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Eigenvalues & Eigenvectors

• Eigenvectors (for a square mm matrix S)

• How many eigenvalues are there at most?
only has a non-zero solution if

this is a m-th order equation in λ which can have at most m distinct 

solutions (roots of the characteristic polynomial) – can be 

complex even though 𝑺 is real.

eigenvalue(right) eigenvector

Example



Matrix-vector multiplication
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On each eigenvector, 𝑆 acts as a multiple of the identity

matrix: but as a different multiple on each.

Any vector (say 𝑥=    ) can be viewed as a combination of

the eigenvectors:              𝑥 = 2𝑣1 + 4𝑣2 + 6𝑣3
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Matrix vector multiplication

• Thus a matrix-vector multiplication such as 
𝑆𝑥 (𝑆, 𝑥 as in the previous slide) can be 
rewritten in terms of the eigenvalues/vectors:

• Even though 𝑥 is an arbitrary vector, the 
action of S on 𝑥 is determined by the 
eigenvalues/vectors.

• Suggestion: the effect of “small” eigenvalues 
is small. 
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Eigenvalues & Eigenvectors

0 and , 2121}2,1{}2,1{}2,1{ =•= vvvSv 

For symmetric matrices, eigenvectors for distinct

eigenvalues are orthogonal

==−  TSS and 0 if ,complex for IS

All eigenvalues of a real symmetric matrix are real.

0vSv if then ,0, = Swww Tn

All eigenvalues of a positive semidefinite matrix

are non-negative



Example

• Let

• Then

• The eigenvalues are 1 and 3 (nonnegative, real). 

• The eigenvectors are orthogonal (and real):
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Real, symmetric.

Plug in these values 

and solve for 

eigenvectors.



• Let                  be a square matrix with m

linearly independent eigenvectors (a 

“non-defective” matrix)

• Theorem: Exists an eigen decomposition

• Columns of U are eigenvectors of S

• Diagonal elements of    are eigenvalues of 

Eigen/diagonal Decomposition

diagonal



Diagonal decomposition: 

why/how
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Then, SU can be written

And S=UU–1.

Thus SU=U, or U–1SU=



Diagonal decomposition -

example

Recall .3,1;
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UU–1 =I.



Example continued

Let’s divide U (and multiply U–1) by  2
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Why? Stay tuned …



• If                  is a symmetric matrix:

• Theorem: Exists a (unique) eigen 

decomposition

• where Q is orthogonal:

– Q
-1
= Q

T

– Columns of Q are normalized eigenvectors

– Columns are orthogonal.

– (everything is real)

Symmetric Eigen 

Decomposition

TQQS =
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Singular Value Decomposition

TVUA =

mm mn V is nn

For an 𝑚 𝑛 matrix 𝑨 of rank r there exists a factorization

(Singular Value Decomposition = SVD) as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

ii  =

( )rdiag  ...1= Singular values.

Eigenvalues 1 … r of AAT are the eigenvalues of ATA.



AAT , ATA

15

Eigenvalues 1 … r of AAT are the eigenvalues of ATA.

Lemma. 𝜆 ≠ 0 be the eigenvalue of  𝐴𝐴𝑇, 𝛼1, … , 𝛼𝑟 are 

pairwise orthogonal unit eigenvectors corresponds to 

𝜆, then 𝐴𝑇𝛼1, 𝐴
𝑇𝛼2, … , 𝐴𝑇𝛼𝑟 are pairwise orthogonal 

eigenvectors of 𝐴𝑇𝐴, and (𝐴𝑇𝛼𝑗 , 𝐴
𝑇𝛼𝑗) = 𝜆𝑗 .

Theorem. A = aij m×n
and 𝜆1, 𝜆2,…， 𝜆𝑟 be the singular value of A, then A = UΣ𝑉𝑇 ,

where 𝑈𝑈𝑇 = 𝐼, 𝑉𝑉𝑇 = 𝐼, Σ =

𝜆1

𝜆2

𝜆𝑟

⋯

⋮ ⋱ ⋮
⋯

.

