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Random walk

- Random walk. on a directed graph, a
seguence of vertices generated from a
start vertex by probabillistically selecting an
Incident edge, traveling the edge to a new
vertex, and repeat the process.
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Random walk
Probability distribution. p = [py1, p2, ..., Pnl, Where Y} p;=1

Starting. p = p(0) = [p1(0),p2(0), ..., pn(0)], Xi=1p:i(0)=1
and p, Is the probability of staring at x.

The probability of being at vertex x at time t + 1:

P+ = D py(®)-Pr(y =)

(v,x)EE

Transition Matrix P: P;; is the probability of the walk at
vertex i selecting the edge to vertex j.

p(t)-P=p(t+1)



Random walk

~undamental property. In the Ilimit, the
ong-term average property of being at a
particular vertex Is independent of the start
vertex, or an Initial probability distribution
over vertices (provided the underlying graph

IS strongly connected) — the stationary
probabilities.




Markov chain

« Afinite set S of states
* Transition probabllity: For x,y € S, py,, IS
the probabillity going from state x to y.

° Zypxy =1

Markov chain € Random graph
@ Avertex € a state
@ pyy, € Weighted edge from x to y.



Markov chain

Markov chain € Random graph
@ Avertex € a state
@ pyy € Weighted edge from x to y.

Connected Markov chain (irreducible): if the
underlying directed graph is strongly
connected.

Transition probability matrix P: P, Is the
probability of changing from state x to y.



Markov chain

Persistent state (recurrence). If the state ever
be reached, the random process will return to it
with probability 1.
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T(S): a random variable shows the number of steps the chain first goes
back to state S.

Persistent: Pr(T(S) < «) = 1, then S is persistent. 8



Markov chain

Persistent state (recurrence). If the state ever
be reached, the random process will return to it
with probability 1.

O '® @
‘ O O O




Markov chain

Aperiodic. If the greatest common divisor of the

engths of directed cyc

es In one.

Random walk

Markov Chain

Graph

Stochastic process

Vertex

State

Strongly connected

Persistent/recurrence

Aperiodic

Aperiodic

Strongly connected +Aperiodic

Ergodic

Undirected graph

Time reversible

We will assume strongly connectness by default.
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Stationary distribution

p(t) : the probabillity distribution after ¢ steps of
a random walk.

Long-term average probabillity distribution:

1
a(t) = 7 (p(0) +p(1) + -+ p(t — 1))

~undatmental theorem of Markov chains:
~or a connected MC, a(t) converges to a limit
orobability x which satisfies x - P = x.
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Fundamental Theorem

Lemma 1. Let P be the transition probability matrix for a
connected Markov chain. The n x (n+ 1) matrix A = [P —
I,1] obtained by augmenting the matrix P —1 with an
additional column of ones has rank n.

Fundamental Theorem of Markov Chains: For a
connected Markov chain there is a unigue vector m
satisfying w - P = . Moreover, for any starting distribution,
lim a(t) exists and equals .

t— oo

Lemma 2 (Time reversible): For a random walk on a
strongly connected graph with probabilities on the edge, if
the vector m satisfies m,p,, = m,p,, for all x and y and

Y. T, = 1, then m is the stationary distribution of the walk.
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G =V,E)
V| =n,|E| =m
deg(v;) = d;

Application
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Application

\ 0 otherwise.

Then the stationary distribution is:
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Application

\ 0 otherwise.

Then the stationary distribution is: = = |2, %2 ... n
2m - 2m 2m
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Markov Chain Monte Carlo

MCMC. A technique for sampling a multivariate
probabillity distribution p(x), where x =

(X1, X9, ., Xgq).

Application. to estimate the expected value of a
function f(x)

E() =) f()-p()
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Markov Chain Monte Carlo

Application. to estimate the expected value of a
function f(x)

E(N) =) f()-p()

X

Realization:

(O Draw a set of samples. Each sample x is selected with
probability p(x).

(@ Averaging f over these samples.
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Markov Chain Monte Carlo

Sample according to p(x). Design a MC whose
states correspond to the value space of x and
whose stationary probabillity distribution is p(x).

Recall:
v p(t) is the row vector of probabilities of the random
walk being at each state at time t.

v a(t) =7 (@(0) +p(1) + - +p(t — 1))

t
E(r) = z fi(%z Pr(walk is in state i at time j)) = z fia;(t)
i j=1 i
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Markov Chain Monte Carlo

Sample according to p(x). Design a MC whose
states correspond to the value space of x and
whose stationary probabillity distribution is p(x).

t
E(r) = z fi(%z Pr(walk is in state i at time j)) = z fia;(t)
i j=1 i

|Z fipi = E(r)

< fmax | zlpi - ai(t)l

= fmax “|llp —a(@®ll;
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Markov Chain Monte Carlo

Sample according to p(x). Designh a MC whose
states correspond to the value space of x and
whose stationary probabillity distribution is p(x).

Two general approach:
* The Metropolis-Hastings algorithm
* The Gibbs sampling

20



Metropolis-Hastings Algorithm

MHA. A general method to design a Markov
chain whose stationary distribution is a given
target distribution p.

