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Unlimited Register Machine

An Unlimited Register Machine (URM) is an idealized computer.
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Register

A URM has an infinite number of register labeled R1,R2,R3, . . ..

r1 r2 r3 r4 r5 r6 r7 . . .

R1 R2 R3 R4 R5 R6 R7 . . .

Every register can hold a natural number at any moment.

The registers can be equivalently written as for example

[r1r2r3]
3
1[r4]

4
4[r5r6r7 . . .]

∞
5
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Program

A URM also has a program, which is a finite list of instructions.
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Instruction

Type Instruction Response of the URM
Zero Z (n) Replace rn by 0.
Successor S(n) Add 1 to rn.
Transfer T (m,n) Copy rm to Rn.
Jump J(m,n,q) If rm = rn, go to the q-th instruction;

otherwise go to the next instruction.
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Computation

The registers:

9 7 0 0 0 0 0 . . .

R1 R2 R3 R4 R5 R6 R7

The program:

I1 : J(1,2,6)
I2 : S(2)
I3 : S(3)
I4 : J(1,2,6)
I5 : J(1,1,2)
I6 : T (3,1)
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Configuration and Computation

Configuration:
the contents of the registers + the current instruction number.

Initial configuration, computation, final configuration.
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Some Notation

Suppose P is the program of a URM and a1,a2,a3, . . . are the
numbers stored in the registers.

P(a1,a2,a3, . . .) is the initial configuration.

P(a1,a2,a3, . . .) ↓ means that the computation converges.
P(a1,a2,a3, . . .) ↑ means that the computation diverges.
P(a1,a2, . . . ,am) is P(a1,a2, . . . ,am,0,0, . . .).
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URM-Computable Function

What does it mean that a URM computes a (partial) n-ary
function f?
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URM-Computable Function

Let f be a partial n-ary function.

Suppose P is the program of a URM and a1, . . . ,an,b ∈ N. The
computation P(a1, . . . ,an) converges to b if

P(a1, . . . ,an) ↓ and r1 = b in the final configuration.

We write P(a1, . . . ,an) ↓ b in this case.

P URM-computes f if, for all a1, . . . ,an,b ∈ N, P(a1, . . . ,an) ↓ b
iff f (a1, . . . ,an) = b.

The function f is URM-computable if there is a program that
URM-computes f .
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We shall abbreviate “URM-computable” to “computable”.
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Let
C

be the set of computable functions and

Cn

be the set of n-ary computable functions.
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Examples

Construct a URM that computes x + y .

I1 : J(3,2,5)
I2 : S(1)
I3 : S(3)
I4 : J(1,1,1)
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Examples

Construct a URM that computes x−̇1 =

{
x − 1, if x > 0,
0, if x = 0.

I1 : J(1,4,8)
I2 : S(3)
I3 : J(1,3,7)
I4 : S(2)
I5 : S(3)
I6 : J(1,1,3)
I7 : T (2,1)
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Examples

Construct a URM that computes

x ÷ 2 =

{
x/2, if x is even,
undefined, if x is odd.

I1 : J(1,2,6)
I2 : S(3)
I3 : S(2)
I4 : S(2)
I5 : J(1,1,1)
I6 : T (3,1)
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Examples

Construct a URM that computes

x ÷ 2 =

{
x/2, if x is even,
undefined, if x is odd.

I1 : J(1,2,6)
I2 : S(3)
I3 : S(2)
I4 : S(2)
I5 : J(1,1,1)
I6 : T (3,1)



Unlimited Register Machine Church-Turing Thesis Gödel Number

Church-Turing Thesis
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Two Questions

1. How do different models of computation compare to each
other?

2. How do these models characterize the informal notion of
effective computability?
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Other Approaches to Computability

1. Gödel-Kleene (1936): Partial recursive functions.

2. Turing (1936): Turing machines.

3. Church (1936): λ-terms.

4. Post (1943): Post systems.

5. Markov (1951): Variants of the Post systems.

6. Shepherdson-Sturgis (1963): URM-computable functions.
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Other Approaches to Computability
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Fundamental Result

