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Word Vector Model
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Web Page Model

• Nearest neighbor query

• Information retrieval

• Web page rank

• Online recommendation

• ……
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The law of Large numbers

Properties of High-Dimensional space, 
unit ball

Generating points uniformly at random 
from a ball

Gaussians in High Dimension

Random Projection and Johnson-
Lindenstrauss Lemma

Seperating Gaussians
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Normal distribution (Gauss Distribution)

𝑋 ∼ 𝑁 𝜇, 𝜎2 , with density function:

𝑓 𝑥 =
1

2𝜋𝜎
𝑒
−

𝑥−𝜇 2

2𝜎2 , −∞ < 𝑥 < +∞
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Variance

∀𝑎 > 0, Pr 𝑋 − 𝐸 𝑋 ≥ 𝑎 ≤
𝑉𝑎𝑟[𝑋]

𝑎2

Chebyshev’s Inequality



Law of Large Numbers

• In probability theory, the law of large numbers

(LLN) is a theorem that describes the result of

performing the same experiment a large number

of times.

• According to the law, the average of the results

obtained from a large number of trials should be

close to the expected value, and will tend to

become closer as more trials are performed.
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Law of large numbers

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be 𝑛 independent samples of a 

random variable 𝑥, then 

Pr
𝑥1 + 𝑥2 +⋯𝑥𝑛

𝑛
− 𝐸 𝑥 ≥ 𝜖 ≤

𝑉𝑎𝑟(𝑥)

𝑛𝜖2
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Proof. (Chebychev’s Inequality)

Pr
𝑥1 + 𝑥2 +⋯𝑥𝑛

𝑛
− 𝐸 𝑥 ≥ 𝜖 ≤

𝑉𝑎𝑟(
𝑥1 + 𝑥2 +⋯𝑥𝑛

𝑛
)

𝜖2

=
𝑉𝑎𝑟(𝑥1 + 𝑥2 +⋯𝑥𝑛)

𝑛2𝜖2

=
𝑉𝑎𝑟(𝑥)

𝑛𝜖2



Application
• 𝒙 be a 𝑑 −dimensional random point whose 

coordinates are each selected from 𝑁 0,
1

2𝜋
,

• i.e. 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑑] with 𝑥𝑖 ∼ 𝑁 0,
1

2𝜋

• By LLN: 𝒙 2 = σ𝑖=1
𝑑 𝑥𝑖

2 =
𝑑

2𝜋
=Θ(𝑑) with high 

probability.

• The probability that point 𝒙 lie in the unit ball is 

vanishingly small.
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Application

• 𝒙, 𝒚 ∶ [𝑧1, 𝑧2, … , 𝑧𝑑] with 𝑧𝑖 ∼ 𝑁 0, 1

• 𝒙 2 ≈ 𝑑, 𝒚 2 ≈ 𝑑,

• 𝒙 − 𝒚 2 ≈?
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Application

• 𝒙, 𝒚 ∶ [𝑧1, 𝑧2, … , 𝑧𝑑] with 𝑧𝑖 ∼ 𝑁 0, 1

• 𝒙 2 ≈ 𝑑, 𝒚 2 ≈ 𝑑,

• 𝒙 − 𝒚 2 = σ𝑖=1
𝑑 𝑥𝑖 − 𝑦𝑖

2

𝑬 𝑥𝑖 − 𝑦𝑖
2 = 𝑬 𝑥𝑖

2 + 𝑬 𝑦𝑖
2 − 2𝑬 𝑥𝑖𝑦𝑖

= 1 + 1 − 2𝑬 𝑥𝑖 𝑬 𝑦𝑖 = 2.
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Application

• 𝒙, 𝒚 ∶ [𝑧1, 𝑧2, … , 𝑧𝑑] with 𝑧𝑖 ∼ 𝑁 0, 1

• 𝒙 2 ≈ 𝑑, 𝒚 2 ≈ 𝑑,

• 𝒙 − 𝒚 2 = σ𝑖=1
𝑑 𝑥𝑖 − 𝑦𝑖

2 = 2𝑑
𝑬 𝑥𝑖 − 𝑦𝑖

2 = 𝑬 𝑥𝑖
2 + 𝑬 𝑦𝑖

2 − 2𝑬 𝑥𝑖𝑦𝑖

= 1 + 1 − 2𝑬 𝑥𝑖 𝑬 𝑦𝑖 = 2.

