High Dimensional Space

longhuan@sjtu.edu.cn

Word Vector Model

Web Page Model

- Nearest neighbor query
- Information retrieval
- Web page rank

.

Online recommendation

Normal distribution (Gauss Distribution) $X \sim N(\mu, \sigma^2)$, with density function: $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < +\infty$

Variance
$$Var(X) = E((X - E[X])^2)$$

= $E(X^2 + E[X]^2 - 2XE[X])$
= $E(X^2 - E[X]^2)$
= $E[X^2] - E[X]^2$

Chebyshev's Inequality
$$\forall a > 0, \Pr(|X - E(X)| \ge a) \le \frac{Var[X]}{a^2}$$

Law of Large Numbers

- In probability theory, the law of large numbers (LLN) is a theorem that describes the result of performing the same experiment a large number of times.
- According to the law, the average of the results obtained from a large number of trials should be close to the expected value, and will tend to become closer as more trials are performed.

Law of large numbers

Let $x_1, x_2, ..., x_n$ be *n* independent samples of a random variable *x*, then

$$\Pr\left(\left|\frac{x_1 + x_2 + \cdots + x_n}{n} - E(x)\right| \ge \epsilon\right) \le \frac{Var(x)}{n\epsilon^2}$$

Proof. (Chebychev's Inequality)

$$\Pr\left(\left|\frac{x_1 + x_2 + \dots + x_n}{n} - E(x)\right| \ge \epsilon\right) \le \frac{Var(\frac{x_1 + x_2 + \dots + x_n}{n})}{\epsilon^2}$$

$$=\frac{Var(x_1+x_2+\cdots x_n)}{n^2\epsilon^2}$$

$$=\frac{Var(x)}{n\epsilon^2}$$

- x be a d –dimensional random point whose coordinates are each selected from $N\left(0,\frac{1}{2\pi}\right)$,
- i.e. $\mathbf{x} = [x_1, x_2, ..., x_d]$ with $x_i \sim N\left(0, \frac{1}{2\pi}\right)$
- By LLN: $|\mathbf{x}|^2 = \sum_{i=1}^d x_i^2 = \frac{d}{2\pi} = \Theta(d)$ with high probability.
- The probability that point *x* lie in the unit ball is vanishingly small.

- $x, y : [z_1, z_2, ..., z_d]$ with $z_i \sim N(0, 1)$
- $|\mathbf{x}|^2 \approx d, |\mathbf{y}|^2 \approx d,$
- $|\mathbf{x} \mathbf{y}|^2 \approx ?$

- $x, y : [z_1, z_2, ..., z_d]$ with $z_i \sim N(0, 1)$
- $|\mathbf{x}|^2 \approx d$, $|\mathbf{y}|^2 \approx d$,
- $|\mathbf{x} \mathbf{y}|^2 = \sum_{i=1}^d (x_i y_i)^2$ $E(x_i - y_i)^2 = E(x_i^2) + E(y_i^2) - 2E(x_iy_i)$ $= 1 + 1 - 2E(x_i)E(y_i) = 2.$

- $x, y : [z_1, z_2, ..., z_d]$ with $z_i \sim N(0, 1)$
- $|\mathbf{x}|^2 \approx d$, $|\mathbf{y}|^2 \approx d$,
- $|\mathbf{x} \mathbf{y}|^2 = \sum_{i=1}^d (x_i y_i)^2 = 2d$ $E(x_i - y_i)^2 = E(x_i^2) + E(y_i^2) - 2E(x_iy_i)$ $= 1 + 1 - 2E(x_i)E(y_i) = 2.$
- $|x y|^2 \approx |x|^2 + |y|^2$
- Pythagorean theorem ⇒ random
 d –dimensional x, y are approximately orthogonal.

- $x, y : [z_1, z_2, ..., z_d]$ with $z_i \sim N(0, 1)$
- Pythagorean theorem ⇒ random
 d –dimensional x, y are approximately orthogonal.

