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• World Wide Web

• Internet

• Social networks

• Journal citations

• ……
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Statistical properties VS  Exact answer to questions



The 𝐺(𝑛, 𝑝) model

Properties of almost all graphs

Phase transition
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𝑮(𝑛, 𝑝) Model

• 𝑮(𝑛, 𝑝) Model [Erd ሷ𝑜s and R ƴ𝑒nyi1960]: 

V = 𝑛 is the number of vertices, and for 

and different 𝑢, 𝑣 ∈ 𝑉, Pr 𝑢, 𝑣 ∈ 𝐸 = 𝑝.
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• Example.  If 𝑝 =
𝑑

𝑛
. 

Then 𝑬 deg 𝑣 =
𝑑

𝑛
𝑛 − 1 ≈ 𝑑

𝑛 ≈ 𝑛 − 1



Example:  𝑮(𝑛, 1/2)

Pr 𝐾 = 𝑘 =
𝑛 − 1
𝑘

1

2

𝑘
1

2

𝑛−𝑘

≈
𝑛
𝑘

1

2

𝑘 1

2

𝑛−𝑘
=

1

2𝑛

𝑛
𝑘
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𝐾 = deg(𝑣)

𝐸(𝐾) = 𝑛/2

𝑉𝑎𝑟(𝐾) =𝑛/4

Independence!

Binomial Distribution



Recall: Central Limit Theorem

Normal distribution (Gauss Distribution): 

𝑋 ∼ 𝑁 𝜇, 𝜎2 , with density function:

𝑓 𝑥 =
1

2𝜋𝜎
𝑒
−

𝑥−𝜇 2

2𝜎2 , −∞ < 𝑥 < +∞
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As long as {𝑋𝑖} is independent identically 

distributed with 𝐸 𝑋𝑖 = 𝜇, 𝐷 𝑋𝑖 = 𝜎2, then 
σ𝑖=1
𝑛 𝑋𝑖 can be approximated by normal 

distribution (𝑛𝜇, 𝑛𝜎2)when 𝑛 is large enough.



• 𝑮(𝑛, 1/2)
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𝜇 = 𝑛𝜇′ = 𝐸 𝐾 =
𝑛

2
,

𝜎2 = 𝑛(𝜎′)2 = 𝑉𝑎𝑟(𝐾) = 𝑛/4

(CLT) Near the mean, the binomial distribution 

is well approximated by the normal distribution.

1

𝜎 2𝜋
𝑒
−

𝑘−𝑛𝜇 2

2𝜎2 =
1

𝜋𝑛/2
𝑒
−

𝑘−𝑛/2 2

𝑛/2

It works well when 𝑘 = Θ 𝑛 .
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• 𝑮(𝑛, 1/2): for any 𝜖 > 0, the degree of 

each vertex almost surely is within 

1 ± 𝜖
𝑛

2
.

Proof. As we can approximate the distribution by 

1

𝜋𝑛/2
𝑒
−

𝑘−𝑛/2 2

𝑛/2

𝜇 =
𝑛

2
, 𝜎 =

𝑛

2

𝜇 ± 𝑐𝜎 =
𝑛

2
± 𝑐

𝑛

2
≈

1 ± 𝜖
𝑛

2
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• 𝑮(𝑛, 𝑝): for any 𝜖 > 0, if 𝑝 is Ω
ln 𝑛

𝑛𝜖2
, then 

the degree of each vertex almost surely is 

within 1 ± 𝜖 𝑛𝑝.

Proof. Omitted



𝑮(𝑛, 𝑝) Model: independent set and clique

Lemma. For all integers 𝑛, 𝑘 with 𝑛 ≥ 𝑘 ≥ 2;
the probability that G ∈ 𝑮 𝑛, 𝑝 has a set of 𝑘
independent vertices is at most

Pr 𝛼 𝐺 ≥ 𝑘 ≤ 𝑛
𝑘

1 − 𝑝
𝑘
2

the probability that G ∈ 𝑮 𝑛, 𝑝 has a set of 𝑘
clique is at most

Pr 𝜔 𝐺 ≥ 𝑘 ≤ 𝑛
𝑘

𝑝
𝑘
2
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Lemma. The expected number of 𝑘 −cycles 

in G ∈ 𝑮 𝑛, 𝑝 is 𝐸 𝑥 =
𝑛 𝑘

2𝑘
𝑝𝑘.
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Proof. The expectation of certain 𝑛 vertices 

𝑣0, 𝑣1, ⋯ , 𝑣𝑘−1, 𝑣0 form a length 𝑘 cycle is: 𝑝𝑘

The possible ways to choose 𝑘 vertices to 

form a cycle 𝐶 is 
𝑛 𝑘

2𝑘
.

