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• 戴康尼斯（Persi Diaconis，1945年1月31日－）：
美国数学家、统计学家。斯坦福大学的数学与统计
学教授。

• 他解决了一些随机性的问题，包括掷币和洗牌。
1992年，他和David Bayer证明完美的洗牌至少要
洗七次。他又和说明从高处跌下的猫为何总能以脚
着地的Richard Montgomery合作，证明了掷币哪
面向上，物理因素比运气重要得多。

• 自14岁，他便跟随一个叫Dai Vernon的魔术师行走
江湖。后来在赌场，他尝试研究防止他和其他魔术
师被骗的方法。他18岁时买了一本An Introduction
to Probability and Its Applications，但因为不懂微
积分而看不明。24岁，他在City College of New
York上数学课。其间他在《科学美国人》杂志投稿
，介绍了他的两个纸牌戏法。Martin Gardner认为
那两个戏法十分精彩，注意到他的才华，为他写了
一封推荐信。当时，哈佛大学的统计学家Fred
Mosteller正在研究魔术，因此决定让Diaconis成为
他的研究生。

——维基百科 2



Random walk

• Random walk. on a directed graph, a

sequence of vertices generated from a

start vertex by probabilistically selecting an

incident edge, traveling the edge to a new

vertex, and repeat the process.
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Random walk
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Probability distribution. 𝑝 = 𝑝1, 𝑝2, … , 𝑝𝑛 , where σ𝑖=1
𝑛 𝑝𝑖=1

Starting. 𝑝 = 𝑝(0) = 𝑝1(0), 𝑝2(0), … , 𝑝𝑛(0) , σ𝑖=1
𝑛 𝑝𝑖(0)=1 

and 𝑝𝑥 is the probability of staring at 𝑥.

The probability of being at vertex 𝑥 at time 𝑡 + 1:

𝑝𝑥 𝑡 + 1 = ෍

𝑦,𝑥 ∈𝐸

𝑝𝑦 𝑡 ⋅ Pr(𝑦 → 𝑥)

Transition Matrix 𝑃:  𝑃𝑖𝑗 is the probability of the walk at 

vertex 𝑖 selecting the edge to vertex 𝑗.
𝑝 𝑡 ⋅ 𝑃 = 𝑝(𝑡 + 1)



Random walk

Fundamental property. in the limit, the

long-term average property of being at a

particular vertex is independent of the start

vertex, or an initial probability distribution

over vertices (provided the underlying graph

is strongly connected) – the stationary

probabilities.
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Markov chain
• A finite set 𝑆 of states

• Transition probability: For 𝑥, 𝑦 ∈ 𝑆, 𝑝𝑥𝑦 is 

the probability going from state 𝑥 to 𝑦.

• σ𝑦 𝑝𝑥𝑦 = 1

6

Markov chain  Random graph

① A vertex  a state

② 𝑝𝑥𝑦  weighted edge from 𝑥 to 𝑦.



Markov chain
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Markov chain  Random graph

① A vertex  a state

② 𝑝𝑥𝑦  weighted edge from 𝑥 to 𝑦.

Connected Markov chain (irreducible): if the 

underlying directed graph is strongly 

connected.

Transition probability matrix 𝑃:  𝑃𝑥𝑦 is the 

probability of changing from state 𝑥 to 𝑦.



Markov chain
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Persistent state (recurrence). If the state ever

be reached, the random process will return to it

with probability 1.

𝑇 𝑆 : a random variable shows the number of steps the chain first goes 

back to state 𝑆. 

Persistent: Pr 𝑇 𝑆 < ∞ = 1, then 𝑆 is persistent.



Markov chain
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Persistent state (recurrence). If the state ever

be reached, the random process will return to it

with probability 1.

A B C



Markov chain
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Aperiodic. If the greatest common divisor of the

lengths of directed cycles in one.

Random walk Markov Chain

Graph Stochastic process

Vertex State

Strongly connected Persistent/recurrence

Aperiodic Aperiodic

Strongly connected +Aperiodic Ergodic

Undirected graph Time reversible

We will assume  strongly connectness by default.



Stationary distribution
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𝑝(𝑡) : the probability distribution after 𝑡 steps of 

a random walk.