If we scale these random points to be unit length and call *x* the North Pole, *much of the surface area of the unit ball must lie near the equator*.

(to be formalized latter.)

Master Tail Bound Theorem

Theorem. Let $x = x_1 + x_2 + \dots + x_n$, where x_1, x_2, \dots, x_n are mutually independent random variables with zero means and variance at most σ^2 . Let $0 \le a \le \sqrt{2}n\sigma^2$. Assume that $|E(x_i^s)| \le \sigma^2 s!$ for $s = 3, 4, \dots, \lfloor (a^2/4n\sigma^2) \rfloor$ then $Prob(|x| \ge a) \le 3e^{-\frac{a^2}{12n\sigma^2}}$.

Table of tail bounds

	Condition	Tail bound
Markov	$x \ge 0$	$\operatorname{Prob}(x \ge a) \le \frac{E(x)}{a}$
Chebychev	Any x	$\operatorname{Prob}(x - E(x) \ge a) \le \frac{\operatorname{Var}(x)}{a^2}$
Chernoff	$x = x_1 + x_2 + \dots + x_n$ $x_i \in [0, 1] \text{ i.i.d. Bernoulli;}$	$Prob(x - E(x) \ge \varepsilon E(x)) \le 3e^{-c\varepsilon^2 E(x)}$
Higher Moments	r positive even integer	$\operatorname{Prob}(x \ge a) \le E(x^r)/a^r$
Gaussian Annulus	$x = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$ $x_i \sim N(0, 1); \beta \le \sqrt{n} \text{ indep.}$	$\operatorname{Prob}(x - \sqrt{n} \ge \beta) \le 3e^{-c\beta^2}$
Power Law for x_i ; order $k \ge 4$	$x = x_1 + x_2 + \ldots + x_n$ $x_i \text{ i.i.d }; \varepsilon \le 1/k^2$	Prob $(x - E(x) \ge \varepsilon E(x))$ $\le (4/\varepsilon^2 kn)^{(k-3)/2}$

Geometry of High Dimensions

 Most of the volume of the high-dimensional objects is near the surface:

$$\frac{Volume((1-\epsilon)A)}{Volume(A)} = (1-\epsilon)^d \le e^{-\epsilon d}$$

Fix ϵ and letting $d \to \infty$, the above quantity rapidly approaches zero.

Application

S be the unit ball in *d* –dimensions (i.e., the set of points within distance 1 of the origin). Then $1 - e^{-\epsilon d}$ fraction of the volume is in $S \setminus (1 - \epsilon)S$.

Especially, consider
$$\epsilon = \frac{1}{d}$$
.

Relationship between the sphere and cube

John's Book Fig 2.4

The difference between the volume of a cube with unit-length sides and the volume of a unit-radius sphere at the dimensions: 2, 4 and d.

Conceptual drawing of a sphere and a cube

For large d, almost all the volume of the cube is located outside the sphere.

Unit ball in d -dimensions • Surface: $A(d) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}$, Volume: $V(d) = \frac{2}{d} \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}$. $\begin{bmatrix} \Gamma(n) = (n-1)! \\ \Gamma(x) = \int_{0}^{+\infty} t^{x-1}e^{-t}dt \ (x > 0) \\ \Gamma(1/2) = \sqrt{\pi} \end{bmatrix}$

Unit ball in d –dimensions

• Surface:
$$A(d) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}$$
, Volume: $V(d) = \frac{2}{d} \cdot \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})}$.
• $V(2) = \pi, V(3) = \frac{4}{3}\pi$, $\lim_{n \to \infty} V(d) = 0$. $n! \ge n^{n/2}$

 Most of the volume of a unit ball in high dimensions is concentrated near its equator no matter which direction is defined to be the North Pole.

Theorem: For $c \ge 1$ and $d \ge 3$, at least a $1 - \frac{2}{c}e^{-c^2/2}$ fraction of the volume of the *d*-dimensional unit ball has $|x_1| \le \frac{c}{\sqrt{d-1}}$.

