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An example

The grammar

A → 0A1
A → B
B → #

A derivation:

A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000#111.
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Context-free grammar

Definition
A context-free grammar (CFL) is a 4-tuple (V,Σ, R, S), where

1. V is a finite set called the variables,
2. Σ is a finite set, disjoint from V , called the terminals,
3. R is a finite set of rules, with each rule being a variable and

a string of variables and terminals,
4. S ∈ V is the start variable.
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Derivations

Let u, v, w be strings of variables and terminals, and

A→ w ∈ R

Then uAv yields uwv: uAv ⇒ uwv.

u derives v, written u ∗⇒ v, if
I u = v, or
I there is a sequence u1, u2, . . . , uk for k ≥ 0 and

u⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v.

The language of the grammar is {w ∈ Σ∗ | S ?⇒ w}.

Which is a context-free language(CFL).
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Examples

1. Language {0n1n | n ≥ 0}, grammar

S1 → 0S11 | ε.

2. Language {1n0n | n ≥ 0}, grammar

S2 → 1S20 | ε.

3. Language {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}, grammar

S → S1 | S2
S1 → 0S11 | ε
S2 → 1S20 | ε.
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Ambiguity

〈EXPR〉 → 〈EXPR〉 + 〈EXPR〉 | 〈EXPR〉 × 〈EXPR〉 | (〈EXPR〉) | a

The string a + a× a have two different derivations:

1. 〈EXPR〉 → 〈EXPR〉 × 〈EXPR〉 ⇒ 〈EXPR〉 + 〈EXPR〉 × 〈EXPR〉 ∗⇒ a + a× a.

2. 〈EXPR〉 → 〈EXPR〉 + 〈EXPR〉 ⇒ 〈EXPR〉 + 〈EXPR〉 × 〈EXPR〉 ∗⇒ a + a× a.
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Leftmost derivations

A derivation of a sting w in a grammar G is a leftmost derivation
if at every step the leftmost remaining variable is the one
replaced.
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Ambiguity

Definition
A string w is derived ambiguously is a context free grammar G
if it has two or more different leftmost derivations.

Grammar G is ambiguous if it generates some string
ambiguously..

{a} has two different grammars S1 → S2 | a;S2 → a and S → a.
The first is ambiguous, while the second is not.

{aibjck | i = j ∨ j = k} is inherently ambiguous,i.e., its every
grammar is ambiguous.
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Ambiguous∗

Why care?
Ambiguity of the grammar implies that at least some strings in
its language have different structures (parse trees).

1. Thus, such a grammar is unlikely to be useful for a
programming language, because two structures for the
same string (program) implies two different meanings
(executable equivalent programs) for this program.

2. Common example: the easiest grammars for arithmetic
expressions are ambiguous and need to be replaced by
more complex unambiguous grammars.

3. An inherently ambiguous language would be absolutely
unsuitable as a programming language, because we would
not have any way of fixing a unique structure for all its
programs.
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Computational Results ∗

I There is no algorithm for resolving ambiguity (in the sense
of automatically deriving an unambiguous grammar from a
given grammar).

I There is not even an algorithm for finding out whether a
given CFG is ambiguous.

I However, there are standard techniques for writing an
unambiguous grammar that help in most cases.
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Chomsy normal form

Definition
A context-free grammar is in Chomsky normal form if every rule
is of the form

A → BC
A → a

where a is any terminal and A,B and C are any variables,
except that B and C may be not the start variable.

In addition, we permit the rule S → ε, where S is the start
variable.

Theorem
Any context-free language is generated by a context-free
grammar in Chomsky normal form.
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Proof of the theorem (1)

1. Add a new start variable S0 with the rule S0 → S, where S
is the original start variable.

2. Remove every A→ ε, where A 6= S0.
For each occurrence of A on the right-hand side of a rule,
we add a new rule with that occurrence deleted.

a) To R→ uAv we add R→ uv;
b) Do the above operation for each occurrence of A: e.g.