The expectation of the number of all cycles:

𝑋 =

𝐶

𝑋𝐶 =
𝑛 𝑘

2𝑘
𝑝𝑘



The 𝐺(𝑛, 𝑝) model

Properties of almost all graphs

Phase transition
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Properties of almost all graphs

• For a graph property 𝑃 , when 𝑛 → ∞, If 

the limit of the probability of 𝐺 ∈ 𝑮(𝑛, 𝑝)
having the property tends to 

– 1: we say than the property holds for almost 

all (almost every / almost surely) 𝐺 ∈ 𝑮 𝑛, 𝑝 .

– 0: we say than the property holds for almost 

no 𝐺 ∈ 𝑮 𝑛, 𝑝 .
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Proposition. For every constant 𝑝 ∈ (0,1)
and every graph 𝐻, almost every 𝐺 ∈ 𝑮(𝑛, 𝑝)
contains an induced copy of H.

14

𝐺

𝐻



Proposition. For every constant 𝑝 ∈ (0,1)
and every graph 𝐻, almost every 𝐺 ∈ 𝑮(𝑛, 𝑝)
contains an induced copy of H.

15

Proof. 𝑉 𝐺 = 𝑣0, 𝑣1, … , 𝑣𝑛−1 , 𝑘 = |𝐻|

Fix some 𝑈 ∈ 𝑉(𝐺)
𝑘

，then Pr 𝑈 ≅ 𝐻 = 𝑟 > 0

𝑟 depends on 𝑝, 𝑘 not on 𝑛.

There are 𝑛/𝑘 disjoint such 𝑈.  

The probability that none of the 

𝐺[𝑈] is isomorphic to 𝐻 is: = 1 − 𝑟 𝑛/𝑘

↓
0

𝑛 → ∞

Pr[¬(𝐻 ⊆ 𝐺 induced)]: ≤ 1 − 𝑟 𝑛/𝑘



Property 𝑷𝒊,𝒋: for any disjoint vertex set 𝑈, 𝑊 with 

𝑈 ≤ 𝑖, 𝑊 ≤ 𝑗; exists a vertex 𝑣 ∉ 𝑈 ∪𝑊; 𝑣 is 

adjacent to all vertices in 𝑈 but to none in 𝑊 .
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𝐺

𝑈 ≤ 𝑖
𝑊 ≤ 𝑗

𝑣



Proposition. For every constant 𝑝 ∈ (0,1)
and 𝑖, 𝑗 ∈ 𝑁, almost every graph 𝐺 ∈ 𝑮(𝑛, 𝑝)
has the property 𝑃𝑖,𝑗.
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𝐺

𝑈 ≤ 𝑖
𝑊 ≤ 𝑗

𝑣



Proposition. For every constant 𝑝 ∈ (0,1) and

𝑖, 𝑗 ∈ 𝑁, almost every graph 𝐺 ∈ 𝑮(𝑛, 𝑝) has the

property 𝑃𝑖,𝑗.
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Proof. Fix 𝑈,𝑊 and 𝑣 ∈ 𝐺 − 𝑈 ∪𝑊 , 𝑞 = 1 − 𝑝,

The probability that 𝑃𝑖,𝑗 holds for 𝑣: 𝑝 𝑈 𝑞|𝑊| ≥ 𝑝𝑖𝑞𝑗

The probability there’s no such 𝑣 for chosen 𝑈,𝑊:

= 1 − 𝑝 𝑈 𝑞 𝑊 𝑛− 𝑈 −|𝑊|
≤ 1 − 𝑝𝑖𝑞𝑗

𝑛−𝑖−𝑗

The upper bound for the number of different choice of 𝑈,𝑊: 𝑛𝑖+𝑗

The probability there exists some 𝑈,𝑊 without suitable 𝑣:

≤ 𝑛𝑖+𝑗 1 − 𝑝𝑖𝑞𝑗
𝑛−𝑖−𝑗 𝑛→∞

0



Coloring

• Vertex coloring: to 𝐺 = (𝑉, 𝐸), a vertex 

coloring is a map 𝑐: 𝑉 → 𝑆 such that 𝑐 𝑣 ≠
𝑐(𝑤) whenever 𝑣 and 𝑤 are adjacent. 

• Chromatic number 𝝌(𝑮): the smallest 

size of 𝑆. 
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𝜒 𝐺 = 3



Coloring
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• Some famous results：

– Whether 𝜒 𝐺 = 𝑘 is NP-complete.

– Every Planar graph is 4-colourable.

– [Grt ሷ𝑜zsch 1959] Every Planar graph not 

containing a triangle is 3-colourable. 

• Vertex coloring: to 𝐺 = (𝑉, 𝐸), a vertex 

coloring is a map 𝑐: 𝑉 → 𝑆 such that 𝑐 𝑣 ≠
𝑐(𝑤) whenever 𝑣 and 𝑤 are adjacent. 

• Chromatic number 𝝌(𝑮): the smallest 

size of 𝑆. 



Proposition. For every constant 𝑝 ∈ (0,1) and 

every 𝜖 > 0, almost every graph 𝐺 ∈ 𝑮(𝑛, 𝑝) has 

chromatic number 𝜒 𝐺 >
log(1/𝑞)

2+𝜖
⋅

𝑛

𝑙𝑜𝑔𝑛
.
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Proof.

Pr 𝛼 𝐺 ≥ 𝑘 ≤
𝑛

𝑘
𝑞

𝑘
2 ≤ 𝑛𝑘𝑞

𝑘
2

= 𝑞
𝑘
log 𝑛
log 𝑞

+
1
2𝑘(𝑘−1)= 𝑞

𝑘
2 −

2log 𝑛
log(1/𝑞)

+𝑘−1

Take 𝑘 = 2 + 𝜖
log 𝑛

log(1/𝑞)
then (*) tends to ∞ with 𝑛.

The size of the maximum independent set in 𝐺: 𝛼(𝐺)

∴ Pr 𝛼 𝐺 ≥ 𝑘
𝑛→∞

0 ⇒

∴ 𝜒 𝐺 >
𝑛

𝑘
=
log 1/𝑞

2 + 𝜖
⋅

𝑛

log 𝑛

(*)

No 𝑘 vertices can have the 

same color.
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Phase transition
The interesting thing about the 𝑮(𝑛, 𝑝)
model is that even though edges are 

chosen independently, certain global 

properties of the graph emerge from the 

independent choice. 
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Definition. If there exists a function 𝑝(𝑛)
such that 

– when lim
𝑛→∞

𝑝1(𝑛)

𝑝(𝑛)
= 0, 𝑮 𝑛, 𝑝1 𝑛 almost 

surely does not have the property.

– when lim
𝑛→∞

𝑝2(𝑛)

𝑝(𝑛)
= ∞, 𝑮 𝑛, 𝑝2 𝑛 almost 

surely has the property.

Then we say phase transition occurs and 

𝑝(𝑛) is the threshold.

24

Phase transition
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Phase transition
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John’s book: Fig 8.2



First moment method
Markov’s Inequality: Let 𝑥 be a random 

variable that assumes only nonnegative 

values. Then for all 𝑎 > 0

Pr 𝑥 ≥ 𝑎 ≤
𝑬[𝑥]

𝑎
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First moment method : for non-negative, 

integer valued variable 𝑥
Pr 𝑥 > 0 = Pr 𝑥 ≥ 1 ≤ 𝑬(𝑥)

∴ Pr 𝑥 = 0 = 1 − Pr 𝑥 > 0 ≥ 1 − 𝑬(𝑥)



• If the expectation goes to 0: the property 

almost surely does not happen.