Near orthogonality !

How it can be that nearly all the points in the unit ball are very close to the surface and yet at the same time nearly all points are in a box of side length $O(\frac{\ln d}{d-1})$?

A. Points on the surface of the ball satisfy $x_1^2 + x_2^2 + \cdots x_d^2 = 1$,

so for each coordinate *i*, a typical value will be $\pm O\left(\frac{1}{\sqrt{d}}\right)$. In fact, it is helpful to think of picking a random point on the sphere as very similar to picking a random point of the form $\left(\pm\frac{1}{\sqrt{d}},\pm\frac{1}{\sqrt{d}},\cdots,\pm\frac{1}{\sqrt{d}}\right)$.

• d = 2

- d = 2
 - Generate x_i , y_i u.a.r from the interval [-1,1];

- d = 2
 - Generate x_i , y_i u.a.r from the interval [-1,1];

- d = 2
 - Generate x_i , y_i u.a.r from the interval [-1,1];
 - Discard the points outside the unit circle;

- d = 2
 - Generate x_i , y_i u.a.r from the interval [-1,1];
 - Discard the points outside the unit circle;
 - Project the remaining points onto the circle.
- How about *d* is large?
 - The above strategy would fail. (why?)
 - 1 Surface: Spherical normal distribution + Normalizing.
 - 2 Surface+interior: Scale the point on the surface.

• When *d* is large, generate a point *x*:

①
$$r_i \sim N(0,1)$$
, i.e., $\frac{1}{\sqrt{2\pi}} \exp(-r^2/2)$ for all $i \in [d]$;

2 Normalizing the vector to a unit vector $x = \frac{r}{|r|}$.

• When *d* is large, generate a point *x*:

①
$$r_i \sim N(0,1)$$
, i.e., $\frac{1}{\sqrt{2\pi}} \exp(-r_i^2/2)$ for all $i \in [d]$;

② Normalizing the vector to a unit vector $x = \frac{r}{|r|}$.

 Proof. As every dimension is generated independently, then probability density of r is

$$P(r = \tilde{r}) = \frac{1}{(2\pi)^{d/2}} e^{-\frac{\tilde{r}_1^2 + \tilde{r}_2^2 + \dots + \tilde{r}_d^2}{2}}$$
$$= \frac{1}{(2\pi)^{d/2}} e^{-\frac{|\tilde{r}|^2}{2}}$$

As the density only depends on the length of \tilde{r} (i.e., $|\tilde{r}|^2$), the distribution is u.a.r..

Note that after step 2, coordinates are no longer statistically independent.

Generating points uniformly at random over the unit ball

When d is large, generate a point y over the ball (surface and interior):

- Scale the point *x* generated on the surface by a scalar $\rho \in [0,1]$.
 - ✓ ρ should be a function of r,
 - ✓ As the volume of the radius *r* ball in *d* dimensions is $r^d V(d)$, the density of ρ at radius *r* is: $\frac{d}{dr} (r^d V(d)) = dr^{d-1} V(d)$.
- Thus, pick $\rho(r)$ with density for r over [0,1], i.e. $\rho(r) = dr^{d-1}$:

$$y = dr^{d-1} \cdot x$$

The law of Large numbers	
Properties of High-Dimensional space, unit ball	
Generating points uniformly at random from a ball	
Gaussians in High Dimension	
Random Projection and Johnson- Lindenstrauss Lemma	

1-dimensional Gaussian

• d –dimensional spherical Gaussian with 0 means and variance σ^2 in each coordinate has density function:

$$p(x) = \frac{1}{(2\pi)^{d/2}\sigma^d} exp\left(-\frac{|x|^2}{2\sigma^2}\right)$$

- Integrate the PDF over a unit ball centered at the origin will cover almost 0 mass, for the volume of such a ball is negligible.
- The radius of the ball need to be nearly \sqrt{d} before there is a significant volume and hence significant probability mass.