• 𝒙 − 𝒚 2 ≈ 𝒙 2 + 𝒚 2

• Pythagorean theorem ⇒ random 

𝑑 −dimensional 𝒙, 𝒚 are approximately 

orthogonal.
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Application
• 𝒙, 𝒚 ∶ [𝑧1, 𝑧2, … , 𝑧𝑑] with 𝑧𝑖 ∼ 𝑁 0, 1

• Pythagorean theorem ⇒ random 

𝑑 −dimensional 𝒙, 𝒚 are approximately 

orthogonal.
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If we scale these random points to be unit length 

and call 𝒙 the North Pole, much of the surface 

area of the unit ball must lie near the equator.

(to be formalized latter.)



Master Tail Bound Theorem

Theorem. Let 𝑥 = 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛 , where

𝑥1, 𝑥2, … , 𝑥𝑛  are mutually independent random

variables with zero means and variance at most

𝜎2. Let 0 ≤ 𝑎 ≤ 2𝑛𝜎2.Assume that 𝐸 𝑥𝑖
𝑠 ≤

𝜎2𝑠! for 𝑠 = 3,4, … , (𝑎2/4𝑛𝜎2)  then

𝑃𝑟𝑜𝑏 𝑥 ≥ 𝑎 ≤ 3𝑒
−

𝑎2

12𝑛𝜎2 .
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Table of tail bounds
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Geometry of High Dimensions
• Most of the volume of the high-dimensional objects is 

near the surface:

𝑉𝑜𝑙𝑢𝑚𝑒 1 − 𝜖 𝐴

𝑉𝑜𝑙𝑢𝑚𝑒(𝐴)
= 1 − 𝜖 𝑑 ≤ 𝑒−𝜖𝑑

Fix 𝜖 and letting 𝑑 → ∞, the above quantity rapidly  

approaches zero.
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Application

𝑆 be the unit ball in 𝑑 −dimensions (i.e., the 

set of points within distance 1 of the origin).  

Then 1 − 𝑒−𝜖𝑑 fraction of the volume is in 

𝑆\(1 − 𝜖)S.  

Especially, consider 𝜖 =
1

𝑑
.



Relationship between the 

sphere and cube
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The difference  between the volume of a cube with 

unit-length sides and  the  volume of a unit-radius 

sphere at the dimensions: 2, 4 and 𝑑.

John’s Book Fig 2.4



Conceptual drawing of a sphere and a cube

For large 𝑑, almost all the volume of the 

cube is located outside the sphere. 
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Unit ball in 𝑑 −dimensions

• Surface: 𝐴 𝑑 =
2𝜋

𝑑
2

Γ
𝑑

2

,  Volume: V 𝑑 =
2

𝑑

𝜋
𝑑
2

Γ
𝑑

2

.
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Γ 𝑛 = 𝑛 − 1 !

Γ 𝑥 = න
0

+∞

𝑡𝑥−1𝑒−𝑡𝑑𝑡 (𝑥 > 0)

Γ 1/2 = 𝜋



Unit ball in 𝑑 −dimensions

• Surface: 𝐴 𝑑 =
2𝜋

𝑑
2

Γ
𝑑

2

,  Volume: V 𝑑 =
2

𝑑
⋅
𝜋
𝑑
2

Γ
𝑑

2

.

• 𝑉 2 = 𝜋, 𝑉 3 =
4

3
𝜋,

• Most of the volume of a unit ball in high dimensions 

is concentrated near its equator no matter which 

direction is defined to be the North Pole.
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Theorem: For 𝑐 ≥ 1 and 𝑑 ≥ 3, at least 

a 1 −
2

𝑐
𝑒−𝑐

2/2 fraction of the volume of 

the 𝑑 −dimensional unit ball has 

𝑥1 ≤
𝑐

𝑑 − 1
.

lim
𝑛→∞

𝑉 𝑑 = 0. 𝑛! ≥ 𝑛𝑛/2

Near orthogonality !
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How it can be that nearly all the points in the unit ball are 

very close to the surface and yet at the same time nearly

all points are in a box of side length 𝑂(
ln 𝑑

𝑑−1
)？

A. Points on the surface of the ball satisfy

𝑥1
2 + 𝑥2

2 +⋯𝑥𝑑
2 = 1,

so for each coordinate 𝑖, a typical value will be ±𝑂
1

𝑑
.