Long-term average probability distribution:

𝒂 𝒕 =
1

𝑡
(𝑝 0 + 𝑝 1 +⋯+ 𝑝(𝑡 − 1))

Fundatmental theorem of Markov chains:

For a connected MC, 𝒂 𝒕 converges to a limit

probability 𝑥 which satisfies 𝑥 ⋅ 𝑃 = 𝑥.
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Lemma 1: Let 𝑃 be the transition probability matrix for a

connected Markov chain. The 𝑛 × (𝑛 + 1) matrix 𝐴 = [𝑃 −
𝑰, 𝟏] obtained by augmenting the matrix 𝑃 − 𝑰 with an

additional column of ones has rank 𝑛.

Fundamental Theorem of Markov Chains: For a

connected Markov chain there is a unique vector 𝝅
satisfying 𝝅 ⋅ 𝑃 = 𝝅. Moreover, for any starting distribution,

lim
𝑡→∞

𝒂(𝒕) exists and equals 𝝅.

Fundamental Theorem

Lemma 2 (Time reversible): For a random walk on a

strongly connected graph with probabilities on the edge, if

the vector 𝝅 satisfies 𝝅𝑥𝑝𝑥𝑦 = 𝜋𝑦𝑝𝑦𝑥 for all 𝑥 and 𝑦 and

σ𝑥 𝜋𝑥 = 1, then 𝝅 is the stationary distribution of the walk.



Application
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𝐺 = 𝑉, 𝐸

𝑉 = 𝑛, 𝐸 = 𝑚

deg 𝑣𝑖 = 𝑑𝑖



Application
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𝐺 = 𝑉, 𝐸

𝑉 = 𝑛, 𝐸 = 𝑚

deg 𝑣𝑖 = 𝑑𝑖

𝑃𝑖→𝑗

1

deg𝑖
𝑖𝑓 𝑖, 𝑗 ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Then the stationary distribution is:

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟐

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑

𝟏



Application
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𝐺 = 𝑉, 𝐸

𝑉 = 𝑛, 𝐸 = 𝑚

deg 𝑣𝑖 = 𝑑𝑖

𝑃𝑖→𝑗

1

deg𝑖
𝑖𝑓 𝑖, 𝑗 ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Then the stationary distribution is:  𝜋 =
𝑑1

2𝑚
,
𝑑2

2𝑚
, ⋯ ,

𝑑𝑛

2𝑚



Markov Chain Monte Carlo
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MCMC. A technique for sampling a multivariate 

probability distribution 𝑝(𝒙), where 𝒙 =
(𝑥1, 𝑥2, … , 𝑥𝑑).

Application. to estimate the expected value of a 

function 𝑓 𝑥

𝐸 𝑓 =෍

𝒙

𝑓 𝒙 ⋅ 𝑝(𝒙)



Markov Chain Monte Carlo
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Application. to estimate the expected value of a 

function 𝑓 𝑥

𝐸 𝑓 =෍

𝒙

𝑓 𝒙 ⋅ 𝑝(𝒙)

Realization:

① Draw a set of samples. Each sample 𝒙 is selected with 

probability 𝑝(𝒙). 

② Averaging 𝑓 over these samples.



Markov Chain Monte Carlo
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Sample according to 𝑝(𝒙). Design a MC whose 

states correspond to the value space of 𝒙 and  

whose stationary probability distribution is 𝑝(𝒙).

Recall: 

✓ 𝑝(𝒕) is the row vector of probabilities of the random 

walk being at each state at time 𝑡.

✓ 𝒂 𝒕 =
1

𝑡
(𝑝 0 + 𝑝 1 +⋯+ 𝑝(𝑡 − 1))

𝐸 𝑟 =෍

𝑖

𝑓𝑖(
1

𝑡
෍

𝑗=1

𝑡

Pr(𝑤𝑎𝑙𝑘 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑗)) =෍

𝑖

𝑓𝑖𝑎𝑖(𝑡)



Markov Chain Monte Carlo
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Sample according to 𝑝(𝒙). Design a MC whose 

states correspond to the value space of 𝒙 and  

whose stationary probability distribution is 𝑝(𝒙).