Rank(A)=Rank(AAT )=Rank(ATA).



Singular Value Decomposition

• Illustration of SVD dimensions and 

sparseness
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SVD example

Let
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Typically, the singular values arranged in decreasing order.



• SVD can be used to compute optimal low-

rank approximations.

• Approximation problem: Find Ak of rank k

such that

Ak and X are both mn matrices.

Typically, want k << r.

Low-rank Approximation

Frobenius normF
kXrankX

k XAA −=
=

min
)(:



• Solution via SVD

Low-rank Approximation

set smallest r-k

singular values to zero

T

kk VUA )0,...,0,,...,(diag 1 =

column notation: sum 

of rank 1 matrices

T

ii
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i ik vuA  =
=
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k



Approximation error

• How good (bad) is this approximation?

• It’s the best possible, measured by the 

Frobenius norm of the error:

where the i are ordered such that i  i+1.

Suggests why Frobenius error drops as k

increased.

1
)(:

min +
=

=−=− kFkF
kXrankX

AAXA 



Recall random projection
• Completely different method for low-rank 

approximation

• Was data-oblivious

– SVD-based approximation is data-dependent

• Error for random projection depended only 

on start/finish dimensionality

– For every distance

• Error for SVD-based approximation is for 

the Frobenius norm, not for individual 

distances



SVD Low-rank approximation
• Whereas the term-doc matrix A may have 

m=50000, n=10 million (and rank close to 

50000)

• We can construct an approximation A100 

with rank 100.

– Of all rank 100 matrices, it would have the 

lowest Frobenius error.

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. 

Psychometrika, 1, 211-218, 1936.



Power Method for SVD

• 𝐴 = σ𝑖 𝛿𝑖𝑢𝑖𝑣𝑖
𝑇

• 𝐵 = 𝐴𝑇𝐴

= (σ𝑖 𝛿𝑖𝑣𝑖𝑢𝑖
𝑇) (σ𝑗 𝛿𝑗𝑢𝑗𝑣𝑗

𝑇)= σ𝑖 𝛿𝑖
2𝑣𝑖𝑣𝑖

𝑇

…

• 𝐵𝑘 = σ𝑖 𝛿𝑖
2𝑘𝑣𝑖𝑣𝑖

𝑇

• If 𝛿1 > 𝛿2 then the first term in the summation 

dominates. i.e., 𝐵𝑘 → 𝛿1
2𝑘𝑣1𝑣1

𝑇

• To estimate 𝑣1: take the first column of 𝐵𝑘 and 

normalize it to an unit vector.

25



Power Method for SVD

• 𝐴 = σ𝑖 𝛿𝑖𝑢𝑖𝑣𝑖
𝑇 , 𝐴 is large and sparse

• 𝐵𝑘 = σ𝑖 𝛿𝑖
2𝑘𝑣𝑖𝑣𝑖

𝑇 could be very cost.

• Improve:

– Randomly select 𝑥 = σ𝑖=1
𝑑 𝑐𝑖𝑣𝑖

– 𝐵𝑘 ⋅ 𝑥 ≈ (𝛿1
2𝑘𝑣1𝑣1

𝑇)𝑥 = 𝑐1𝛿1
2𝑘𝑣1 = 𝑦

– Normalize 𝑦 will get 𝑣1.

– Trick: 𝐵𝑘⋅ 𝑥 = 𝐴𝑇𝐴⋯𝐴𝑇𝐴𝑥

26
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Matrix Approximation
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(see next page for application in image compression)
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Image Compression

• For grey scale images: mn bytes

• Only need to store r(m+n+1)

T

rrr

TT vuvuvuA

rSVD

 +++= 222111

: termst significanmost   the taking,After 

r = 1,3,5,10,16 (no perceivable difference afterwards)
Original

6464
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PCA Applications
• Data Visualization

• Data Compression

• Noise Reduction

• Data Classification

• Trend Analysis

• Factor Analysis



Principle Component Analysis

Orthogonal projection of 
data onto lower-dimension 
linear space that...

