Context Free Languages

Huan Long

Shanghai Jiao Tong University

Part of the slides comes from a similar course given by Prof. Yijia Chen.

```
http://basics.sjtu.edu.cn/~chen/
```

Textbook Introduction to the theory of computation Michael Sipser, MIT Third edition, 2012

Context free language

Pushdown automata

The pumping lemma for context-free languages

◆□ ▶ Context Free Language ◆ ヨ ▶ ◆ ヨ ▶ ○ ヨ · ク へ ? 3/40

Some decision problems related to PDA

An example

The grammar

$$\begin{array}{rccc} A & \to & 0A1 \\ A & \to & B \\ B & \to & \# \end{array}$$

A derivation:

 $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000\#111.$

< □ ▶ Context Free Language < 茎 ▶ < 茎 ▶ 置 の へ 4/40

Context-free grammar

Definition

A context-free grammar (CFL) is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the variables,
- 2. Σ is a finite set, disjoint from *V*, called the terminals,
- 3. *R* is a finite set of rules, with each rule being a variable and a string of variables and terminals,
- 4. $S \in V$ is the start variable.

Derivations

Let u, v, w be strings of variables and terminals, and

 $A \to w \ \in R$

Then uAv yields uwv: $uAv \Rightarrow uwv$.

 $u \stackrel{\text{derives}}{\rightarrow} v$, written $u \stackrel{*}{\Rightarrow} v$, if

▶ u = v, or

• there is a sequence u_1, u_2, \ldots, u_k for $k \ge 0$ and

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v.$$

The language of the grammar is $\{w \in \Sigma^* \mid S \stackrel{\star}{\Rightarrow} w\}$.

Which is a context-free language(CFL).

Examples

1. Language $\{0^n1^n \mid n \ge 0\}$, grammar

 $S_1 \to 0S_11 \mid \epsilon.$

2. Language $\{1^n 0^n \mid n \ge 0\}$, grammar

 $S_2 \to 1S_20 \mid \epsilon.$

3. Language $\{0^n 1^n \mid n \ge 0\} \cup \{1^n 0^n \mid n \ge 0\}$, grammar

$$\begin{array}{rccc} S & \rightarrow & S_1 \mid S_2 \\ S_1 & \rightarrow & 0S_11 \mid \epsilon \\ S_2 & \rightarrow & 1S_20 \mid \epsilon. \end{array}$$

Ambiguity

 $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \times \langle EXPR \rangle \mid (\langle EXPR \rangle) \mid a$

The string $a + a \times a$ have two different derivations:

- 1. $\langle EXPR \rangle \rightarrow \langle EXPR \rangle \times \langle EXPR \rangle \Rightarrow \langle EXPR \rangle + \langle EXPR \rangle \times \langle EXPR \rangle \stackrel{*}{\Rightarrow} a + a \times a.$
- 2. $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \Rightarrow \langle EXPR \rangle + \langle EXPR \rangle \times \langle EXPR \rangle \stackrel{*}{\Rightarrow} a + a \times a.$

Leftmost derivations

A derivation of a sting w in a grammar G is a leftmost derivation if at every step the leftmost remaining variable is the one replaced.

Ambiguity

Definition

A string w is derived ambiguously is a context free grammar G if it has two or more different leftmost derivations.

Grammar *G* is ambiguous if it generates some string ambiguously..

 $\{a\}$ has two different grammars $S_1 \rightarrow S_2 \mid a; S_2 \rightarrow a$ and $S \rightarrow a$. The first is ambiguous, while the second is not.

 $\{a^i b^j c^k \mid i = j \lor j = k\}$ is inherently ambiguous, i.e., its every grammar is ambiguous.

Ambiguous*

Why care?

Ambiguity of the grammar implies that at least some strings in its language have different structures (parse trees).

- 1. Thus, such a grammar is unlikely to be useful for a programming language, because two structures for the same string (program) implies two different meanings (executable equivalent programs) for this program.
- 2. Common example: the easiest grammars for arithmetic expressions are ambiguous and need to be replaced by more complex unambiguous grammars.
- 3. An inherently ambiguous language would be absolutely unsuitable as a programming language, because we would not have any way of fixing a unique structure for all its programs.

Computational Results *

- There is no algorithm for resolving ambiguity (in the sense of automatically deriving an unambiguous grammar from a given grammar).
- There is not even an algorithm for finding out whether a given CFG is ambiguous.
- However, there are standard techniques for writing an unambiguous grammar that help in most cases.

