Finite Automata and Regular Languages

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof. Yijia Chen.
http://basics.sjtu.edu.cn/~chen/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

Outline

Finite automata and regular language

Nondeterminism automata

Equivalence of DFA and NFA

Regular expression

Pumping lemma for regular languages

Some decision problems related to FA

Finite Automata

Definition

A deterministic finite automata (DFA) is a 5 -tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
4. $q_{0} \in Q$ is the start state,
5. $F \subseteq Q$ is the set of accept states.

Computation by DFA

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and let $w=w_{1} w_{2} \cdots w_{n}$ be a string with $w_{i} \in \Sigma$ for all $i \in[n]$. Then M accepts w if there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ in Q such that:

1. $r_{0}=q_{0}$,
2. $\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0, \ldots, n-1$,
3. $r_{n} \in F$.

For a set A, we say that M recognizes A if

$$
A=\{\ell \mid M \text { accepts } \ell\}
$$

Regular languages

Definition
A language is called regular if some finite automata recognizes it.

The regular operators

Definition
Let A and B be languages. We define the following three regular operations:

- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$
- Concatenation: $A \circ B=\{x y \mid x \in A \wedge y \in B\}$
- Kleene star: $A^{\star}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0 \wedge x_{i} \in A\right\}$

Nondeterminism

Definition
A nondeterministic finite automata (NFA) is a 5 -tuple
$\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. $\delta: Q \times \Sigma_{\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function, where $\Sigma_{\epsilon}=\Sigma \cup\{\epsilon\}$,
4. $q_{0} \in Q$ is the start state,
5. $F \subseteq Q$ is the set of accept states.

Computation by NFA

Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a NFA and let $w=y_{1} y_{2} \cdots y_{m}$ be a string with $y_{i} \in \Sigma_{\epsilon}$ for all $i \in[m]$. Then N accepts w if there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ in Q such that:

1. $r_{0}=q_{0}$,
2. $r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$ for $i=0, \ldots, m-1$, 3. $r_{m} \in F$.

Equivalence of NFAs and DFAs

Theorem
Every NFA has an equivalent DFA, i.e., they recognize the same language.

Proof (1)

NFA: $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Main idea: view a NFA as occupying a set of states at any moment.

Step 1: For any state $q \in Q$, compute its silently reachable class $E(q)$:

```
initially set \(E(q)=\{q\} ;\)
    repeat
        \(E^{\prime}(q)=E(q)\)
        \(\forall x \in E(q)\), if \(\exists y \in \delta(x, \epsilon) \wedge y \notin E(q), E(q)=E(q) \cup\{y\}\)
    until \(E(q)=E^{\prime}(q)\)
return \(E(q)\).
```


Proof (2)

Step 2: build the equivalent DFA
NFA: $N=\left(Q, \Sigma, \delta, q_{0}, F\right) \Rightarrow$ DFA: $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$

1. $Q^{\prime}=\mathcal{P}(Q)$;
2. Let $R \in Q^{\prime}$ and $a \in \Sigma$, define

$$
\delta^{\prime}(R, a)=\bigcup\{E(q) \mid q \in Q \wedge(\exists r \in R)(q \in \delta(r, a))\}
$$

3. $q_{0}^{\prime}=E\left(q_{0}\right)$;
4. $F^{\prime}=\left\{R \in Q^{\prime} \mid R \cap F \neq \emptyset\right\}$.

Corollary
A language is regular if and only if some NFA recognizes it.

Recall: regular operators

Definition
Let A and B be languages. We define the following three regular operations:

- Union: $A \cup B=\{x \mid x \in A \vee x \in B\}$
- Concatenation: $A \circ B=\{x y \mid x \in A \wedge y \in B\}$
- Kleene star: $A^{\star}=\left\{x_{1} x_{2} \ldots x_{k} \mid k \geq 0 \wedge x_{i} \in A\right\}$

Closure under the regular operators

Theorem
The class of regular languages is closed under the \cup, \circ, * operations.

Proof.
Let $N_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1}, $N_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, q_{2}, F_{2}\right)$ recognize $A_{2} ;$

We will build NFAs which recognize $A_{1} \cup A_{2}, A_{1} \circ A_{2}, A_{1}^{\star}$ respectively.
I. Closure under union : $A_{1} \cup A_{2}$ is regular
$N_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1},
$N_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, q_{2}, F_{2}\right)$ recognize A_{2};
Define the NFA as:

1. $Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$;
2. q_{0} is the new start state;
3. $F=F_{1} \cup F_{2}$;
4. For any $q \in Q$ and any $a \in \Sigma_{\epsilon}$

$$
\delta(q, a)= \begin{cases}\left\{q_{1}, q_{2}\right\} & q=q_{0} \wedge a=\epsilon \\ \emptyset & q=q_{0} \wedge a \neq \epsilon \\ \delta_{1}(q, a) & q \in Q_{1} \\ \delta_{2}(q, a) & q \in Q_{2}\end{cases}
$$

II. Closure under concatenation : $A_{1} \circ A_{2}$ is regular
$N_{1}=\left(Q_{1}, \Sigma_{1}, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1},
$\underline{N_{2}=\left(Q_{2}, \Sigma_{2}, \delta_{2}, q_{2}, F_{2}\right) \text { recognize } A_{2} ; ~}$
Define the NFA as:

1. $Q=Q_{1} \cup Q_{2}$;
2. the start state is q_{1};
3. the set of accept states is F_{2};
4. For any $q \in Q$ and any $a \in \Sigma_{\epsilon}$

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1}-F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \wedge a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & q \in F_{1} \wedge a=\epsilon \\ \delta_{2}(q, a) & q \in Q_{2}\end{cases}
$$

