Context Free Languages

Huan Long

Shanghai Jiao Tong University

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/~chen/

Textbook

Introduction to the theory of computation
Michael Sipser, MIT

Third edition, 2012

http://basics.sjtu.edu.cn/~chen/

Outline

Context free language

Pushdown automata

The pumping lemma for context-free languages

Some decision problems related to PDA

An example

The grammar

SRS
L4l
:H:oag

A derivation:

A= 0A1 = 00A11 = 000A111 = 0004#111.

Context-free grammar

Definition
A context-free grammar (CFL) is a 4-tuple (V, %, R, S), where

1.
2.
3.

V is a finite set called the variables,
3} is a finite set, disjoint from V, called the terminals,

R is afinite set of rules, with each rule being a variable and
a string of variables and terminals,

S € V is the start variable.

Derivations

Let u, v, w be strings of variables and terminals, and
A—-w €R

Then uAv yields vwv: wAv = uwv.

u derives v, written u = v, if
» u=w,o0r
> there is a sequence ui,us,...,u; for k > 0 and

U= U = Uy = " = U, = V.

The language of the grammar is {w € ¥* | S 3 w}.

Which is a context-free language(CFL).

Examples

1. Language {0™1™ | n > 0}, grammar
Sl — 0511 ‘ €.
2. Language {1"0™ | n > 0}, grammar

S2 — 1520 ‘ €.

3. Language {0"1" | n > 0} U {1"0™ | n > 0}, grammar

S — 51 | SQ
Sl — 0311 | €
SQ — 1520 ‘ €.

Ambiguity

(EXPR) — (EXPR) + (EXPR) | (EXPR) x (EXPR)| ((EXPR)) | a
The string a + a X a have two different derivations:

1. (EXPR) — (EXPR) x (EXPR) = (EXPR) + (EXPR) x (EXPR) = a+a X a.
2. (EXPR) — (EXPR) 4+ (EXPR) = (EXPR) + (EXPR) x (EXPR) 2 a+a X a.

Leftmost derivations

A derivation of a sting w in a grammar G is a leftmost derivation
if at every step the leftmost remaining variable is the one
replaced.

Ambiguity

Definition
A string w is derived ambiguously is a context free grammar G
if it has two or more different leftmost derivations.

Grammar G is ambiguous if it generates some string
ambiguously..

{a} has two different grammars S; — S3 | a; S2 - aand S — a.
The first is ambiguous, while the second is not.

{a’¥c* |i=7j v j=k}isinherently ambiguous,i.e., its every
grammar is ambiguous.

Ambiguous*

Why care?

Ambiguity of the grammar implies that at least some strings in
its language have different structures (parse trees).

1. Thus, such a grammar is unlikely to be useful for a
programming language, because two structures for the
same string (program) implies two different meanings
(executable equivalent programs) for this program.

2. Common example: the easiest grammars for arithmetic
expressions are ambiguous and need to be replaced by
more complex unambiguous grammars.

3. An inherently ambiguous language would be absolutely
unsuitable as a programming language, because we would
not have any way of fixing a unique structure for all its
programs.

Computational Results *

» There is no algorithm for resolving ambiguity (in the sense
of automatically deriving an unambiguous grammar from a
given grammar).

» There is not even an algorithm for finding out whether a
given CFG is ambiguous.

» However, there are standard techniques for writing an
unambiguous grammar that help in most cases.

Chomsy normal form

Definition
A context-free grammar is in Chomsky normal form if every rule

is of the form
A — BC

A — a

where a is any terminal and A, B and C' are any variables,
except that B and C' may be not the start variable.

In addition, we permit the rule S — ¢, where S is the start
variable.

Theorem
Any context-free language is generated by a context-free
grammar in Chomsky normal form.

Proof of the theorem (1)

1. Add a new start variable Sy with the rule S, — S, where S
is the original start variable.
2. Remove every A — ¢, where A £ 5.

For each occurrence of A on the right-hand side of a rule,
we a new rule with that occurrence deleted.

a) To R — uAv we add R — wv;

b) Do the above operation for each occurrence of A: e.g.
R — uAvAw, we add R — wAw | vAvw | uvw.

c) For R — A, we add R — ¢ unless we had previously
removed R — .

3. Remove every A — B.
Whenever a rule B — u appears, where w is a string of
variables and terminals, we add the rule A — u unless this
was previously removed.

Proof of the theorem (2)

New start variable Sg.
Remove every A — e.
Remove every A — B.

Replace each rule A — ujus - - - ug with & > 3 and each wu;
is a variable or terminal with the rules

oD~

A— UlAl,Al — ’LLQAQ, Ay — UQAg, BN and Ak_g — Up—1Uf.-

The Als are new variables. We replace any terminal u;
with the new variable U; and add U; — ;.