– maximizes variance of 
projected data (purple line)

– minimizes mean squared 
distance between 

• data point and 

• projections (sum of blue
lines)

PCA:



Principle Components Analysis

Idea: 

– Given data points in a d-dimensional space, 

project into lower dimensional space while 

preserving as much information as possible

• Eg, find best planar approximation to 3D data

• Eg, find best 12-D approximation to 104-D data

– In particular, choose projection that 

minimizes squared error

in reconstructing original data



Covariance

• Variance – measure of the deviation from the mean for 

points in one dimension e.g. heights

𝑉𝑎𝑟( 𝑋 ) = 𝐸( 𝑥 – 𝜇 2)

• Covariance as a measure of how much each of the 

dimensions vary from the mean with respect to each 

other.

𝐶𝑜𝑣 𝑋, 𝑌 = 𝑬[((𝑋 − 𝑬 𝑋 𝑌 − 𝑬(𝑌) ]

• Covariance is measured between 2 dimensions to see if 

there is a relationship between the 2 dimensions e.g. 

number of hours studied & marks obtained.

• The covariance between one dimension and itself is the 

variance



Covariance Matrix

• Representing Covariance between dimensions 

as a matrix e.g. for 3 dimensions:

cov(x,x)  cov(x,y)  cov(x,z)

C =    cov(y,x)  cov(y,y)  cov(y,z)

cov(z,x)  cov(z,y)  cov(z,z)

• Diagonal is the variances of 𝑥, 𝑦 and 𝑧

• 𝑐𝑜𝑣(𝑥, 𝑦) = 𝑐𝑜𝑣(𝑦, 𝑥) hence matrix is 

symmetrical about the diagonal

• 𝑛-dimensional data will result in 𝑛 × 𝑛
covariance matrix.



Covariance

• Exact value is not as important as it’s sign.

• A positive value of covariance indicates both dimensions 

increase or decrease together 

– e.g. as the number of hours studied increases, the marks in that 

subject increase.

• A negative value indicates while one increases the other 

decreases, or vice-versa

– e.g. active social life at WoL vs performance in CS dept.

• If covariance is zero: the two dimensions are 

independent of each other 

– e.g. heights of students vs the marks obtained in a subject.



PCA

• Principal Components Analysis (PCA) is a 

technique that can be used to simplify a dataset. 

• It is a linear transformation that chooses a new 

coordinate system for the data set such that 

– greatest variance by any projection of the data set 

comes to lie on the first axis (then called the first 

principal component), 

– the second greatest variance on the second axis, and 

so on. 

• PCA can be used for reducing dimensionality by 

eliminating the later principal components.



PCA

• By finding the eigenvalues and eigenvectors of 

the covariance matrix, we find that the 

eigenvectors with the largest eigenvalues 

correspond to the dimensions that have the 

strongest correlation in the dataset.

• This is the principal component.

• PCA is a useful statistical technique that has 

found application in:

– fields such as face recognition and image 

compression

– finding patterns in data of high dimension



PCA process –STEP 1

• Subtract the mean

from each of the data dimensions. All the 𝑥
values have ҧ𝑥 subtracted and 𝑦 values have ത𝑦
subtracted from them. This produces a data set 

whose mean is zero.

Subtracting the mean makes variance and

covariance calculation easier by simplifying their

equations. The variance and co-variance values

are not affected by the mean value.