III. Closure under Kleene star : A_{1}^{\star} is regular

$\underline{N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right) \text { recognize } A_{1} ; ~}$
Define the NFA as:

1. $Q=\left\{q_{0}\right\} \cup Q_{1}$;
2. the new start state is q_{0};
3. $F=\left\{q_{0}\right\} \cup F_{1}$;
4. For any $q \in Q$ and any $a \in \Sigma_{\epsilon}$

$$
\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1}-F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \wedge a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & q \in F_{1} \wedge a=\epsilon \\ \left\{q_{1}\right\} & q=q_{0} \wedge a=\epsilon \\ \emptyset & q=q_{0} \wedge a \neq \epsilon\end{cases}
$$

Other closure property

Given $N=(Q, \Sigma, \delta, q, F)$ the set of language recognized by N is A, then

- Complement: $\bar{A}=\Sigma^{\star}-A$
- Intersection: $A \cap B=\{x \mid x \in A \wedge x \in B\}$

Lemma
The class of regular languages is closed under complementation and intersection.

Proof.

- w.l.o.g, N is a DFA, then $\bar{N}=(Q, \Sigma, \delta, q, Q-F)$ will recognize \bar{A}.
- $A \cap B=\overline{\bar{A} \cup \bar{B}}$.

Regular expression

Given alphabet Σ, we say that R is a regular expression if R is 1. a for some $a \in \Sigma$,
2. ϵ,
3. \emptyset,
4. ($R_{1} \cup R_{2}$), where R_{1} and R_{2} are regular expressions,
5. ($R_{1} \circ R_{2}$), where R_{1} and R_{2} are regular expressions,
6. $\left(R_{1}^{\star}\right)$, where R_{1} is a regular expression.

Sometimes, we use $R_{1} R_{2}$ instead of $\left(R_{1} \circ R_{2}\right)$ if no confusion arises.

Language defined by regular expressions

regular expression R	language $L(R)$
a	$\{a\}$
ϵ	$\{\epsilon\}$
\emptyset	\emptyset
$\left(R_{1} \cup R_{2}\right)$	$L\left(R_{1}\right) \cup L\left(R_{2}\right)$
$\left(R_{1} \circ R_{2}\right)$	$L\left(R_{1}\right) \circ L\left(R_{2}\right)$
$\left(R_{1}^{\star}\right)$	$L\left(R_{1}\right)^{\star}$

Equivalence with finite automata

Theorem

A language is regular if and only if some regular expression describes it.

Proof.

- If: build the NFAs; (relatively easy)
- Only if: Automata \Longrightarrow regular expressions.

Sketch: (Dynamic programming)

$$
\begin{aligned}
& R(i, j, k)=R(i, j, k-1) \cup R(i, k, k-1) R(k, k, k-1)^{\star} R(k, j, k-1) \\
& L(M)=\bigcup\left\{R(1, j, n) \mid q_{j} \in F\right\}
\end{aligned}
$$

Languages need counting

- $L_{1}=\left\{\ell \in\{0,1\}^{\star} \mid \ell\right.$ has an equal number of 0 s and 1 s$\}$.
- $L_{2}=\left\{\ell \in\{0,1\}^{\star} \mid \ell\right.$ has an equal number of occurrences of 01 and 10 as substrings $\}$.
- L_{2} is regular;
- L_{1} is or is not regular? It is not regular!

The pumping lemma for regular languages

Lemma

If A is a regular language, then there is a number p (i.e., the pumping length where if s is any string in A of length at least p, then s my be divided into three pieces, $s=x y z$, satisfying the following conditions:

1. $|y|>0$,
2. $|x y| \leq p$,
3. for each $i \geq 0$, we have $x y^{i} z \in A$.

Any string $x y z$ in A can be pumped along y.

Proof

Pigeonhole principle
Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing A and $p=|Q|$. Let $s=s_{1} s_{2} \cdots s_{n}$ be a string in A with $n \geq p$. Let r_{1}, \cdots, r_{n+1} be the sequence of states that M enters while processing s, i.e.,

$$
r_{i+1}=\delta\left(r_{i}, s_{i}\right)
$$

for $i \in[n]$.
Among the first $p+1$ states in the sequence, two must be the same, say r_{j} and r_{k} with $j<k \leq p+1$. Define

$$
x=\underline{s_{1} \cdots s_{j-1}}, y=\underline{s_{j} \cdots s_{k-1}}, z=\underline{s_{k} \cdots s_{n}} .
$$

Example (1)

The language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular.
Proof.
If it is regular, choose p be the pumping length and consider $s=0^{p} 1^{p}$. By the Pumping lemma, $s=x y z$ with $x y^{i} z \in L$ for all $i \geq 0$.

As $|x y| \leq p$ and $|y|>0, y=0^{i}$ for some $i>0$.
But then $x z=0^{n-i} 1^{n} \notin L$. Contradicting the lemma.

Example (2)

The language $L=\{w \mid w$ has an equal number of 0 s and $1 \mathbf{s}\}$ is not regular.

Proof.

If it is regular, then $L \cap 0^{\star} 1^{\star}$ would also be regular.
However, this latter language is precisely the language in Example (1), which is not regular.

Problems from formal language theory

Decision Problems

- Acceptance: does a given string belong to a given language?
- Emptiness: is a given language empty?
- Equality: are given two languages equal?

Language Problems concerning FA

Theorem
The following three problems:

- Acceptance: Given a DFA (NFA) A and a string w, does A accept w ?
- Emptiness: Given a DFA (NFA) A is the language $L(A)$ empty?
- Equality: Given two DFA (NFA) A and B is $L(A)$ equal to $L(B)$?
The corresponding decision problems are all decidable.
Proof.

