

Proof:

First prove that for any function $p_{0}(n)$ with $\lim _{n \rightarrow \infty} \frac{p_{0}(n)}{p(n)}=0$, almost surely $\boldsymbol{G}\left(n, p_{0}\right)$ does not have the property Q.
Suppose otherwise: the probability that $\boldsymbol{G}\left(n, p_{0}\right)$ has the property Q does not converge to 0 .
Then there exists $\epsilon>0$ for which the probability that $\boldsymbol{G}\left(n, p_{0}\right)$ has the property Q is $\geq \epsilon$ on an infinite set I of n. Let $m=\lceil(1 / \epsilon)\rceil$

First prove that for any function $p_{0}(n)$ with $\lim _{n \rightarrow \infty} \frac{p_{0}(n)}{p(n)}=0$, almost surely $\boldsymbol{G}\left(n, p_{0}\right)$ does not have the property Q.
Let $\boldsymbol{G}(n, q)$ be the m-fold replication of $\boldsymbol{G}\left(n, p_{0}\right)$.
For all $n \in I$, the probability that $\boldsymbol{G}(n, q)$ does not have $Q: \leq(1-\epsilon)^{m} \leq e^{-1} \leq 1 / 2$

$$
\operatorname{Pr}\left(\boldsymbol{G}\left(n, m p_{0}\right) \text { has } Q\right) \geq \operatorname{Pr}(\boldsymbol{G}(n, q) \text { has } Q) \geq 1 / 2
$$

As $p(n)$ is the minimum real number a_{n} for which $\operatorname{Pr}\left(\boldsymbol{G}\left(n, a_{n}\right)\right.$ has $\left.Q\right)=\frac{1}{2}$, it follows that $m p_{0}(n) \geq p(n)$.
$\therefore \frac{p_{0}(n)}{p(n)} \geq \frac{1}{m}$ infinitely often.
Contradict to the fact that $\lim _{n \rightarrow \infty} \frac{p_{0}(n)}{p(n)}=0$.

Theorem: Every increasing property Q of $\boldsymbol{G}(n, p)$ has a phase transition at $p(n)$, where for each n, $p(n)$ is the minimum real number a_{n} for which the probability that $\boldsymbol{G}\left(n, a_{n}\right)$ has property Q is $\frac{1}{2}$.

Proof:

Secondly prove that for any function $p_{1}(n)$ with $\lim _{n \rightarrow \infty} \frac{p(n)}{p_{1}(n)}=0$, almost surely $\boldsymbol{G}\left(n, p_{1}\right)$ almost surely has the property Q.

Theorem: Every increasing property Q of $\boldsymbol{G}(n, p)$ has a phase transition at $p(n)$, where for each n, $p(n)$ is the minimum real number a_{n} for which the probability that $\boldsymbol{G}\left(n, a_{n}\right)$ has property Q is $\frac{1}{2}$.

Another Proof:

p^{*} is the probability that $\operatorname{Pr}\left(\boldsymbol{G}\left(n, p^{*}\right)\right.$ has $\left.Q\right)=\frac{1}{2}$
As $\operatorname{Pr}\left(\boldsymbol{G}\left(n, 1-(1-p)^{k}\right)\right.$ has $\left.Q\right) \leq \operatorname{Pr}(\boldsymbol{G}(n, k p)$ has $Q)$
$\operatorname{Pr}(\boldsymbol{G}(n, k p)$ does not have $Q) \leq[\operatorname{Pr}(\boldsymbol{G}(n, p) \text { does not have } Q)]^{k}$
Take $k=\omega$ is a function of n that $\omega \rightarrow \infty$ arbitrarily slow as $n \rightarrow \infty$.
$\triangleright \operatorname{Pr}\left(\boldsymbol{G}\left(n, \omega \cdot p^{*}\right)\right.$ does not have $\left.Q\right) \leq\left(\frac{1}{2}\right)^{\omega}=o(1)$
\triangleright Take $p=\frac{p^{*}}{\omega}$,
$\frac{1}{2}=\operatorname{Pr}\left(\boldsymbol{G}\left(n, p^{*}\right)\right.$ does not have $\left.Q\right) \leq\left[\operatorname{Pr}\left(\boldsymbol{G}\left(n, \frac{p^{*}}{\omega}\right) \text { does not have } Q\right)\right]^{\omega}$
Thus $\operatorname{Pr}\left(\boldsymbol{G}\left(n, \frac{p^{*}}{\omega}\right)\right.$ does not have $\left.Q\right) \geq\left(\frac{1}{2}\right)^{\frac{1}{\omega}}=1-o(1)$.