𝐸 𝑟 =෍

𝑖

𝑓𝑖(
1

𝑡
෍

𝑗=1

𝑡

Pr(𝑤𝑎𝑙𝑘 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑗)) =෍

𝑖

𝑓𝑖𝑎𝑖(𝑡)

෍

𝑖

𝑓𝑖𝑝𝑖 − 𝐸(𝑟) ≤ 𝑓𝑚𝑎𝑥 ⋅෍

𝑖

𝑝𝑖 − 𝑎𝑖 𝑡

= 𝑓𝑚𝑎𝑥 ⋅ 𝑝 − 𝑎 𝑡 1



Markov Chain Monte Carlo
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Sample according to 𝑝(𝒙). Design a MC whose 

states correspond to the value space of 𝒙 and  

whose stationary probability distribution is 𝑝(𝒙).

Two general approach:

• The Metropolis-Hastings algorithm

• The Gibbs sampling



Metropolis-Hastings Algorithm
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MHA. A general method to design a Markov

chain whose stationary distribution is a given

target distribution 𝒑.

Given random graph 𝐺 , with Δ 𝐺 = 𝑟 . The

transitions of the MC are defined as

𝑝𝑖𝑗 =
1

𝑟
min 1,

𝑝𝑗

𝑝𝑖

𝑝𝑖𝑖 = 1 −෍

𝑖≠𝑗

𝑝𝑖𝑗
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Given random graph 𝐺, with Δ 𝐺 = 𝑟. The transitions of the MC are defined as ቐ
𝑝𝑖𝑗 =

1

𝑟
min 1,

𝑝𝑗

𝑝𝑖

𝑝𝑖𝑖 = 1 − σ𝑖≠𝑗 𝑝𝑖𝑗
.



Metropolis-Hastings Algorithm
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Correctness.

To prove the stationary distribution is indeed the target 

distribution 𝒑.

𝑝𝑖𝑝𝑖𝑗 =
𝑝𝑖
𝑟
min 1,

𝑝𝑗

𝑝𝑖
=
1

𝑟
min 𝑝𝑖 , 𝑝𝑗 =

𝑝𝑗

𝑟
min 1,

𝑝𝑖
𝑝𝑗

= 𝑝𝑗𝑝𝑗𝑖

Given random graph 𝐺, with Δ 𝐺 = 𝑟. The transitions 

of the MC are defined as ቐ
𝑝𝑖𝑗 =

1

𝑟
min 1,

𝑝𝑗

𝑝𝑖

𝑝𝑖𝑖 = 1 − σ𝑖≠𝑗 𝑝𝑖𝑗



Sampling process: for 𝒙 = 𝑥1, … , 𝑥𝑑
① Choose one of the 𝑥𝑖 to update;

② 𝑥𝑖′ is chosen based on the marginal

probability of 𝑥𝑖

𝑝𝑥𝑦 =
1

𝑑
⋅ 𝑝 𝑦𝑖| 𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑

where 𝑥𝑖 ≠ 𝑦𝑖 and 𝑥𝑗 = 𝑦𝑗 for all 𝑖 ≠ 𝑗,

(i.e., 𝑥𝑖≠𝑗 does not change).

Gibbs Sampling

24

Let 𝑝(𝒙) be the target distribution where 𝒙 = 𝑥1, … , 𝑥𝑑 . 

Now the undirected random graph is a hyper cube: 

there is an edge between 𝒙 and 𝒚 if 𝒙 and 𝒚 differ in 

only 1 coordinate.
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Sampling process: for 𝒙 = 𝑥1, … , 𝑥𝑑
① Choose one of the 𝑥𝑖 to update;

② 𝑥𝑖′ is chosen based on the marginal probability of 𝑥𝑖 (i.e., 𝑥𝑖≠𝑗 will not change).

𝑝𝑥𝑦 =
1

𝑑
⋅ 𝑝 𝑦𝑖| 𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑 , where 𝑥𝑖 ≠ 𝑦𝑖 and 𝑥𝑗 = 𝑦𝑗 for all 𝑖 ≠ 𝑗.
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Sampling process: for 𝒙 = 𝑥1, … , 𝑥𝑑
① Choose one of the 𝑥𝑖 to update;

② 𝑥𝑖′ is chosen based on the marginal probability of 𝑥𝑖 (i.e., 𝑥𝑖≠𝑗 will not change).

