
Finite Automata 1/29

Finite Automata and Regular Languages

Huan Long

Shanghai Jiao Tong University

Finite Automata 2/29

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/˜chen/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Finite Automata 3/29

Outline

Finite automata and regular language

Nondeterminism automata

Equivalence of DFA and NFA

Regular expression

Pumping lemma for regular languages

Some decision problems related to FA

Finite Automata 4/29

Finite Automata

Definition
A deterministic finite automata (DFA) is a 5-tuple (Q,Σ, δ, q0, F)
where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σ→ Q is the transition function,
4. q0 ∈ Q is the start state,
5. F ⊆ Q is the set of accept states.

Finite Automata 5/29

Computation by DFA

Let M = (Q,Σ, δ, q0, F) be a DFA and let w = w1w2 · · ·wn be a
string with wi ∈ Σ for all i ∈ [n]. Then M accepts w if there
exists a sequence of states r0, r1, . . . , rn in Q such that:

1. r0 = q0,
2. δ(ri, wi+1) = ri+1 for i = 0, . . . , n− 1,
3. rn ∈ F .

For a set A, we say that M recognizes A if

A = {` |M accepts `}

Finite Automata 6/29

Regular languages

Definition
A language is called regular if some finite automata recognizes
it.

Finite Automata 7/29

The regular operators

Definition
Let A and B be languages. We define the following three
regular operations:
I Union: A ∪B = {x | x ∈ A ∨ x ∈ B}
I Concatenation: A ◦B = {xy | x ∈ A ∧ y ∈ B}
I Kleene star: A? = {x1x2 . . . xk | k ≥ 0 ∧ xi ∈ A}

Finite Automata 8/29

Nondeterminism

Definition
A nondeterministic finite automata (NFA) is a 5-tuple
(Q,Σ, δ, q0, F) where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σε → P(Q) is the transition function, where

Σε = Σ ∪ {ε},
4. q0 ∈ Q is the start state,
5. F ⊆ Q is the set of accept states.

Finite Automata 9/29

Computation by NFA

Let N = (Q,Σ, δ, q0, F) be a NFA and let w = y1y2 · · · ym be a
string with yi ∈ Σε for all i ∈ [m]. Then N accepts w if there
exists a sequence of states r0, r1, . . . , rm in Q such that:

1. r0 = q0,
2. ri+1∈δ(ri, yi+1) for i = 0, . . . ,m− 1,
3. rm ∈ F .

Finite Automata 10/29

Equivalence of NFAs and DFAs

Theorem
Every NFA has an equivalent DFA, i.e., they recognize the
same language.

Finite Automata 11/29

Proof (1)

NFA: N = (Q,Σ, δ, q0, F)

Main idea: view a NFA as occupying a set of states at any
moment.

Step 1: For any state q ∈ Q, compute its silently reachable
class E(q):

initially set E(q) = {q};
repeat
E′(q) = E(q)
∀x ∈ E(q), if ∃y ∈ δ(x, ε) ∧ y 6∈ E(q), E(q) = E(q) ∪ {y}

until E(q) = E′(q)
return E(q).

Finite Automata 12/29

Proof (2)

Step 2: build the equivalent DFA

NFA: N = (Q,Σ, δ, q0, F)⇒ DFA: M = (Q′,Σ, δ′, q′0, F
′)

1. Q′ = P(Q);
2. Let R ∈ Q′ and a ∈ Σ, define

δ′(R, a) =
⋃
{E(q) | q ∈ Q ∧ (∃r ∈ R)(q ∈ δ(r, a))} ;

3. q′0 = E(q0);
4. F ′ = {R ∈ Q′ | R ∩ F 6= ∅}.

Finite Automata 13/29

Corollary
A language is regular if and only if some NFA recognizes it.

Finite Automata 14/29

Recall: regular operators

Definition
Let A and B be languages. We define the following three
regular operations:
I Union: A ∪B = {x | x ∈ A ∨ x ∈ B}
I Concatenation: A ◦B = {xy | x ∈ A ∧ y ∈ B}
I Kleene star: A? = {x1x2 . . . xk | k ≥ 0 ∧ xi ∈ A}

Finite Automata 15/29

Closure under the regular operators

Theorem
The class of regular languages is closed under the ∪, ◦, ?
operations.

Proof.
Let N1 = (Q1,Σ1, δ1, q1, F1) recognize A1,

N2 = (Q2,Σ2, δ2, q2, F2) recognize A2;

We will build NFAs which recognize A1 ∪A2, A1 ◦A2, A?1
respectively.

Finite Automata 16/29

I. Closure under union : A1∪A2 is regular

N1 = (Q1,Σ1, δ1, q1, F1) recognize A1,
N2 = (Q2,Σ2, δ2, q2, F2) recognize A2;

Define the NFA as:
1. Q = {q0} ∪Q1 ∪Q2;
2. q0 is the new start state;
3. F = F1 ∪ F2;
4. For any q ∈ Q and any a ∈ Σε

δ(q, a) =


{q1, q2} q = q0 ∧ a = ε
∅ q = q0 ∧ a 6= ε
δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

Finite Automata 17/29

II. Closure under concatenation : A1◦A2 is regular

N1 = (Q1,Σ1, δ1, q1, F1) recognize A1,
N2 = (Q2,Σ2, δ2, q2, F2) recognize A2;