Chomsy normal form

Definition

A context-free grammar is in Chomsky normal form if every rule is of the form

 $\begin{array}{rrrr} A & \rightarrow & BC \\ A & \rightarrow & a \end{array}$

where a is any terminal and A, B and C are any variables, except that B and C may be not the start variable.

In addition, we permit the rule $S \to \epsilon,$ where S is the start variable.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof of the theorem (1)

- 1. Add a new start variable S_0 with the rule $S_0 \rightarrow S$, where S is the original start variable.
- 2. Remove every $A \rightarrow \epsilon$, where $A \neq S_0$. For each occurrence of A on the right-hand side of a rule, we add a new rule with that occurrence deleted.
 - a) To $R \to uAv$ we add $R \to uv$;
 - b) Do the above operation for *each* occurrence of *A*: e.g. $R \rightarrow uAvAw$, we add $R \rightarrow uvAw \mid uAvw \mid uvw$.
 - c) For $R \to A$, we add $R \to \epsilon$ unless we had previously removed $R \to \epsilon$.
- 3. Remove every $A \rightarrow B$.

Whenever a rule $B \rightarrow u$ appears, where u is a string of variables and terminals, we add the rule $A \rightarrow u$ unless this was previously removed.

Proof of the theorem (2)

- 1. New start variable S_0 .
- 2. Remove every $A \rightarrow \epsilon$.
- 3. Remove every $A \rightarrow B$.
- 4. Replace each rule $A \rightarrow u_1 u_2 \cdots u_k$ with $k \ge 3$ and each u_i is a variable or terminal with the rules

$$A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, A_2 \rightarrow u_2 A_3, \cdots, \text{ and } A_{k-2} \rightarrow u_{k-1} u_k.$$

The A'_i s are new variables. We replace any terminal u_i with the new variable U_i and add $U_i \rightarrow u_i$.

If G is a context-free grammar in Chomsky normal form then any $w \in L(G)$ such that $w \neq \epsilon$ can be derived from the start state in exactly 2|w| - 1 steps.

Proof.

Pushdown automata

Definition

A pushdown automata (PDA) is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- 2. Σ is a finite set of input alphabet,
- 3. Γ is a finite set of stack alphabet,
- 4. $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. $F \subseteq Q$ is the set of accept states.

Formal definition of computation

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a pushdown automata. Maccepts input w if w can be written as $w = w_1 \dots w_m$, where each $w_i \in \Sigma_{\epsilon}$ and sequences of states $r_0, r_1, \dots, r_m \in Q$ and strings $s_0, s_1, \dots, s_m \in \Gamma^*$ exist that satisfy the following three conditions.

1.
$$r_0 = q_0$$
 and $s_0 = \epsilon$.
2. For $i = 0, \dots, m-1$, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$,
where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$.
3. $r_m \in F$.

PDA for $\{0^n 1^n \mid n \ge 0\}$

$$\begin{array}{rcl} Q &=& \{q_1, q_2, q_3, q_4\}, \\ \Sigma &=& \{0, 1\}, \\ \Gamma &=& \{0, \$\}, \\ q_1 & \text{ is the start state } \\ F &=& \{q_1, q_4\} \end{array}$$

The transition function is defined by the following table, wherein blank entries signify $\ensuremath{\emptyset}$

Input: Stack:	0		1			ϵ			
Stack:	0	\$	ϵ	0	\$	ϵ	0	\$	ϵ
q_1									$\{(q_2,\$)\}$
q_2			$\{(q_2,0)\}$	$\{(q_3,\epsilon)\}$					
q_3				$\{(q_3,\epsilon)\}$				$\{(q_4,\epsilon)\}$	
q_4		_							

A language is context free if and only if some pushdown automaton recognizes it.

Proof.

(Only if). Let $G = (V, \Sigma, R, S)$ be a CFL.

- 1. Place the marker symbol \$ and the S on the stack.
- 2. Repeat the following steps:
 - 2.1 If the top of stack is some $A \in V$, nondeterministically select some $A \rightarrow \omega \in R$ by pushing the string ω on the stack.
 - 2.2 If the top of stack is some $a \in \Sigma$, read the next symbol from the input and compare it to *a*. If they match, repeat. Otherwise, reject on this branch of the nondeterminism.
 - 2.3 If the top of stack is the symbol \$, enter the accept state. Doing so accepts the input if it has all been read.