R→ uAvAw, we add R→ uvAw | uAvw | uvw.
c) For R→ A, we add R→ ε unless we had previously

removed R→ ε.

3. Remove every A→ B.
Whenever a rule B → u appears, where u is a string of
variables and terminals, we add the rule A→ u unless this
was previously removed.
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Proof of the theorem (2)

1. New start variable S0.
2. Remove every A→ ε.
3. Remove every A→ B.
4. Replace each rule A→ u1u2 · · ·uk with k ≥ 3 and each ui

is a variable or terminal with the rules

A→ u1A1, A1 → u2A2, A2 → u2A3, · · · , and Ak−2 → uk−1uk.

The A′is are new variables. We replace any terminal ui
with the new variable Ui and add Ui → ui.
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Theorem
If G is a context-free grammar in Chomsky normal form then
any w ∈ L(G) such that w 6= ε can be derived from the start
state in exactly 2|w| − 1 steps.

Proof.
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Pushdown automata

Definition
A pushdown automata (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F ),
where

1. Q is a finite set of states,
2. Σ is a finite set of input alphabet,
3. Γ is a finite set of stack alphabet,
4. δ : Q× Σε × Γε → P(Q× Γε) is the transition function,
5. q0 ∈ Q is the start state,
6. F ⊆ Q is the set of accept states.
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Formal definition of computation

Let M = (Q,Σ,Γ, δ, q0, F ) be a pushdown automata. M
accepts input w if w can be written as w = w1 . . . wm, where
each wi ∈ Σε and sequences of states r0, r1, . . . , rm ∈ Q and
strings s0, s1, . . . , sm ∈ Γ∗ exist that satisfy the following three
conditions.

1. r0 = q0 and s0 = ε.
2. For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a),

where si = at and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗.
3. rm ∈ F .
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PDA for {0n1n | n ≥ 0}

Q = {q1, q2, q3, q4},
Σ = {0, 1},
Γ = {0, $},
q1 is the start state
F = {q1, q4}

The transition function is defined by the following table, wherein
blank entries signify ∅

Input: 0 1 ε
Stack: 0 $ ε 0 $ ε 0 $ ε
q1 {(q2, $)}
q2 {(q2, 0)} {(q3, ε)}
q3 {(q3, ε)} {(q4, ε)}
q4
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Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.
(Only if). Let G = (V,Σ, R, S) be a CFL.

1. Place the marker symbol $ and the S on the stack.
2. Repeat the following steps:

2.1 If the top of stack is some A ∈ V , nondeterministically
select some A→ ω ∈ R by pushing the string ω on the
stack.

2.2 If the top of stack is some a ∈ Σ, read the next symbol from
the input and compare it to a. If they match, repeat.
Otherwise, reject on this branch of the nondeterminism.

2.3 If the top of stack is the symbol $, enter the accept state.
Doing so accepts the input if it has all been read.
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Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.
(If).
Simplified PDA:
I It has a single accept state {qaccept}.
I It empties its stack before accepting.
I Each transition either pushes a symbol onto the stack, or

pops one off the stack, but it does not do both at the same
time.

Claim
Every PDA has an equivalent simplified PDA.
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Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.
(If). Give (Q,Σ,Γ, δ, q0, {qaccept}). We construct CFL G.

122 CHAPTER 2 / CONTEXT-FREE LANGUAGES

PROOF Say that P = (Q,Σ,Γ, δ, q0, {qaccept}) and constructG. The variables
of G are {Apq| p, q ∈ Q}. The start variable is Aq0,qaccept . Now we describe G’s
rules in three parts.

1. For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if δ(p, a, ε) contains (r, u)
and δ(s, b, u) contains (q, ε), put the rule Apq → aArsb in G.

2. For each p, q, r ∈ Q, put the rule Apq → AprArq in G.

3. Finally, for each p ∈ Q, put the rule App → ε in G.

You may gain some insight for this construction from the following figures.

FIGURE 2.28

PDA computation corresponding to the rule Apq → AprArq

FIGURE 2.29

PDA computation corresponding to the rule Apq → aArsb

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.