PCA process –STEP 1

DATA:

x      yaaa

2.5 2.4

0.5 0.7

2.2 2.9

1.9 2.2

3.1 3.0

2.3 2.7

2 1.6

1 1.1

1.5 1.6

1.1 0.9

ZERO MEAN DATA:

x y    

.69 .49

-1.31 -1.21

.39 .99

.09 .29

1.29 1.09

.49 .79

.19 -.31

-.81 -.81

-.31 -.31

-.71 -1.01



PCA process –STEP 1



PCA process –STEP 2

cov =   .616555556    .615444444

.615444444    .716555556

Since the non-diagonal elements in this 

covariance matrix are positive, we should 

expect that both the 𝑥 and 𝑦 variable 

increase together.

• Calculate the covariance matrix



eigenvalues = .0490833989

1.28402771

eigenvectors = -.735178656   -.677873399

.677873399  -.735178656 

PCA process –STEP 3

• Calculate the eigenvectors and 

eigenvalues of the covariance matrix



PCA process –STEP 3
•eigenvectors are plotted 

as diagonal dotted lines 

on the plot. 

The second eigenvector 

gives us the other, less 

important, pattern in the 

data, that all the points 

follow the main line, but 

are off to the side of the 

main line by some 

amount.

They are perpendicular to 

each other.

•Note one of the 

eigenvectors goes through 

the middle of the points, 

like drawing a line of best 

fit. 



PCA process –STEP 4

• Reduce dimensionality and form feature vector the 

eigenvector with the highest eigenvalue is the principle 

component of the data set.

• In our example, the eigenvector with the larges 

eigenvalue was the one that pointed down the middle of 

the data. 

• Once eigenvectors are found from the covariance matrix, 

the next step is to order them by eigenvalue, highest to 

lowest. This gives you the components in order of 

significance. 



PCA process –STEP 4
• Now, if you like, you can decide to ignore 

the components of lesser significance

• You do lose some information, but if the 
eigenvalues are small, you don’t lose 
much

– n dimensions in your data 

– calculate n eigenvectors and eigenvalues

– choose only the first p eigenvectors

– final data set has only p dimensions.



PCA process –STEP 4

• Feature Vector

FeatureVector = (eig1 eig2 eig3 … eign)

We can either form a feature vector with both of 

the eigenvectors:

-.677873399    -.735178656 

-.735178656     .677873399 

or, we can choose to leave out the smaller, less 

significant component and only have a single 

column:

- .677873399 

- .735178656



PCA process –STEP 5

• Deriving the new data

FinalData = RowFeatureVector x RowZeroMeanData

• RowFeatureVector is the matrix with the eigenvectors in 

the columns transposed so that the eigenvectors are 

now in the rows, with the most significant eigenvector at 

the top.

• RowZeroMeanData is the mean-adjusted data 

transposed, ie. the data items are in each column, with 

each row holding a separate dimension.



PCA process –STEP 5
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PCA process –STEP 5

• FinalData is the final data set, with data items in 

columns, and dimensions along rows.

• What will this give us?

– It will give us the original data solely in terms of the 

vectors we chose.

• We have changed our data from being in terms 

of the axes 𝑥 and 𝑦 , and now they are in terms 

of our 2 eigenvectors.



PCA process –STEP 5
FinalData transpose: 

dimensions along columns

x y

-.827970186 -.175115307

1.77758033 .142857227

-.992197494 .384374989

-.274210416 .130417207

-1.67580142 -.209498461

-.912949103 .175282444

.0991094375 -.349824698

1.14457216 .0464172582

.438046137 .0177646297

1.22382056 -.162675287



PCA process –STEP 5



PCA vs SVD

52



A better way to compute PCA

• SVD

• Why?

– More stable, robust and fancy extensions!

53
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PCA, a Problematic Data Set

PCA cannot capture NON-LINEAR structure!
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Kernel PCA



PCA  Conclusions

• PCA 

– finds orthonormal basis for data

– Sorts dimensions in order of “importance”

– Discard low significance dimensions

• Uses:

– Get compact description

– Ignore noise

– Improve classification (hopefully)

• Not magic:

– Doesn’t know class labels

– Can only capture linear variations

• One of many tricks to reduce dimensionality!
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