𝑝𝑥𝑦 =
1

𝑑
⋅ 𝑝 𝑦𝑖| 𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑 , where 𝑥𝑖 ≠ 𝑦𝑖 and 𝑥𝑗 = 𝑦𝑗 for all 𝑖 ≠ 𝑗.
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Sampling process: for 𝒙 = 𝑥1, … , 𝑥𝑑
① Choose one of the 𝑥𝑖 to update;

② 𝑥𝑖′ is chosen based on the marginal probability of 𝑥𝑖 (i.e., 𝑥𝑖≠𝑗 will not change).

𝑝𝑥𝑦 =
1

𝑑
⋅ 𝑝 𝑦𝑖| 𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑 , where 𝑥𝑖 ≠ 𝑦𝑖 and 𝑥𝑗 = 𝑦𝑗 for all 𝑖 ≠ 𝑗.



Gibbs Sampling
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Sampling process: for 𝒙 = 𝑥1, … , 𝑥𝑑
① Choose one of the 𝑥𝑖 to update;

② 𝑥𝑖′ is chosen based on the marginal probability of 𝑥𝑖 (i.e., 𝑥𝑖≠𝑗 will not

change). 𝑝𝑥𝑦 =
1

𝑑
⋅ 𝑝 𝑦𝑖| 𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑 , where 𝑥𝑖 ≠ 𝑦𝑖 and 𝑥𝑗 = 𝑦𝑗

for all 𝑖 ≠ 𝑗.

Correctness. To prove the stationary distribution is 

indeed the target distribution 𝒑.

𝑝𝒙𝒚 =
1

𝑑

𝑝(𝑦𝑖| 𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑)𝑝(𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑)

𝑝(𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑)

=
1

𝑑

𝑝(𝑥1⋯𝑥𝑖−1𝑦𝑖𝑥𝑖+1⋯𝑥𝑑)

𝑝(𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑)
=

1

𝑑

𝑝(𝒚)

𝑝(𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑)

Similarly 𝑝𝒚𝒙 =
1

𝑑

𝑝(𝒙)

𝑝(𝑥1⋯𝑥𝑖−1𝑥𝑖+1⋯𝑥𝑑)

It follows that 𝑝 𝒙 𝑝𝒙𝒚 = 𝑝(𝒚)𝑝𝒚𝒙.



𝑅

Areas and Volumes
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For general convex sets in 𝑑
space, there are no close form

formulae for volume.

Sequence of concentric spheres:

𝑅 ⊃ 𝑆1 ⊆ 𝑆2 ⊆ ⋯ ⊆ 𝑆𝑘 ⊃ 𝑅

𝑉𝑜𝑙 𝑅 = 𝑉𝑜𝑙 𝑆𝑘 ∩ 𝑅

=
𝑉𝑜𝑙(𝑆𝑘 ∩ 𝑅)

𝑉𝑜𝑙(𝑆𝑘−1 ∩ 𝑅)
⋅
𝑉𝑜𝑙 𝑆𝑘−1 ∩ 𝑅

𝑉𝑜𝑙 𝑆𝑘−2 ∩ 𝑅
⋯
𝑉𝑜𝑙 𝑆2 ∩ 𝑅

𝑉𝑜𝑙 𝑆1 ∩ 𝑅
⋅ 𝑉𝑜𝑙(𝑆1)



Areas and Volumes
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𝑅

𝑉𝑜𝑙 𝑅 =
𝑉𝑜𝑙(𝑆𝑘 ∩ 𝑅)

𝑉𝑜𝑙(𝑆𝑘−1 ∩ 𝑅)
⋅
𝑉𝑜𝑙 𝑆𝑘−1 ∩ 𝑅

𝑉𝑜𝑙 𝑆𝑘−2 ∩ 𝑅
⋯
𝑉𝑜𝑙 𝑆2 ∩ 𝑅

𝑉𝑜𝑙 𝑆1 ∩ 𝑅
⋅ 𝑉𝑜𝑙(𝑆1)

𝑅𝑎𝑑𝑖𝑢𝑠 𝑆𝑖 = 1 +
1

𝑑
⋅ 𝑅𝑎𝑑𝑖𝑢𝑠(𝑆𝑖−1)

Thus 1 ≤
𝑉𝑜𝑙 𝑆𝑖∩𝑅

𝑉𝑜𝑙 𝑆𝑖−1∩𝑅
= 1 +

1

𝑑

𝑑
≤ 𝑒

Let 𝑟 = 1 +
1

𝑑

𝑘
then the number of spheres 𝑘 is at most 

𝑂 log
1+

1
𝑑
𝑟 = 𝑂(𝑑ln(𝑟))

To estimate the overall volume to error 1 ± 𝜖:

Estimate each volume ratio to a factor of 1 ±
𝜖

𝑒𝑑ln(𝑟)
.