A language is context free if and only if some pushdown automaton recognizes it.

Proof.

(If). *Simplified PDA:*

- It has a single accept state $\{q_{accept}\}$.
- It empties its stack before accepting.
- Each transition either pushes a symbol onto the stack, or pops one off the stack, but it does not do both at the same time.

Claim

Every PDA has an equivalent simplified PDA.

A language is context free if and only if some pushdown automaton recognizes it.

Proof.

(If). Give $(Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$. We construct CFL G.

Figure: $A_{pq} \rightarrow aA_{rs}b$

Figure: $A_{pq} \rightarrow A_{pr}A_{rq}$

A language is context free if and only if some pushdown automaton recognizes it.

Proof.

(If). Give $(Q, \Sigma, \Gamma, \delta, q_0, \{q_{\mathsf{accept}}\})$. We construct CFL G. with variables set $\{A_{pq} \mid p, q \in Q\}$, start variable $A_{q_0, q_{\mathsf{accept}}}$. The rules are as followings:

1. For each
$$p, q, r, s \in Q$$
, $u \in \Gamma$, and $a, b \in \Sigma_{\epsilon}$, if $(r, u) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, u)$, put the rule $A_{pq} \rightarrow aA_{rs}b$ in G.

2. For each $p, q, r \in Q$, put the rule $A_{pq} \rightarrow A_{pr}A_{rq}$ in G.

3. Finally, for each $p \in Q$, put the rule $A_{pp} \to \epsilon$ in G.

A language is context free if and only if some pushdown automaton recognizes it.

Claim

If A_{pq} generates x, then x can bring PDA P from state p with empty stack to state q with empty stack.

Claim

If x can bring PDA P from state p with empty stack to state q with empty stack, A_{pq} generates x.

Closure Properties

Theorem

The context-free languages are closed under union, concatenation, and kleene star.

Closure Properties - Union

Proof.

$$N_1 = (V_1, \Sigma_1, R_1, S_1)$$
 recognize A_1 ,
 $N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

• Union. *S* is a new symbol. Let

$$N = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$$
, where
 $R = R_1 \cup R_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}$.

< □ ▶ _{Context Free Language} < 喜 ▶ < 喜 ▶ 臣 少 ९ ℃ 26/40

Closure Properties - Concatenation

Proof.
$$N_1 = (V_1, \Sigma_1, R_1, S_1)$$
 recognize A_1 ,
 $N_2 = (V_2, \Sigma_2, R_2, S_2)$ recognize A_2 . w.l.o.g. $V_1 \cap V_2 = \emptyset$.

• Concatenation. *S* is a new symbol. Let $N = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$, where $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}$.

Closure Properties - Kleene Star

Proof. $N_1 = (V_1, \Sigma_1, R_1, S_1)$ recognize A_1 .

► Kleene Star. *S* is a new symbol. Let $N = (V_1 \cup \{S\}, \Sigma_1, R, S)$, where $R = R_1 \cup \{S \rightarrow \epsilon, S \rightarrow SS_1\}$.

The intersection of a context-fee language with a regular language is a context-free language.

Proof.

PDA $M_1 = (Q_1, \Sigma, \Gamma_1, \delta_1, s_1, F_1)$ and DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$. Build $M = (Q, \Sigma, \Gamma_1, \Delta, s, F)$, where

$$\blacktriangleright Q = Q_1 \times Q_2;$$

►
$$s = (s_1, s_2);$$

- ▶ $F = (F_1, F_2)$, and
- $\blacktriangleright \Delta$ is defined as follows
 - 1. for each PDA rule $(q_1, a, \beta) \to (p_1, r)$ and each $q_2 \in Q_2$ add the following rule to Δ

$$((q_1, q_2), a, \beta) \to ((p_1, \delta_2(q_2, a)), r)$$

2. for each PDA rule $(q_1, \epsilon, \beta) \to (p_1, r)$ and each $q_2 \in Q_2$ add the following rule to Δ

$$((q_1, q_2), \epsilon, \beta) \rightarrow ((p_1, q_2), r)$$

<□ > Context Free Language < 臣 > < 臣 > 臣 の + ● 29/40

The pumping lemma for context-free languages

Lemma

If *A* is a context-free language, then there is a number *p* (the pumping length) where, if *s* is any string in *A* of length at least *p*, then *s* may be divided as s = uvxyz satisfying the conditions

- 1. for each $i \ge 0$, $uv^i xy^i z \in A$,
- **2**. |vy| > 0,
- **3**. $|vxy| \leq p$.

