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Finite Automata

Definition
A deterministic finite automata (DFA) is a 5-tuple (Q,Σ, δ, q0, F )
where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σ→ Q is the transition function,
4. q0 ∈ Q is the start state,
5. F ⊆ Q is the set of accept states.
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Computation by DFA

Let M = (Q,Σ, δ, q0, F ) be a DFA and let w = w1w2 · · ·wn be a
string with wi ∈ Σ for all i ∈ [n]. Then M accepts w if there
exists a sequence of states r0, r1, . . . , rn in Q such that:

1. r0 = q0,
2. δ(ri, wi+1) = ri+1 for i = 0, . . . , n− 1,
3. rn ∈ F .

For a set A, we say that M recognizes A if

A = {` |M accepts `}
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Regular languages

Definition
A language is called regular if some finite automata recognizes
it.
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The regular operators

Definition
Let A and B be languages. We define the following three
regular operations:
I Union: A ∪B = {x | x ∈ A ∨ x ∈ B}
I Concatenation: A ◦B = {xy | x ∈ A ∧ y ∈ B}
I Kleene star: A? = {x1x2 . . . xk | k ≥ 0 ∧ xi ∈ A}
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Nondeterminism

Definition
A nondeterministic finite automata (NFA) is a 5-tuple
(Q,Σ, δ, q0, F ) where

1. Q is a finite set called the states,
2. Σ is a finite set called the alphabet,
3. δ : Q× Σε → P(Q) is the transition function, where

Σε = Σ ∪ {ε},
4. q0 ∈ Q is the start state,
5. F ⊆ Q is the set of accept states.
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Computation by NFA

Let N = (Q,Σ, δ, q0, F ) be a NFA and let w = y1y2 · · · ym be a
string with yi ∈ Σε for all i ∈ [m]. Then N accepts w if there
exists a sequence of states r0, r1, . . . , rm in Q such that:

1. r0 = q0,
2. ri+1∈δ(ri, yi+1) for i = 0, . . . ,m− 1,
3. rm ∈ F .
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Equivalence of NFAs and DFAs

Theorem
Every NFA has an equivalent DFA, i.e., they recognize the
same language.
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Proof (1)

NFA: N = (Q,Σ, δ, q0, F )

Main idea: view a NFA as occupying a set of states at any
moment.

Step 1: For any state q ∈ Q, compute its silently reachable
class E(q):

initially set E(q) = {q};
repeat
E′(q) = E(q)
∀x ∈ E(q), if ∃y ∈ δ(x, ε) ∧ y 6∈ E(q), E(q) = E(q) ∪ {y}

until E(q) = E′(q)
return E(q).
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Proof (2)

Step 2: build the equivalent DFA

NFA: N = (Q,Σ, δ, q0, F )⇒ DFA: M = (Q′,Σ, δ′, q′0, F
′)

1. Q′ = P(Q);
2. Let R ∈ Q′ and a ∈ Σ, define

δ′(R, a) =
⋃
{E(q) | q ∈ Q ∧ (∃r ∈ R)(q ∈ δ(r, a))} ;

3. q′0 = E(q0);
4. F ′ = {R ∈ Q′ | R ∩ F 6= ∅}.
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Corollary
A language is regular if and only if some NFA recognizes it.
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Recall: regular operators

Definition
Let A and B be languages. We define the following three
regular operations:
I Union: A ∪B = {x | x ∈ A ∨ x ∈ B}
I Concatenation: A ◦B = {xy | x ∈ A ∧ y ∈ B}
I Kleene star: A? = {x1x2 . . . xk | k ≥ 0 ∧ xi ∈ A}
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Closure under the regular operators

Theorem
The class of regular languages is closed under the ∪, ◦, ?
operations.

Proof.
Let N1 = (Q1,Σ1, δ1, q1, F1) recognize A1,

N2 = (Q2,Σ2, δ2, q2, F2) recognize A2;

We will build NFAs which recognize A1 ∪A2, A1 ◦A2, A?1
respectively.
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I. Closure under union : A1∪A2 is regular

N1 = (Q1,Σ1, δ1, q1, F1) recognize A1,
N2 = (Q2,Σ2, δ2, q2, F2) recognize A2;

Define the NFA as:
1. Q = {q0} ∪Q1 ∪Q2;
2. q0 is the new start state;
3. F = F1 ∪ F2;
4. For any q ∈ Q and any a ∈ Σε

δ(q, a) =


{q1, q2} q = q0 ∧ a = ε
∅ q = q0 ∧ a 6= ε
δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2
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II. Closure under concatenation : A1◦A2 is regular

N1 = (Q1,Σ1, δ1, q1, F1) recognize A1,
N2 = (Q2,Σ2, δ2, q2, F2) recognize A2;

Define the NFA as:
1. Q = Q1 ∪Q2;
2. the start state is q1;
3. the set of accept states is F2;
4. For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1 − F1