Areas and Volumes
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𝑅

𝑅𝑎𝑑𝑖𝑢𝑠 𝑆𝑖 = 1 +
1

𝑑
⋅ 𝑅𝑎𝑑𝑖𝑢𝑠 𝑆𝑖+1 , 1 ≤

𝑉𝑜𝑙 𝑆𝑖 ∩ 𝑅

𝑉𝑜𝑙 𝑆𝑖−1 ∩ 𝑅
≤ 𝑒

Estimate the ratio 
𝑉𝑜𝑙 𝑆𝑖∩𝑅

𝑉𝑜𝑙 𝑆𝑖−1∩𝑅
:

① Selecting points in 𝑆𝑖 ∩ 𝑅 uniformly at random;

② Computing the fraction in 𝑆𝑖−1 ∩ 𝑅.



Areas and Volumes
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𝑅

𝑅𝑎𝑑𝑖𝑢𝑠 𝑆𝑖 = 1 +
1

𝑑
⋅ 𝑅𝑎𝑑𝑖𝑢𝑠 𝑆𝑖+1 , 1 ≤

𝑉𝑜𝑙 𝑆𝑖 ∩ 𝑅

𝑉𝑜𝑙 𝑆𝑖−1 ∩ 𝑅
≤ 𝑒

Estimate the ratio 
𝑉𝑜𝑙 𝑆𝑖∩𝑅

𝑉𝑜𝑙 𝑆𝑖−1∩𝑅
:

① Selecting points in 𝑆𝑖+1 ∩ 𝑅 uniformly at random;

② Computing the fraction in 𝑆𝑖 ∩ 𝑅.



Some conceptions
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Mixing time. Fix 𝜖 > 0. The 𝜖 −mixing time of a MC is the

minimum integer 𝑡 such that for any starting distribution

𝑝0, the 1-norm distance between the 𝑡 −step running

average probability distribution and the stationary

distribution is at most 𝜖.

Hitting time ℎ𝑥𝑦. The expected time of a random walk

starting at vertex 𝑥 (or a starting probability distribution)

to reach vertex 𝑦.

Cover time. The expected time of a random walk starting

at vertex 𝑥 in the graph 𝐺 to reach each vertex at least

once.
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O(𝑛 ln 𝑛) O(ln 𝑛)



Random walks in Euclidean Space
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George Pólya,1921



Random walks in Euclidean Space
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Random walks in Euclidean Space
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Random walks in Euclidean Space
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“A drunk person will always find their way home, 
while a drunk bird may get lost forever.”

39


	幻灯片 1: Random Walks and Markov Chains 
	幻灯片 2
	幻灯片 3: Random walk
	幻灯片 4: Random walk
	幻灯片 5: Random walk
	幻灯片 6: Markov chain
	幻灯片 7: Markov chain
	幻灯片 8: Markov chain
	幻灯片 9: Markov chain
	幻灯片 10: Markov chain
	幻灯片 11: Stationary distribution
	幻灯片 12: Fundamental Theorem
	幻灯片 13: Application
	幻灯片 14: Application
	幻灯片 15: Application
	幻灯片 16: Markov Chain Monte Carlo
	幻灯片 17: Markov Chain Monte Carlo
	幻灯片 18: Markov Chain Monte Carlo
	幻灯片 19: Markov Chain Monte Carlo
	幻灯片 20: Markov Chain Monte Carlo
	幻灯片 21: Metropolis-Hastings Algorithm
	幻灯片 22
	幻灯片 23: Metropolis-Hastings Algorithm
	幻灯片 24: Gibbs Sampling
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28: Gibbs Sampling
	幻灯片 29: Areas and Volumes
	幻灯片 30: Areas and Volumes
	幻灯片 31: Areas and Volumes
	幻灯片 32: Areas and Volumes
	幻灯片 33: Some conceptions
	幻灯片 34
	幻灯片 35: Random walks in Euclidean Space
	幻灯片 36: Random walks in Euclidean Space
	幻灯片 37: Random walks in Euclidean Space
	幻灯片 38: Random walks in Euclidean Space
	幻灯片 39