In fact, it is helpful to think of picking a random point on 

the sphere as very similar to picking a random point of 

the form ±
1

𝑑
, ±

1

𝑑
, ⋯ ,±

1

𝑑
.
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Generating points uniformly at random on 

the surface of the unit ball

• 𝑑 = 2

22

−1 +1

+1

−1

𝑥

𝑦



Generating points uniformly at random on 

the surface of the unit ball

• 𝑑 = 2

– Generate 𝑥𝑖 , 𝑦𝑖 u.a.r from the 

interval −1,1 ;
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−1 +1

+1

−1

𝑥

𝑦



Generating points uniformly at random on 

the surface of the unit ball

• 𝑑 = 2

– Generate 𝑥𝑖 , 𝑦𝑖 u.a.r from the 

interval −1,1 ;
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−1 +1

+1

−1

𝑥

𝑦



Generating points uniformly at random on 

the surface of the unit ball

• 𝑑 = 2

– Generate 𝑥𝑖 , 𝑦𝑖 u.a.r from the 

interval −1,1 ;

– Discard the points outside the unit 

circle;
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−1 +1

+1

−1

𝑥

𝑦



Generating points uniformly at random on 

the surface of the unit ball

• 𝑑 = 2

– Generate 𝑥𝑖 , 𝑦𝑖 u.a.r from the 

interval −1,1 ;

– Discard the points outside the unit 

circle;

– Project the remaining points onto 

the circle.

• How about 𝑑 is large?

– The above strategy would fail. 

(why?)

① Surface: Spherical normal 

distribution + Normalizing. 

② Surface+interior: Scale the point 

on the surface. 
26

−1 +1

+1

−1

𝑥

𝑦



Generating points uniformly at random 

on the surface of the unit ball

• When 𝑑 is large, generate a point 𝑥:

① 𝑟𝑖 ∼ 𝑁(0,1), i.e., 
1

2𝜋
exp(−𝑟2/2) for all 𝑖 ∈ 𝑑 ;

② Normalizing the vector to a unit vector 𝑥 =
𝑟

|𝑟|
.
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• When 𝑑 is large, generate a point 𝑥:

① 𝑟𝑖 ∼ 𝑁(0,1), i.e., 
1

2𝜋
exp(−𝑟𝑖

2/2) for all 𝑖 ∈ 𝑑 ;

② Normalizing the vector to a unit vector 𝑥 =
𝑟

|𝑟|
.
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• Proof.  As every dimension is generated independently, then 

probability density of 𝑟 is

𝑃 𝑟 = ǁ𝑟 =
1

2𝜋 𝑑/2 𝑒
−
෥𝑟1
2+෥𝑟2

2+⋯+෥𝑟𝑑
2

2

=
1

2𝜋 𝑑/2 𝑒
−

෥𝑟 2

2

As the density only depends on the length of ǁ𝑟 (i.e., ǁ𝑟 2), the 

distribution is u.a.r.. 

Generating points uniformly at random 

on the surface of the unit ball

Note that after step ②,coordinates are no longer statistically independent.



Generating points uniformly at random over

the unit ball

When 𝑑 is large, generate a point 𝑦 over the ball 

(surface and interior): 

• Scale the point 𝑥 generated on the surface by a scalar 

𝜌 ∈ 0,1 . 
✓ 𝜌 should be a function of  𝑟,

✓ As the volume of the radius 𝑟 ball in 𝑑 dimensions is 𝑟𝑑𝑉(𝑑), the 

density of 𝜌 at radius 𝑟 is: 
𝑑

𝑑𝑟
𝑟𝑑𝑉(𝑑) = 𝑑𝑟𝑑−1𝑉 𝑑 . 

• Thus,  pick 𝜌(𝑟) with density  for 𝑟 over [0,1], i.e. 𝜌(𝑟) =
𝑑𝑟𝑑−1 : 

𝑦 = 𝑑𝑟𝑑−1 ⋅ 𝑥

29
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• 1-dimensional Gaussian

31



• 𝑑 −dimensional spherical Gaussian with 0 means and 

variance 𝜎2 in each coordinate has density function:

𝑝 𝑥 =
1

2𝜋 𝑑/2𝜎𝑑
𝑒𝑥𝑝 −

𝑥 2

2𝜎2

• Integrate the PDF over a unit ball centered at the origin 

will cover almost 0 mass, for the volume of such a ball is 

negligible.