Figure: Apq → aArsb
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Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Proof.
(If). Give (Q,Σ,Γ, δ, q0, {qaccept}). We construct CFL G.
with variables set {Apq | p, q ∈ Q}, start variable Aq0,qaccept . The
rules are as followings:

1. For each p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if
(r, u) ∈ δ(p, a, ε) and (q, ε) ∈ δ(s, b, u), put the rule
Apq → aArsb in G.

2. For each p, q, r ∈ Q, put the rule Apq → AprArq in G.
3. Finally, for each p ∈ Q, put the rule App → ε in G.
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Theorem
A language is context free if and only if some pushdown
automaton recognizes it.

Claim
If Apq generates x, then x can bring PDA P from state p with
empty stack to state q with empty stack.

Claim
If x can bring PDA P from state p with empty stack to state q
with empty stack, Apq generates x.
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Closure Properties

Theorem
The context-free languages are closed under union,
concatenation, and kleene star.



Context Free Language 26/40

Closure Properties - Union

Proof.
N1 = (V1,Σ1, R1, S1) recognize A1,
N2 = (V2,Σ2, R2, S2) recognize A2. w.l.o.g. V1 ∩ V2 = ∅.

I Union. S is a new symbol. Let
N = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R, S), where
R = R1 ∪R2 ∪ {S → S1, S → S2}.
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Closure Properties - Concatenation

Proof.
N1 = (V1,Σ1, R1, S1) recognize A1,
N2 = (V2,Σ2, R2, S2) recognize A2. w.l.o.g. V1 ∩ V2 = ∅.

I Concatenation. S is a new symbol. Let
N = (V1 ∪ V2 ∪ {S},Σ1 ∪ Σ2, R, S), where
R = R1 ∪R2 ∪ {S → S1S2}.
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Closure Properties - Kleene Star

Proof.
N1 = (V1,Σ1, R1, S1) recognize A1.

I Kleene Star. S is a new symbol. Let
N = (V1 ∪ {S},Σ1, R, S), where
R = R1 ∪ {S → ε, S → SS1}.
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Theorem
The intersection of a context-fee language with a regular
language is a context-free language.

Proof.
PDA M1 = (Q1,Σ,Γ1, δ1, s1, F1) and
DFA M2 = (Q2,Σ, δ2, s2, F2).
Build M = (Q,Σ,Γ1,∆, s, F ), where
I Q = Q1×Q2;
I s = (s1, s2);
I F = (F1, F2), and
I ∆ is defined as follows

1. for each PDA rule (q1, a, β)→ (p1, r) and each q2 ∈ Q2 add
the following rule to ∆

((q1, q2), a, β)→ ((p1, δ2(q2, a)), r)

2. for each PDA rule (q1, ε, β)→ (p1, r) and each q2 ∈ Q2 add
the following rule to ∆

((q1, q2), ε, β)→ ((p1, q2), r)
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The pumping lemma for context-free languages

Lemma
If A is a context-free language, then there is a number p (the
pumping length) where, if s is any string in A of length at least
p, then s may be divided as s = uvxyz satisfying the conditions

1. for each i ≥ 0, uvixyiz ∈ A,
2. |vy| > 0,
3. |vxy| ≤ p.
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Proof (1)

Let G be a CFG for CFL A. Let b be the maximum number of
symbols in the right-hand side of a rule. In any parse tree

using this grammar, every node can have no more than b
children.

126 CHAPTER 2 / CONTEXT-FREE LANGUAGES

states that the pieces v, x, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

PROOF IDEA Let A be a CFL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A.
The idea behind this approach is simple.

Let s be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in A, it is derivable from G and so has a parse tree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path, some variable symbolR
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence ofR and still get a legal parse tree.
Therefore, we may cut s into five pieces uvxyz as the figure indicates, and we
may repeat the second and fourth pieces and obtain a string still in the language.
In other words, uvixyiz is in A for any i ≥ 0.