• If the expectation does not goes to 0:

e.g.  Expectation =
1

𝑛
× 𝑛2 +

𝑛−1

𝑛
× 0 = 𝑛

i.e., a vanishingly small fraction of the sample 

contribute a lot to the expectation. 
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First moment method : for non-negative , 

integer valued variable 𝑥
Pr 𝑥 > 0 = Pr 𝑥 ≥ 1 ≤ 𝑬(𝑥)

∴ Pr 𝑥 = 0 = 1 − Pr 𝑥 > 0 ≥ 1 − 𝑬(𝑥)



Chebyshev’s Inequality

• For any 𝑎 > 0,

Pr 𝑋 − 𝐸 𝑋 ≥ 𝑎 ≤
𝑉𝑎𝑟[𝑋]

𝑎2
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Second moment method
Theorem. Let 𝑥(𝑛) be a random variable 

with 𝑬 𝑥 > 0. If 

𝑉𝑎𝑟 𝑥 = 𝑜 𝑬2 𝑥

Then 𝑥 is almost surely greater than zero.

30

Proof.  If 𝑬 𝑥 > 0, then for 𝑥 ≤ 0, 

Pr 𝑥 ≤ 0 ≤ Pr 𝑥 − 𝑬 𝑥 ≥ 𝑬(𝑥)

≤
𝑉𝑎𝑟 𝑥

𝐸2 𝑥
→ 0
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Example : Threshold for graph diameter two 

(two degrees of separation)



Example : Threshold for graph diameter two 

(two degrees of separation)

• Diameter: the maximum length of the 

shortest path between a pair of nodes.

• Theorem: The property that 𝑮(𝑛, 𝑝) has 

diameter two has a sharp threshold at 𝑝 =

2
ln 𝑛

𝑛
.
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Example : Threshold for graph diameter two 

(two degrees of separation)

Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛
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Proof.  For any two different vertices 𝑖 < 𝑗, 

𝐼𝑖𝑗 = ቊ
1 𝑖, 𝑗 ∉𝐸, no other vertex is adjacent to both 𝑖 𝑎𝑛𝑑 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥 =

𝑖<𝑗

𝐼𝑖𝑗 If 𝑬 𝑥
𝑛→∞

0, then for large 𝑛, almost 

surely the diameter is at most two.



Example : Threshold for graph diameter two 

(two degrees of separation)

Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛
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Proof.  For any two different vertices 𝑖 < 𝑗, 

𝐼𝑖𝑗 = ቊ
1 i, j ∉𝐸, no other vertex is adjacent to both 𝑖 𝑎𝑛𝑑 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑬 𝑥 =
𝑛

2
1 − 𝑝 1 − 𝑝2 𝑛−2

Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝐸(𝑥) ≅

𝑛2

2
1 − 𝑐

ln 𝑛

𝑛
1 − 𝑐2

ln 𝑛

𝑛

𝑛

𝑥 =

𝑖<𝑗

𝐼𝑖𝑗

≅
𝑛2

2
𝑒−𝑐

2 ln 𝑛 =
1

2
𝑛2−𝑐

2



Example : Threshold for graph diameter two 

(two degrees of separation)

Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

35

Proof.  For any two different vertices 𝑖 < 𝑗, 

𝐼𝑖𝑗 = ቊ
1 i, j ∉𝐸, no other vertex is adjacent to both 𝑖 𝑎𝑛𝑑 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑬 𝑥 =
𝑛

2
1 − 𝑝 1 − 𝑝2 𝑛−2

Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 > 2, lim

𝑛→∞
𝑬 𝑥 = 0

𝑥 =

𝑖<𝑗

𝐼𝑖𝑗

For large 𝑛, almost surely the diameter is at most two.
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 > 2, lim