Gaussian Annulus Theorem

• For a *d* –dimensional spherical Gaussian with unit variance in each direction ,for any $\beta \le \sqrt{d}$, all but at most $3e^{-c\beta^2}$ of the probability mass lies within the annulus

 $\sqrt{d} - \beta \le |x| \le \sqrt{d} + \beta$

where c is a fixed positive constant.

Database query: Nearest neighbor search

n points from R^d :

$$\begin{bmatrix} v_{11} v_{21} & v_{n1} \\ v_{12} v_{22} & v_{n2} \\ \vdots & \vdots & \vdots \\ v_{1d} v_{2d} & v_{nd} \end{bmatrix}$$

- Nearest neighbor search: find the nearest or approximately nearest database point to the query point.
- When *d* is large, it could cost more than expected.
- Dimension reduction : Project the database points to a k dimensional space with k << d. It will work so long as the relative distances between points are approximately preserved.

Projection function

• Pick *k* vectors $u_1, u_2, ..., u_k$, in \mathbb{R}^d with <u>unit-variance coordinates</u> independently, i.e., from the Gaussian distribution $\frac{1}{(2\pi)^{d/2}} exp\left(-\frac{|x|^2}{2}\right)$, for any vector \boldsymbol{v} , the projection $f: \mathbb{R}^d \to \mathbb{R}^k$ is:

$$f(\mathbf{v}) = (\mathbf{u}_1 \cdot \mathbf{v}, \mathbf{u}_2 \cdot \mathbf{v}, \dots, \mathbf{u}_k \cdot \mathbf{v})$$

Projection function

Pick k vectors u_1, u_2, \dots, u_k , independent ly from the Gaussian distribution

 $\frac{1}{(2\pi)^{d/2}} exp\left(-\frac{|x|^2}{2}\right), \text{ for any}$ vector \boldsymbol{v} , the projection $f: R^d \to R^k$ is:

$$f(\mathbf{v}) = (\mathbf{u}_1 \cdot \mathbf{v}, \mathbf{u}_2 \cdot \mathbf{v}, \dots, \mathbf{u}_k \cdot \mathbf{v})$$

•
$$f(v_1 - v_2) = f(v_1) - f(v_2)$$

•
$$|f(v)| \approx \sqrt{k}|v|$$
 w.h.p.

• To estimate
$$|v_1 - v_2|$$
, it suffices
to compute
 $|f(v_1) - f(v_2)|$

Random Projection Theorem

• Let v be a fixed vector in \mathbb{R}^d and let f be defined as above. Then there exists constant c > 0 such that for $\epsilon \in (0,1)$

$$\Pr\left(\left|\left|f(v) - \sqrt{k}|v|\right| \ge \epsilon \sqrt{k}|v|\right|\right) \le 3e^{-ck\epsilon^2}$$

Johnson-Lindenstrass Lemma

• For any $0 < \epsilon < 1$ and any integer n, let $k \geq 1$ $\frac{3}{c\epsilon^2}\ln n$ for c as in the Gaussian Annulus theorem, for any set of n points in \mathbb{R}^d , the random projection f defined above has the property that for all pairs of points v_i and v_j , with probability at least $1 - \frac{3}{2n}$.

 $(1-\epsilon)\sqrt{k}|v_i-v_j| \leq |f(v_i)-f(v_j)| \leq (1+\epsilon)\sqrt{k}|v_i-v_j|.$

Comments

- JL lemma works for all pairs of points,
- k depends on $\ln n$,
- To the database, JL Lemma says the algorithm will yield the right answer with high probability whatever the query is.

 Mixtures of Gaussians

 Parameter estimation problem • When $\Delta \in \omega(d^{1/4})$

 Algorithm for separating points from two Gaussians: Calculate all pairwise distance between points. The cluster of smallest pairwise distances must come from a single Gaussian. Remove these points. The remaining points come from the second Gaussian.