Given random graph G, with A(G) =r. The

transitions of t

ne MC are defined as
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Given random graph G, with A(G) = r. The transitions of the MC are defined as {

|6
_ I
- —-|en
_ _
e —|M
_ _
e [ [T M =M

e
I

S - = -
Lall=] | w0 __
I I I 1_2 Y
Qi Q= = | <= |
= [0 =] 1__6 oo 1_3
e e ) — e = -

T7T
SEIS

o o

1_._2 =t e 1____8
|l

T O
Mt vt s N
QO /K

— |00

(b= ¢) +p(c)p(c = ¢) + p(d)p(d — ¢)
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Metropolis-Hastings Algorithm

Given random graph G, with A(G) = r. The transitions

Dij = = min (1 ﬁ)
of the MC are definedas{" Y r ' pi

Pii =1 — Xz Dij

Correctness.
To prove the stationary distribution is indeed the target
distribution p.

pi . Dj 1 pj . Di
s — — 1’— —_ — D _- — 1,— — 1) s
DiDi; mm( Pi) Tmm(pl p; ) . mln( pj> PiD;i

r
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Gibbs Sampling

Let p(x) be the target distribution where x = (x4, ..., x4).
Now the undirected random graph is a hyper cube:
there is an edge between x and y if x and y differ in
only 1 coordinate.

Sampling process: for x = (x4, ..., xg4)

(D Choose one of the x; to update;

@ x;' is chosen based on the marginal
probability of x;

Pxy = q’ p(Yil X1 " Xi_1 X410 Xg)

where x; # y; and x; = y; for all i # j,
(I.e., x;»; does not change).
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Sampling process: for x = (x4, ..., X4)
(O  Choose one of the x; to update;
@ «x;' is chosen based on the marginal probability of x; (i.e., x;.; will not change).

1 ..
Pxy =7 p(yi| x1 - xj_1%x41 - Xgq), Where x; # y; and Xj =Y; forall i # j.
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Sampling process: for x = (x4, ..., X4)
(O  Choose one of the x; to update;

@ x;' is chosen based on the marginal probability of x; (i.e., x;=j Will not change).
1 . 2
Pxy =7 p(il x1 - X;_1X;41 - Xq), Where x; # y; and x; = y; for all i # j.

o0 e

| 0

26



Sampling process: for x = (x4, ..., X4)

@
@

Choose one of the x; to update;
x;' is chosen based on the marginal probability of x; (i.e., x;»; will not change).

1 o
Pxy =7 p(yi| x1 - xj_1%x41 - Xgq), Where x; # y; and x; = yj forall i #j.
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Gibbs Sampling

Sampling process: for x = (xq, ..., x4)
D Choose one of the x; to update;
@ x;' is chosen based on the marginal probability of x; (i.e., xi=j Wl not

change). pyy, = % pil X1 Xj_1Xi41 - Xg), Where x; #y; and x; = y;
forall i # j.

Correctness. To prove the stationary distribution is

Indeed the target distribution p.

_ lp(Yil X1 Xi—1Xig1 0 X@)P(Xq - Xj—1Xjp1 = Xg)

Pxy
d p(Xy " Xj—1Xi41 " Xg)
_ 1P Xi1YiXipaXg) _ 1 p(y)
d p(Xq1Xi—1Xijt1°Xq) dp(x1-Xi—1Xjt1Xd)

o _ 1 p(x)
Slmllarly pyx - dp(xl...xi_lxi_l_l"'xd)

It follows that p(x)py, = P(V)Dyx-
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For general convex sets in d
space, there are no close form
formulae for volume. |

Sequence of concentric spheres:
R351§SZ E'"QSRDR

Vol(R) = Vol(S, NR)
Vol(S, NR) Vol(S,_{NR) Vol(S, NR)

~ Vol(Sg_ N R) Vol(S,_, NR) Vol(S; NR)

-Vol(S1)
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Areas and Volumes !

~ ’/

Vol(S, nR) Vol(Sx,_.{NR) Vol(S, NR) o

Vol(R) = - Vol(S;)

Vol(°, . NR) Vol(Se_, NR) Vol(S,NR)

1
Radius(S;) = (1 + E> - Radius(S;_1)

Vol(S;nR) 1\?
Thus 1 < 200 = (1 + d) <e

k
Letr = (1 + %) then the number of spheres k Is at most

0 (logl% r) = 0(dIn(r))

To estimate the overall volume to error 1 + €:

Estimate each volume ratio to a factor of 1 + —

edIn(r)




Areas and Volumes

\

Radius(S,) 1 Radius(S..1), 1 Vol(S ﬂR) S
aalus - ) = aalus
l T L+l Vol(Sl N R) ~
Estimate the ratio — 250 .
VOl(Sl_lﬂR)

(D Selecting points in S; N R uniformly at random;
@ Computing the fraction in S;_; N R.
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Areas and Volumes !

Vol(S nR) S
Vol(Sl 1 nR) -

1
Radius(S;) = ( ) Radius(S;y1), 1

d

Vol(S;NR)

Vol(S;_1NR)"

(D Selecting points in S;,; N R uniformly at random;
(2 Computing the fraction in S; N R.

- Sin

Si

Estimate the ratio
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Some conceptions

Mixing time. Fix € > 0. The e —mixing time of a MC is the
minimum integer t such that for any starting distribution
po, the 1-norm distance between the t —step running
average probability distribution and the stationary
distribution Is at most €.

Hitting time h,,. The expected time of a random walk

starting at vertex x (or a starting probability distribution)
to reach vertex y.

Cover time. The expected time of a random walk starting
at vertex x in the graph G to reach each vertex at least
once.
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Original bottom card

Next card to be placed in one of the slots

= E: under the original bottom card
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Random walks in Euclidean Space

35
George Pélya,1921



Random walks in Euclidean Space
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Random walks in Euclidean Space
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Random walks in Euclidean Space
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“A drunk person will always find their way home,
while a drunk bird may get lost forever.”

39
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