𝑛→∞
𝑬 𝑥 = 0
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 < 2,

𝑬 𝑥2 = 𝑬 

𝑖<𝑗

𝐼𝑖𝑗

2
If 𝑉𝑎𝑟 𝑥 = 𝑜 𝑬2 𝑥 , then for large 𝑛, 

almost surely the diameter will be larger 

than two.
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 < 2

𝑬 𝑥2 = 𝑬 

𝑖<𝑗

𝐼𝑖𝑗

2

= 𝑬 

𝑖<𝑗

𝐼𝑖𝑗

𝑘<𝑙

𝐼𝑘𝑙 = 𝑬 
𝑖<𝑗
𝑘<𝑙

𝐼𝑖𝑗 𝐼𝑘𝑙 =
𝑖<𝑗
𝑘<𝑙

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙

𝑎 = | 𝑖, 𝑗, 𝑘, 𝑙 |

𝑬 𝑥2 = 
𝑖<𝑗
𝑘<𝑙
𝑎=4

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 + 

{𝑖,𝑗,𝑘}
𝑖<𝑗
𝑎=3

𝑬 𝐼𝑖𝑗𝐼𝑖𝑘 +
𝑖<𝑗
𝑘<𝑙
𝑎=2

𝑬 𝐼𝑖𝑗
2
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 < 2

𝑬 𝑥2 = 
𝑖<𝑗
𝑘<𝑙
𝑎=4

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 + 

{𝑖,𝑗,𝑘}
𝑖<𝑗
𝑎=3

𝑬 𝐼𝑖𝑗𝐼𝑖𝑘 +
𝑖<𝑗
𝑘<𝑙
𝑎=2

𝑬 𝐼𝑖𝑗
2

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 ≤ 1 − 𝑝2 2 𝑛−4 ≤ 1 − 𝑐2
ln 𝑛

𝑛

2𝑛

1 + 𝑜 1 ≤ 𝑛−2𝑐
2
(1 + 𝑜(1))


𝑖<𝑗
𝑘<𝑙
𝑎=4

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 ≤
1

4
𝑛4−2𝑐

2
(1 + 𝑜(1))

𝑖 𝑗 𝑘 𝑙

𝑢
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 < 2

𝑬 𝑥2 = 
𝑖<𝑗
𝑘<𝑙
𝑎=4

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 + 

{𝑖,𝑗,𝑘}
𝑖<𝑗
𝑎=3

𝑬 𝐼𝑖𝑗𝐼𝑖𝑘 +
𝑖<𝑗
𝑘<𝑙
𝑎=2

𝑬 𝐼𝑖𝑗
2

𝑖 𝑗 𝑘

𝑢
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 < 2

𝑬 𝑥2 = 
𝑖<𝑗
𝑘<𝑙
𝑎=4

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 + 

{𝑖,𝑗,𝑘}
𝑖<𝑗
𝑎=3

𝑬 𝐼𝑖𝑗𝐼𝑖𝑘 +
𝑖<𝑗
𝑘<𝑙
𝑎=2

𝑬 𝐼𝑖𝑗
2

Pr 𝐼𝑖𝑗𝐼𝑖𝑘 = 1 ≤ 1 − 𝑝 + 𝑝 1 − 𝑝 2 = 1 − 2𝑝2 + 𝑝3 ≈ 1 − 2𝑝2



𝑖,𝑗,𝑘 ,𝑖<𝑗,𝑎=3

𝑬 𝐼𝑖𝑗𝐼𝑖𝑘 ≤ 𝑛3−2𝑐
2

𝑖 𝑗 𝑘

𝑢

𝑬 𝐼𝑖𝑗𝐼𝑖𝑘 ≤ 1 − 2𝑝2 𝑛−3 = 1 −
2𝑐2 ln 𝑛

𝑛

𝑛−3

≅ 𝑒−2𝑐
2 ln 𝑛 = 𝑛−2𝑐

2
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 < 2

𝑬 𝑥2 = 
𝑖<𝑗
𝑘<𝑙
𝑎=4

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 +
𝑖<𝑗
𝑘<𝑙
𝑎=3

𝑬 𝐼𝑖𝑗𝐼𝑘𝑙 +
𝑖<𝑗
𝑘<𝑙
𝑎=2

𝑬 𝐼𝑖𝑗
2

𝐸(𝐼𝑖𝑗
2 ) = 𝐸(𝐼𝑖𝑗)



𝑖𝑗

𝑬 𝐼𝑖𝑗
2 = 𝐸 𝑥 ≅

1

2
𝑛2−𝑐

2
𝑖 𝑗

𝑢
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Theorem. The property that 𝑮(𝑛, 𝑝) has diameter 

two has a sharp threshold at 𝑝 = 2
ln 𝑛

𝑛

• Take 𝑝 = 𝑐
ln 𝑛

𝑛
, 𝑐 < 2

𝑬 𝑥2 ≤ 𝑬2(𝑥)(1 + 𝑜 1 )

A graph almost surely has at least one bad

pair of vertices and thus diameter greater

than two.