Define the NFA as:
1. Q = Q1 ∪Q2;
2. the start state is q1;
3. the set of accept states is F2;
4. For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1 − F1

δ1(q, a) q ∈ F1 ∧ a 6= ε
δ1(q, a) ∪ {q2} q ∈ F1 ∧ a = ε
δ2(q, a) q ∈ Q2

Finite Automata 18/29

III. Closure under Kleene star : A?
1 is regular

N1 = (Q1,Σ, δ1, q1, F1) recognize A1;

Define the NFA as:
1. Q = {q0} ∪Q1;
2. the new start state is q0;
3. F = {q0} ∪ F1;
4. For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1 − F1

δ1(q, a) q ∈ F1 ∧ a 6= ε
δ1(q, a) ∪ {q1} q ∈ F1 ∧ a = ε
{q1} q = q0 ∧ a = ε
∅ q = q0 ∧ a 6= ε

Finite Automata 19/29

Other closure property

Given N = (Q,Σ, δ, q, F) the set of language recognized by N
is A, then
I Complement: A = Σ? −A
I Intersection: A ∩B = {x | x ∈ A ∧ x ∈ B}

Lemma
The class of regular languages is closed under
complementation and intersection.

Proof.
I w.l.o.g, N is a DFA, then N = (Q,Σ, δ, q,Q− F) will

recognize A.

I A ∩B = A ∪B.

Finite Automata 20/29

Regular expression

Given alphabet Σ, we say that R is a regular expression if R is
1. a for some a ∈ Σ,
2. ε,
3. ∅,
4. (R1 ∪R2), where R1 and R2 are regular expressions,
5. (R1 ◦R2), where R1 and R2 are regular expressions,
6. (R?1), where R1 is a regular expression.

Sometimes, we use R1R2 instead of (R1 ◦R2) if no confusion
arises.

Finite Automata 21/29

Language defined by regular expressions

regular expression R language L(R)

a {a}
ε {ε}
∅ ∅

(R1 ∪R2) L(R1) ∪ L(R2)
(R1 ◦R2) L(R1) ◦ L(R2)

(R?1) L(R1)
?

Finite Automata 22/29

Equivalence with finite automata

Theorem
A language is regular if and only if some regular expression
describes it.

Proof.
I If: build the NFAs; (relatively easy)
I Only if: Automata =⇒ regular expressions.

Sketch: (Dynamic programming)

R(i, j, k) = R(i, j, k−1) ∪R(i, k, k−1)R(k, k, k−1)?R(k, j, k−1)

L(M) =
⋃
{R(1, j, n) | qj ∈ F}.

Finite Automata 23/29

Languages need counting

I L1 = {` ∈ {0, 1}? | ` has an equal number of 0s and 1s}.
I L2 = {` ∈ {0, 1}? | ` has an equal number of

occurrences of 01 and 10 as substrings}.

I L2 is regular;
I L1 is or is not regular? It is not regular!

Finite Automata 24/29

The pumping lemma for regular languages

Lemma
If A is a regular language, then there is a number p (i.e.,
the pumping length where if s is any string in A of length at
least p, then s my be divided into three pieces, s = xyz,
satisfying the following conditions:

1. |y| > 0,
2. |xy| ≤ p,
3. for each i ≥ 0, we have xyiz ∈ A.

Any string xyz in A can be pumped along y.

Finite Automata 25/29

Proof

Pigeonhole principle

Let M = (Q,Σ, δ, q1, F) be a DFA recognizing A and p = |Q|.
Let s = s1s2 · · · sn be a string in A with n ≥ p. Let r1, · · · , rn+1

be the sequence of states that M enters while processing s,
i.e.,

ri+1 = δ(ri, si)

for i ∈ [n].
Among the first p+ 1 states in the sequence, two must be the
same, say rj and rk with j < k ≤ p+ 1. Define

x = s1 · · · sj−1, y = sj · · · sk−1, z = sk · · · sn.

Finite Automata 26/29

Example (1)

The language L = {0n1n | n ≥ 0} is not regular.

Proof.
If it is regular, choose p be the pumping length and consider
s = 0p1p. By the Pumping lemma, s = xyz with xyiz ∈ L for all
i ≥ 0.

As |xy| ≤ p and |y| > 0, y = 0i for some i > 0.

But then xz = 0n−i1n 6∈ L. Contradicting the lemma.

Finite Automata 27/29

Example (2)

The language L = {w | w has an equal number of 0s and 1s} is
not regular.

Proof.
If it is regular, then L ∩ 0?1? would also be regular.

However, this latter language is precisely the language in
Example (1), which is not regular.

Finite Automata 28/29

Problems from formal language theory

Decision Problems
I Acceptance: does a given string belong to a given

language?
I Emptiness: is a given language empty?
I Equality: are given two languages equal?

Finite Automata 29/29

Language Problems concerning FA

Theorem
The following three problems:
I Acceptance: Given a DFA (NFA) A and a string w, does A

accept w?
I Emptiness: Given a DFA (NFA) A is the language L(A)

empty?
I Equality: Given two DFA (NFA) A and B is L(A) equal to
L(B)?

The corresponding decision problems are all decidable.

Proof.

	Finite automata and regular language
	Nondeterminism automata
	Equivalence of DFA and NFA
	Regular expression
	Pumping lemma for regular languages
	Some decision problems related to FA