δ1(q, a) q ∈ F1 ∧ a 6= ε
δ1(q, a) ∪ {q2} q ∈ F1 ∧ a = ε
δ2(q, a) q ∈ Q2
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III. Closure under Kleene star : A?
1 is regular

N1 = (Q1,Σ, δ1, q1, F1) recognize A1;

Define the NFA as:
1. Q = {q0} ∪Q1;
2. the new start state is q0;
3. F = {q0} ∪ F1;
4. For any q ∈ Q and any a ∈ Σε

δ(q, a) =


δ1(q, a) q ∈ Q1 − F1

δ1(q, a) q ∈ F1 ∧ a 6= ε
δ1(q, a) ∪ {q1} q ∈ F1 ∧ a = ε
{q1} q = q0 ∧ a = ε
∅ q = q0 ∧ a 6= ε
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Other closure property

Given N = (Q,Σ, δ, q, F ) the set of language recognized by N
is A, then
I Complement: A = Σ? −A
I Intersection: A ∩B = {x | x ∈ A ∧ x ∈ B}

Lemma
The class of regular languages is closed under
complementation and intersection.

Proof.
I w.l.o.g, N is a DFA, then N = (Q,Σ, δ, q,Q− F ) will

recognize A.

I A ∩B = A ∪B.
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Regular expression

Given alphabet Σ, we say that R is a regular expression if R is
1. a for some a ∈ Σ,
2. ε,
3. ∅,
4. (R1 ∪R2), where R1 and R2 are regular expressions,
5. (R1 ◦R2), where R1 and R2 are regular expressions,
6. (R?1), where R1 is a regular expression.

Sometimes, we use R1R2 instead of (R1 ◦R2) if no confusion
arises.
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Language defined by regular expressions

regular expression R language L(R)

a {a}
ε {ε}
∅ ∅

(R1 ∪R2) L(R1) ∪ L(R2)
(R1 ◦R2) L(R1) ◦ L(R2)

(R?1) L(R1)
?
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Equivalence with finite automata

Theorem
A language is regular if and only if some regular expression
describes it.

Proof.
I If: build the NFAs; (relatively easy)
I Only if: Automata =⇒ regular expressions.

Sketch: (Dynamic programming)

R(i, j, k) = R(i, j, k−1) ∪R(i, k, k−1)R(k, k, k−1)?R(k, j, k−1)

L(M) =
⋃
{R(1, j, n) | qj ∈ F}.
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Languages need counting

I L1 = {` ∈ {0, 1}? | ` has an equal number of 0s and 1s}.
I L2 = {` ∈ {0, 1}? | ` has an equal number of

occurrences of 01 and 10 as substrings}.

I L2 is regular;
I L1 is or is not regular? It is not regular!
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The pumping lemma for regular languages

Lemma
If A is a regular language, then there is a number p (i.e.,
the pumping length where if s is any string in A of length at
least p, then s my be divided into three pieces, s = xyz,
satisfying the following conditions:

1. |y| > 0,
2. |xy| ≤ p,
3. for each i ≥ 0, we have xyiz ∈ A.

Any string xyz in A can be pumped along y.
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Proof

Pigeonhole principle

Let M = (Q,Σ, δ, q1, F ) be a DFA recognizing A and p = |Q|.
Let s = s1s2 · · · sn be a string in A with n ≥ p. Let r1, · · · , rn+1

be the sequence of states that M enters while processing s,
i.e.,

ri+1 = δ(ri, si)

for i ∈ [n].
Among the first p+ 1 states in the sequence, two must be the
same, say rj and rk with j < k ≤ p+ 1. Define

x = s1 · · · sj−1, y = sj · · · sk−1, z = sk · · · sn.



Finite Automata 26/29

Example (1)

The language L = {0n1n | n ≥ 0} is not regular.

Proof.
If it is regular, choose p be the pumping length and consider
s = 0p1p. By the Pumping lemma, s = xyz with xyiz ∈ L for all
i ≥ 0.

As |xy| ≤ p and |y| > 0, y = 0i for some i > 0.

But then xz = 0n−i1n 6∈ L. Contradicting the lemma.
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Example (2)

The language L = {w | w has an equal number of 0s and 1s} is
not regular.

Proof.
If it is regular, then L ∩ 0?1? would also be regular.

However, this latter language is precisely the language in
Example (1), which is not regular.
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Problems from formal language theory

Decision Problems
I Acceptance: does a given string belong to a given

language?
I Emptiness: is a given language empty?
I Equality: are given two languages equal?
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Language Problems concerning FA

Theorem
The following three problems:
I Acceptance: Given a DFA (NFA) A and a string w, does A

accept w?
I Emptiness: Given a DFA (NFA) A is the language L(A)

empty?
I Equality: Given two DFA (NFA) A and B is L(A) equal to
L(B)?

The corresponding decision problems are all decidable.

Proof.
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