Each of the above proposals for a characterization of the notion
of effective computability gives rise to the same class of
functions.
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Church’s Thesis

The intuitively and informally defined class of effectively
computable partial functions coincides exactly with the class C
of URM-computable functions.
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Church-Turing Thesis

1. All models define the same set of functions.

2. C is very complicated.

3. No one has contrived an intuitively computable function that
does not belong to C.
(When you are convincing people of the computability of your
functions, you are constructing an interpretation from your
model to a well-known model.)
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Proof by Church-Turing Thesis

Church-Turing Thesis allows us to give an informal argument
for the computability of a function.
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Gödel Number
1931
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General Remark

The set of the programs are countable.

More importantly, every program can be coded up effectively by
a number in such a way that a unique program can be
recovered from the number.
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Denumerability and Enumerability

A set X is denumerable if there is a bijection f : X → N.

An enumeration of a set X is a surjection g : N→ X ;
this is often represented by writing {x0, x1, x2, . . .}.
It is an enumeration without repetitions if g is injective.

Let X be a set of “finite objects”.
Then X is effectively denumerable if there is a bijection
f : X → N such that both f and f−1 are effectively computable
functions.
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Effective Denumerability

Fact. N× N is effectively denumerable.

Proof. A bijection π : N× N→ N is defined by

π(m,n) def
= 2m(2n + 1)− 1,

π−1(l) def
= (π1(l), π2(l)),

where

π1(x)
def
= (x + 1)1,

π2(x)
def
= ((x + 1)/2π1(x) − 1)/2.
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Effective Denumerability

Fact. N+ × N+ × N+ is effectively denumerable.

Proof. A bijection ζ : N+ × N+ × N+ → N is defined by

ζ(m,n,q) def
= π(π(m − 1,n − 1),q − 1),

ζ−1(l) def
= (π1(π1(l)) + 1, π2(π1(l)) + 1, π2(l) + 1).
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Effective Denumerability

Fact.
⋃

k>0 Nk is effectively denumerable.

Proof. A bijection τ :
⋃

k>0 Nk → N is defined by

τ(a1, . . . ,ak )
def
= 2a1 + 2a1+a2+1 + 2a1+a2+a3+2 + . . .

+ 2a1+a2+a3+...,ak+k−1 − 1.

Now given x we can find a unique expression of the form

2b1 + 2b2 + 2b3 + . . .+ 2bk

that equals to x + 1. It is then clear how to define τ−1(x).
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Gödel Encoding

Let I be the set of all instructions.

Let P be the set of all programs.

The objects in I, and P as well, are ‘finite objects’.
They must be effectively denumerable.
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Gödel Encoding

Theorem. I is effectively denumerable.

Proof. The bijection β : I → N is defined as follows:

β(Z (n)) = 4(n − 1),
β(S(n)) = 4(n − 1) + 1,

β(T (m,n)) = 4π(m − 1,n − 1) + 2,
β(J(m,n,q)) = 4ζ(m,n,q) + 3.

The converse β−1 is easy.
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Gödel Encoding

Theorem. P is effectively denumerable.

Proof. The bijection γ : P → N is defined as follows:

γ(P) = τ(β(I1), . . . , β(Is)),

assuming P = I1, . . . , Is.

The converse γ−1 is obvious.
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Gödel Encoding

The number γ(P) is called the Gödel number of P.

Pn = the program with Godel number n
= γ−1(n)
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Gödel Encoding

Let P be the program T (1,3),S(4),Z (6).

β(T (1,3)) = 18, β(S(4)) = 13, β(Z (6)) = 20.

γ(P) = 218 + 232 + 253 − 1.
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Gödel Encoding

Consider P4127.

4127 = 25 + 212 − 1.

β(I1) = 5 = 4× 1 + 1,
β(I2) = 12− 5− 1 = 4× 1 + 2 = 4π(1,0) + 2.

So P4127 is S(2);T (2,1).
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Gödel Encoding

We shall fix this particular coding function γ throughout.
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