FIGURE 2.35

Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 

content at any time if subsequent rights restrictions require it.
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Proof (2)

Let G be a CFG for CFL A. Let b be the maximum number of
symbols in the right-hand side of a rule. In any parse tree

using this grammar, every node can have no more than b
children. So, if the height of the parse tree is at most h, the
length of the string generated is at most bh. Conversely, if a
generated string is at least bh + 1 long, each of its parse trees
must be at least h+ 1 high.

We choose the pumping length

p = b|V |+1

For any string s ∈ A with |s| ≥ p, any of its parse trees must be
at least |V |+ 1 high.
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Proof (3)
Let τ be one parse tree of s with smallest number of nodes,
whose height is at least |V |+ 1. So τ has a path from the root
to a leaf of length |V |+ 1 with |V |+ 2 nodes. One variable R
must appear at least twice in the last |V |+ 1 variable nodes on
this path.

We divide s into uvxyz:
I u from the leftmost leaf of τ to the leaf left next to the

leftmost leaf of the subtree hanging on the first R,
I v from the leftmost leaf of the subtree hanging on the first
R to the leaf left next to the leftmost leaf of the subtree
hanging on the second R,

I x for all the leaves of the subtree hanging on the second R,
I y from the leaf right next to the rightmost leaf of the

subtree hanging on the second R to the rightmost leaf of
the subtree hanging on the first R,

I z from the leaf right next to the rightmost leaf of the subtree
hanging on the first R to the rightmost leaf of τ .
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Proof (4)

Condition 1. Replace the subtree of the second R by the
subtree of the first R would validate that for each i ≥ 0,
uvixyiz ∈ A.

Condition 2. If |vy| = 0, i.e., v = y = ε, then τ cannot have the
smallest number of nodes.

Condition 3. To see |vxy| ≤ p = b|V |+1, note that vxy is
generated by the first R. We can always choose R so that its
last two occurrences fall within the bottom |V |+ 1 high. A tree
of this height can generate a string of length at most b|V |+1 = p.
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Example
{anbncn | n ≥ 0} is not context free.

Proof.
Assume otherwise, and let p be the pumping length. Consider
s = apbpcp and divide it to uvxyz according to the Pumping
Lemma.
I When both v and y contain only one type of symbols, i.e.,

one of a, b, c, then uv2xy2z cannot contain equal number of
a’s, b’s, and c’s.

I If either v or y contains more than one type of symbols,
then uv2xy2z would have symbols interleaved.
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Example
{ww | w ∈ {0, 1}∗} is not context free.

Proof.
Assume otherwise, and let p be the pumping length. Consider
s = 0p1p0p1p and divide it to uvxyz with |vxy| ≤ p.
I If vxy occurs only in the first half of s, then the second half

of uv2xy2z must start with an 1. This is impossible
I Similarly vxy cannot occur only in the second half of s.
I If vxy straddles the midpoint of s, then pumping s to the

form 0p1i0j1p cannot ensure i = j = p.
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Theorem
The context free language are not closed under intersection or
complementation.

Proof.
Clearly {anbncm | m,n ≥ 0} and {ambncn | m,n ≥ 0} are both
CFL. However their intersection, {anbncn | n ≥ 0}, is not.

To the second part of the statement,

L1 ∩ L2 = L1 ∪ L2

rules out the closure under complementation.
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Language regular context-free
Machine DFA/NFA PDA
Syntax regular expression context-free grammar
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Problems from formal language theory

Decision Problems
I Acceptance: does a given string belong to a given

language?
I Emptiness: is a given language empty?
I Equality: are given two languages equal?
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Language Problems concerning CFL

Theorem
The following three problems:
I Acceptance: Given a CFG G and a string w, does G

accept w?
I Emptiness: Given a CFG G is the language L(G) empty?
I Equality: Given two CFG A and B is L(A) equal to L(B)?

The Acceptance and Emptiness problem for CFG are
decidable, the Equality problem is not decidable.
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