Definition. If there exists a function 𝑝(𝑛)
such that 

– when lim
𝑛→∞

𝑝1(𝑛)

𝑝(𝑛)
= 0, 𝑮 𝑛, 𝑝1 𝑛 almost 

surely does not have the property.

– when lim
𝑛→∞

𝑝2(𝑛)

𝑝(𝑛)
= ∞, 𝑮 𝑛, 𝑝2 𝑛 almost 

surely has the property.

Then we say phase transition occurs and 

𝑝(𝑛) is the threshold.

44

Phase transition

Every increasing property has a threshold.



Increasing property

• Definition: The probability of a graph 

having the property increases as edges 

are added to the graph.

45

• Example:

– Connectivity

– Having no isolated vertices

– Having a cycle

– ……



Lemma: If 𝑄 is an increasing property of graphs 

and 0 ≤ 𝑝 ≤ 𝑞 ≤ 1, then the probability that 𝑮(𝑛, 𝑞)
has property 𝑄 is greater than or equal to the 

probability that 𝑮(𝑛, 𝑝) has property 𝑄.

46

Proof:

Independently generate graph 𝑮(𝑛, 𝑝) and 𝑮(𝑛,
𝑞−𝑝

1−𝑝
) .

𝐻 = 𝑮 𝑛, 𝑝 ∪ 𝑮(𝑛,
𝑞−𝑝

1−𝑝
) (the union of the edge set).

Graph 𝐻 has the same distribution as 𝑮 𝑛, 𝑞 :

Pr 𝑢, 𝑣 ∈ 𝐸 𝐻 = 𝑝 + 1 − 𝑝
𝑞 − 𝑝

1 − 𝑝
= 𝑞.

And edges in 𝐻 are independent.

The result follows naturally.



Replication
𝑚-fold replication of 𝑮(𝑛, 𝑝) :

– Independently generate 𝑚 copies of 𝑮(𝑛, 𝑝)
(on the same vertex set);

– Take the union of the 𝑚 copies;

The result graph 𝐻 has the same distribution 

as 𝐺(𝑛, 𝑞), where 𝑞 = 1 − 1 − 𝑝 𝑚.

47



48John’s book: Figure 8.10



Replication
𝑚-fold replication of 𝑮(𝑛, 𝑝) :

– Independently generate 𝑚 copies of 𝑮(𝑛, 𝑝)
(on the same vertex set);

– Take the union of the 𝑚 copies;

The result graph 𝐻 has the same distribution 

as 𝐺(𝑛, 𝑞), where 𝑞 = 1 − 1 − 𝑝 𝑚.
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One of the copies of 𝑮(𝑛, 𝑝) has the increasing property

↓
𝐺 𝑛, 𝑞 has the increasing property.

As 𝑞 ≤ 1 − 1 −𝑚𝑝 = 𝒎𝒑
∴ Pr 𝑮 𝑛,𝒎𝒑 has 𝑄 ≥ Pr 𝑮 𝑛, 𝑞 has 𝑄



Theorem: Every increasing property 𝑄 of 𝑮(𝑛, 𝑝)
has a phase transition at 𝑝 𝑛 , where for each 𝑛, 

𝑝(𝑛) is the minimum real number 𝑎𝑛 for which the 

probability that 𝑮(𝑛, 𝑎𝑛) has property 𝑄 is 
1

2
.
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Proof:

First prove that for any function 𝑝0(𝑛) with  

lim
𝑛→∞

𝑝0(𝑛)

𝑝(𝑛)
= 0 , almost surely 𝑮(𝑛, 𝑝0) does not have 

the property 𝑄.