Theorem

If G is a context-free grammar in Chomsky normal form then

any w € L(G) such that w # e can be derived from the start
state in exactly 2|w| — 1 steps.

Proof.

O

Pushdown automata

Definition
A pushdown automata (PDA) is a 6-tuple (@, %, T, 4, qo, F),
where

1. @ is afinite set of states,

2. Y is afinite set of input alphabet,

T is a finite set of stack alphabet,

J:Q x X xT'e =» P(Q xT,) is the transition function,
qo € Q is the start state,

F C @ is the set of accept states.

o g bk~ w

Formal definition of computation

Let M = (Q,%,T,0,qo, F) be a pushdown automata. M
accepts input w if w can be written as w = w; . . . w,,, where
each w; € X, and sequences of states rg,71,...,7m € Q and
strings sg, s1, ..., sm € I'* exist that satisfy the following three
conditions.

1. rg = go and sg = e.

2. Fori=0,...,m— 1, we have (r;y1,b) € §(r;, wit+1, a),

where s; = at and s;;1 = bt forsome a,b e T and t € T,

3. rm €F.

PDA for {0"1" | n > 0}

Q = {a1.9¢,q3, 0},
Y = {0,1},

r = {0,%},

q1 is the start state
F = {q,q}

The transition function is defined by the following table, wherein
blank entries signify ()

Input: 0 1 €
Stack:0\$\ € 0 ‘$‘6 O\ $ \ €
¢ {(g2,%)}
g2 {(92,0)} | {(g3,€)}
a3 {(g3,€)} {(ga,6)}
q4

Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.

(Only if). Let G = (V, X, R, S) be a CFL.
1. Place the marker symbol $ and the S on the stack.
2. Repeat the following steps:

2.1 If the top of stack is some A € V, nondeterministically
select some A — w € R by pushing the string w on the
stack.

2.2 If the top of stack is some a € ¥, read the next symbol from
the input and compare it to «. If they match, repeat.
Otherwise, reject on this branch of the nondeterminism.

2.3 If the top of stack is the symbol $, enter the accept state.
Doing so accepts the input if it has all been read.

Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.

(If).
Simplified PDA:

» It has a single accept state {gaccept}-
> It empties its stack before accepting.

» Each transition either pushes a symbol onto the stack, or
pops one off the stack, but it does not do both at the same
time.

Claim
Every PDA has an equivalent simplified PDA.

Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.
(If). Give (Q,%,T, 6, qo, {qaccept })- We construct CFL G.

! !

Stack Stack
height generated height generated
by Ay, by Apg
Input string Tnput string , r q
i —

——
generated generated generated
by v, by Apr by Ary

Figure: A, — aA,sb Figure: A,; — Apr Ay

pr

Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.
(If). Give (Q,%,T, 6, qo, {qaccept })- We construct CFL G.
with variables set {A,, | p, ¢ € Q}, start variable A
rules are as followings:
1. Foreachp,q,r,s € Q,ueT,anda,bc X, if
(r,u) € 0(p,a,e) and (g,€) € (s, b,u), put the rule
Apy — aA,bin G.
2. Foreachp,q,r € Q, puttherule A,, — A, A,,inG.

3. Finally, for each p € Q, put the rule 4, — ¢in G.

The

q0;4accept *

Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Claim
If Ay, generates x, then x can bring PDA P from state p with
empty stack to state q with empty stack.

Claim
If x can bring PDA P from state p with empty stack to state q
with empty stack, A,, generates x.

Closure Properties

Theorem
The context-free languages are closed under union,
concatenation, and kleene star.

Closure Properties - Union

Proof.
Ny = (V1,%1, Ry, S1) recognize Ay,
Ny = (Vo, %9, Ry, S) recognize A,. w.l.o.g. Vi NVa = 0.

» Union. S is a new symbol. Let
N = (Vi UV u {S}, Y1UX9, R, S), where
R=R1URQU{S—>51,S—>SQ}.

Closure Properties - Concatenation

Proof.
Ny = (V1,%1, Ry, S1) recognize Ay,
Ny = (Vo, %9, Ry, S) recognize A,. w.l.o.g. Vi NVa = 0.

» Concatenation. S is a new symbol. Let
N = (Vi uWhu {S}, Y1UX9, R, S), where
R=RiURyU {S — 5152}.

Closure Properties - Kleene Star

Proof.
N; = (V1, %1, Ry, S1) recognize A;.

» Kleene Star. S is a new symbol. Let
N=WV,U{S},%1,R,S), where
R=RU{S =¢S5 — S5}

Theorem
The intersection of a context-fee language with a regular
language is a context-free language.