Proof (1)

Let *G* be a CFG for CFL *A*. Let *b* be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than *b* children.

Proof (2)

Let *G* be a CFG for CFL *A*. Let *b* be the maximum number of symbols in the right-hand side of a rule. In any parse tree using this grammar, every node can have no more than *b* children. So, if the height of the parse tree is at most *h*, the length of the string generated is at most b^h . Conversely, if a generated string is at least $b^h + 1$ long, each of its parse trees must be at least h + 1 high.

We choose the pumping length

 $p = b^{|V|+1}$

For any string $s \in A$ with $|s| \ge p$, any of its parse trees must be at least |V| + 1 high.

Proof (3)

Let τ be one parse tree of s with smallest number of nodes, whose height is at least |V| + 1. So τ has a path from the root to a leaf of length |V| + 1 with |V| + 2 nodes. One variable R must appear at least twice in the last |V| + 1 variable nodes on this path.

We divide *s* into *uvxyz*:

- ► u from the leftmost leaf of \(\tau\) to the leaf left next to the leftmost leaf of the subtree hanging on the first \(R\),
- v from the leftmost leaf of the subtree hanging on the first R to the leaf left next to the leftmost leaf of the subtree hanging on the second R,
- \blacktriangleright x for all the leaves of the subtree hanging on the second R,
- ▶ y from the leaf right next to the rightmost leaf of the subtree hanging on the second R to the rightmost leaf of the subtree hanging on the first R,
- ► z from the leaf right next to the rightmost leaf of the subtree hanging on the first R to the rightmost leaf of T.

Proof (4)

Condition 1. Replace the subtree of the second *R* by the subtree of the first *R* would validate that for each $i \ge 0$, $uv^i xy^i z \in A$.

Condition 2. If |vy| = 0, i.e., $v = y = \epsilon$, then τ cannot have the smallest number of nodes.

Condition 3. To see $|vxy| \le p = b^{|V|+1}$, note that vxy is generated by the first R. We can always choose R so that its last two occurrences fall within the bottom |V| + 1 high. A tree of this height can generate a string of length at most $b^{|V|+1} = p$.

Example

 $\{a^n b^n c^n \mid n \ge 0\}$ is not context free.

Proof.

Assume otherwise, and let p be the pumping length. Consider $s = a^p b^p c^p$ and divide it to uvxyz according to the Pumping Lemma.

- When both v and y contain only one type of symbols, i.e., one of a, b, c, then uv²xy²z cannot contain equal number of a's, b's, and c's.
- If either v or y contains more than one type of symbols, then uv²xy²z would have symbols interleaved.

Example

 $\{ww \mid w \in \{0,1\}^*\}$ is not context free.

Proof.

Assume otherwise, and let p be the pumping length. Consider $s = 0^p 1^p 0^p 1^p$ and divide it to uvxyz with $|vxy| \le p$.

- If vxy occurs only in the first half of s, then the second half of uv²xy²z must start with an 1. This is impossible
- Similarly vxy cannot occur only in the second half of s.
- ► If vxy straddles the midpoint of s, then pumping s to the form 0^p1ⁱ0^j1^p cannot ensure i = j = p.

The context free language are not closed under intersection or complementation.

Proof.

Clearly $\{a^nb^nc^m \mid m, n \ge 0\}$ and $\{a^mb^nc^n \mid m, n \ge 0\}$ are both CFL. However their intersection, $\{a^nb^nc^n \mid n \ge 0\}$, is not.

To the second part of the statement,

$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$

rules out the closure under complementation.

Language	regular	context-free
Machine	DFA/NFA	PDA
Syntax	regular expression	context-free grammar

Problems from formal language theory

Decision Problems

- Acceptance: does a given string belong to a given language?
- Emptiness: is a given language empty?
- Equality: are given two languages equal?

Language Problems concerning CFL

Theorem

The following three problems:

- Acceptance: Given a CFG G and a string w, does G accept w?
- **Emptiness:** Given a CFG G is the language L(G) empty?
- **Equality:** Given two CFG A and B is L(A) equal to L(B)?

The Acceptance and Emptiness problem for CFG are decidable, the Equality problem is not decidable.