Suppose otherwise: the probability that  𝑮(𝑛, 𝑝0) has 

the property 𝑄 does not converge to 0.

Then there exists 𝜖 > 0 for which the probability 

that 𝑮(𝑛, 𝑝0) has the property 𝑄 is ≥ 𝜖 on an 

infinite set 𝐼 of 𝑛. Let 𝑚 = (1/𝜖)
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First prove that for any function 𝑝0(𝑛) with  

lim
𝑛→∞

𝑝0(𝑛)

𝑝(𝑛)
= 0 , almost surely 𝑮(𝑛, 𝑝0) does not have 

the property 𝑄.

Let 𝑮(𝑛, 𝑞) be the 𝑚-fold replication of 𝑮 𝑛, 𝑝0 .

For all 𝑛 ∈ 𝐼, the probability 

that 𝑮(𝑛, 𝑞) does not have 𝑄 ∶ ≤ 1 − 𝜖 𝑚 ≤ 𝑒−1 ≤ 1/2

Pr 𝑮 𝑛,𝒎𝒑𝟎 has 𝑄 ≥ Pr 𝑮 𝑛, 𝑞 has 𝑄 ≥ 1/2

As 𝑝(𝑛) is the minimum real number 𝑎𝑛 for which 

Pr 𝑮 𝑛, 𝑎𝑛 has 𝑄 =
1

2
, it follows that 𝒎𝒑𝟎 𝒏 ≥ 𝑝 𝑛 .

∴
𝒑𝟎(𝒏)

𝑝 𝑛
≥

1

𝑚
infinitely often.

Contradict to the fact that lim
𝑛→∞

𝑝0(𝑛)

𝑝(𝑛)
= 0.



Theorem: Every increasing property 𝑄 of 𝑮(𝑛, 𝑝)
has a phase transition at 𝑝 𝑛 , where for each 𝑛, 

𝑝(𝑛) is the minimum real number 𝑎𝑛 for which the 

probability that 𝑮(𝑛, 𝑎𝑛) has property 𝑄 is 
1

2
.
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Proof:

Secondly prove that for any function 𝑝1(𝑛) with  

lim
𝑛→∞

𝑝(𝑛)

𝑝1(𝑛)
= 0 , almost surely 𝑮(𝑛, 𝑝1) almost surely 

has the property 𝑄.



Theorem: Every increasing property 𝑄 of 𝑮(𝑛, 𝑝)
has a phase transition at 𝑝 𝑛 , where for each 𝑛, 

𝑝(𝑛) is the minimum real number 𝑎𝑛 for which the 

probability that 𝑮(𝑛, 𝑎𝑛) has property 𝑄 is 
1

2
.
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Another Proof:
𝑝∗ is the probability that Pr(𝑮(𝑛, 𝑝∗) has 𝑄) =

1

2

As Pr(𝑮(𝑛, 1 − 1 − 𝑝 𝑘) has 𝑄) ≤ Pr(𝑮(𝑛, 𝑘𝑝) has 𝑄)

Pr 𝑮 𝑛, 𝑘𝑝 does not have 𝑄 ≤ Pr 𝑮 𝑛, 𝑝 does not have 𝑄 𝑘

Take 𝑘 = 𝜔 is a function  of 𝑛 that 𝜔 → ∞ arbitrarily  slow as 𝑛 → ∞.

▷ Pr 𝑮 𝑛, 𝜔 ⋅ 𝑝∗ does not have 𝑄 ≤
1

2

𝜔

= 𝑜(1)

▷ Take 𝑝 =
𝑝∗

𝜔
, 

1

2
= Pr 𝑮 𝑛, 𝑝∗ does not have 𝑄 ≤ Pr 𝑮 𝑛,

𝑝∗

𝜔
does not have 𝑄

𝜔

Thus Pr 𝑮 𝑛,
𝑝∗

𝜔
does not have 𝑄 ≥

1

2

1

𝜔
= 1 − 𝑜 1 .

https://www.math.cmu.edu/~af1p/BOOK.pdf
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