Proof.
PDA M; = (Q1,%,T, 61, s1, F1) and
DFA M2 = (QQ, E, (52, S92, Fg)
Build M = (Q,%,T1,A, s, F), where
> Q= Q1xQ2;
> s =(s1,82);
> = (Fl,FQ), and
> A is defined as follows

1. for each PDA rule (¢1,a,8) — (p1,r) and each ¢» € Q2 add
the following rule to A
((q17 q2)7 a, ﬁ) — ((pla 52((]2, a))7 T)
2. for each PDA rule (¢1,¢,3) — (p1,7) and each ¢; € Q2 add
the following rule to A

((q1,92),6 8) = ((p1,q2),7)

The pumping lemma for context-free languages

Lemma
If Ais a context-free language, then there is a number p (the

pumping length) where, if s is any string in A of length at least
p, then s may be divided as s = uvzyz satisfying the conditions

1. for each i > 0, w'zy'z € A,
2. |vy| > 0,
3. Juay| < p.

Proof (1)

Let G be a CFG for CFL A. Let b be the maximum number of
symbols in the right-hand side of a rule. In any parse tree
using this grammar, every node can have no more than b
children.

Proof (2)

Let G be a CFG for CFL A. Let b be the maximum number of
symbols in the right-hand side of a rule. In any parse tree
using this grammar, every node can have no more than b
children. So, if the height of the parse tree is at most A, the
length of the string generated is at most b". Conversely, if a
generated string is at least b" + 1 long, each of its parse trees
must be at least & + 1 high.

We choose the pumping length

p = b‘vl""l

For any string s € A with |s| > p, any of its parse trees must be
at least |[V| + 1 high.

Proof (3)
Let 7 be one parse tree of s with smallest number of nodes,
whose height is at least |V'| + 1. So 7 has a path from the root
to a leaf of length |V'| + 1 with |V| 4+ 2 nodes. One variable R
must appear at least twice in the last |V'| 4 1 variable nodes on
this path.

We divide s into wvxyz:

» u from the leftmost leaf of 7 to the leaf left next to the
leftmost leaf of the subtree hanging on the first R,

» o from the leftmost leaf of the subtree hanging on the first
R to the leaf left next to the leftmost leaf of the subtree
hanging on the second R,

» 1 for all the leaves of the subtree hanging on the second R,

» y from the leaf right next to the rightmost leaf of the
subtree hanging on the second R to the rightmost leaf of
the subtree hanging on the first R,

> > from the leaf right next to the rightmost leaf of the subtree
hanging on the first R to the rightmost leaf of 7.

Proof (4)

Condition 1. Replace the subtree of the second R by the
subtree of the first R would validate that for each ¢ > 0,
w'zy'z € A.

Condition 2. If jvy| =0, i.e., v =y = ¢, then 7 cannot have the
smallest number of nodes.

Condition 3. To see |vzy| < p = blVI*1, note that vay is
generated by the first R. We can always choose R so that its
last two occurrences fall within the bottom |V'| + 1 high. A tree
of this height can generate a string of length at most blV1+1 = p.

Example
{a™b"c™ | n > 0} is not context free.

Proof.

Assume otherwise, and let p be the pumping length. Consider
s = aPbPcP and divide it to uvxryz according to the Pumping
Lemma.

» When both v and y contain only one type of symbols, i.e.,
one of a, b, ¢, then uv?xy?z cannot contain equal number of
a’s, b's, and c’s.

> |f either v or y contains more than one type of symbols,
then uv?2y?z would have symbols interleaved.

Example
{ww | w € {0,1}*} is not context free.

Proof.
Assume otherwise, and let p be the pumping length. Consider
s = 0P1P0P1? and divide it to uwvxyz with |vxy| < p.
» If vzy occurs only in the first half of s, then the second half
of uv?xy?~ must start with an 1. This is impossible
» Similarly vaxy cannot occur only in the second half of s.

» If vzy straddles the midpoint of s, then pumping s to the
form 071?017 cannot ensure i = j = p.

Theorem
The context free language are not closed under intersection or
complementation.

Proof.
Clearly {a"b™c™ | m,n > 0} and {a™b™c™ | m,n > 0} are both
CFL. However their intersection, {a™b"c™ | n > 0}, is not.

To the second part of the statement,

LiNLy=1L ULy

rules out the closure under complementation. O]

Language regular context-free

Machine DFA/NFA PDA

Syntax regular expression | context-free grammar

Problems from formal language theory

Decision Problems

» Acceptance: does a given string belong to a given
language?

» Emptiness: is a given language empty?
» Equality: are given two languages equal?

Language Problems concerning CFL

Theorem
The following three problems:

» Acceptance: Given a CFG G and a string w, does G
accept w?

» Emptiness: Given a CFG G is the language L(G) empty?
» Equality: Given two CFG A and B is L(A) equal to L(B)?

The Acceptance and Emptiness problem for CFG are
decidable, the Equality problem is not decidable.

	Context free language
	Pushdown automata
	The pumping lemma for context-free languages
	Some decision problems related to PDA