• The radius of the ball need to be nearly 𝑑 before there 

is a significant volume and hence significant probability 

mass. 

32



Gaussian Annulus Theorem

• For a 𝑑 −dimensional spherical Gaussian with 

unit variance in each direction ,for any 𝛽 ≤ 𝑑, 

all but at most 3𝑒−𝑐𝛽
2
 of the probability mass lies 

within the annulus 

𝑑 − 𝛽 ≤ 𝑥 ≤ 𝑑 + 𝛽

where 𝑐 is a fixed positive constant.
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Database query: Nearest neighbor search

𝑛 points from 𝑅𝑑:

𝑣11
𝑣12
⋮

𝑣1𝑑

𝑣21
𝑣22
⋮

𝑣2𝑑

⋮
⋮
⋮
⋮

𝑣𝑛1
𝑣𝑛2
⋮

𝑣𝑛𝑑
• Nearest neighbor search: find the nearest or

approximately nearest database point to the query

point.

• When 𝑑 is large, it could cost more than expected. 

• Dimension reduction : Project the database points to

a 𝑘 dimensional space with 𝑘 ≪ 𝑑. It will work so

long as the relative distances between points are

approximately preserved.
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Projection function 
• Pick 𝑘 vectors 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌, in 𝑅𝑑 with unit-

variance coordinates independently , i.e., 

from the Gaussian distribution 
1

2𝜋 𝑑/2 𝑒𝑥𝑝 −
𝑥 2

2
, for any vector 𝒗, the 

projection 𝑓: 𝑅𝑑 → 𝑅𝑘 is:

𝑓 𝒗 = (𝒖𝟏 ⋅ 𝒗, 𝒖𝟐⋅ 𝒗, … , 𝒖𝒌⋅ 𝒗)
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Projection function 

Pick 𝑘 vectors 

𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌, independent

ly from the Gaussian 

distribution 
1

2𝜋 𝑑/2 𝑒𝑥𝑝 −
𝑥 2

2
, for any 

vector 𝒗, the projection 

𝑓: 𝑅𝑑 → 𝑅𝑘 is:

𝑓 𝒗 = (𝒖𝟏 ⋅ 𝒗, 𝒖𝟐 ⋅ 𝒗, … , 𝒖𝒌 ⋅ 𝒗)

37

• 𝑓 𝑣1 − 𝑣2 = 𝑓 𝑣1 − 𝑓 𝑣2

• 𝑓 𝑣 ≈ 𝑘 𝑣 w.h.p.

• To estimate 

𝑣1 − 𝑣2 , it suffices 

to compute 

𝑓 𝑣1 − 𝑓 𝑣2



Random Projection Theorem

• Let 𝑣 be a fixed vector in 𝑅𝑑 and let 𝑓 be defined 

as above. Then there exists constant 𝑐 > 0 such 

that for 𝜖 ∈ 0,1

Pr 𝑓 𝑣 − 𝑘|𝑣| ≥ 𝜖 𝑘|𝑣| ≤ 3𝑒−𝑐𝑘𝜖
2

38



Johnson-Lindenstrass Lemma

• For any 0 < 𝜖 < 1 and any integer 𝑛, let 𝑘 ≥
3

𝑐𝜖2
ln 𝑛 for 𝑐 as in the Gaussian Annulus 

theorem, for any set of 𝑛 points in 𝑅𝑑 , the 

random projection 𝑓 defined above has the 

property that for all pairs of points 𝑣𝑖 and 𝑣𝑗, 

with probability at least 1 −
3

2𝑛
.

1 − 𝜖 𝑘 𝑣𝑖 − 𝑣𝑗 ≤ 𝑓 𝑣𝑖 − 𝑓 𝑣𝑗 ≤ (1 + 𝜖) 𝑘 𝑣𝑖 − 𝑣𝑗 .
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Comments

• JL lemma works for all pairs of points,

• 𝑘 depends on ln 𝑛,

• To the database, JL Lemma says the

algorithm will yield the right answer with

high probability whatever the query is.
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• Mixtures of 

Gaussians

• Parameter 

estimation problem

42



• When Δ ∈ 𝜔(𝑑1/4)

• Algorithm for separating points from two

Gaussians: Calculate all pairwise distance

between points. The cluster of smallest

pairwise distances must come from a

single Gaussian. Remove these points.

The remaining points come from the

second Gaussian.
43
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