
Deterministic Context-Free Languages 1/70

Deterministic Context-Free Languages

Huan Long

Shanghai Jiao Tong University



Deterministic Context-Free Languages 2/70

Acknowledgements

Part of the slides comes from a similar course given by Prof.
Yijia Chen.

http://basics.sjtu.edu.cn/˜chen/

Textbook
Introduction to the theory of computation
Michael Sipser, MIT
Third edition, 2012

http://basics.sjtu.edu.cn/~chen/


Deterministic Context-Free Languages 3/70

Outline

Deterministic pushdown automata

Deterministic Context-Free Languages

Deterministic Context-Free Grammars

Relationship of DPDAs AND DCFGs



Deterministic Context-Free Languages 4/70

Review



Deterministic Context-Free Languages 5/70

Pushdown automata

Definition
A pushdown automata (PDA) is a 6-tuple (Q,Σ,Γ, δ, q0, F ),
where

1. Q is a finite set of states,
2. Σ is a finite set of input alphabet,
3. Γ is a finite set of stack alphabet,
4. δ : Q× Σε × Γε → P(Q× Γε) is the transition function,
5. q0 ∈ Q is the start state,
6. F ⊆ Q is the set of accept states.
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Formal definition of computation

Let M = (Q,Σ,Γ, δ, q0, F ) be a pushdown automata. M
accepts input w if w can be written as w = w1 . . . wm, where
each wi ∈ Σε and sequences of states r0, r1, . . . , rm ∈ Q and
strings s0, s1, . . . , sm ∈ Γ∗ exist that satisfy the following three
conditions.

1. r0 = q0 and s0 = ε.
2. For i = 0, . . . ,m− 1, we have (ri+1, b) ∈ δ(ri, wi+1, a),

where si = at and si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗.
3. rm ∈ F .
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Theorem
A language is context free if and only if some pushdown
automaton recognizes it.
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Deterministic pushdown automata

Definition
A deterministic pushdown automata (DPDA) is a 6-tuple
(Q,Σ,Γ, δ, q0, F ), where

1. Q is a finite set of states,
2. Σ is a finite set of input alphabet,
3. Γ is a finite set of stack alphabet,
4. δ : Q× Σε × Γε → (Q× Γε) ∪ {∅} is the transition function,
5. q0 ∈ Q is the start state,
6. F ⊆ Q is the set of accept states.

For every q ∈ Q, a ∈ Σ and x ∈ Γ, exactly one of the values

δ(q, a, x), δ(q, a, ε), δ(q, ε, x) and δ(q, ε, ε)

is not ∅.
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Acceptance of DPDA

Given a DPDA and a string, we say the machine will
I Accept: If a DPDA enters an accept state after it has read

the last input symbol of an input string, then it accepts that
string.

I Reject: In all other cases, it reject that string.

It could be one of the following cases:
1. the DPDA reads the entire input but does not enter an

accept state when it is at the end, or
2. the DPDA fails to read the entire input string,

(1) the DPDA tries to pop an empty stack, or
(2) the DPDA makes an endless sequence of ε−input moves

without reading any new inputs.
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The language of a DPDA is a deterministic context-free
language (DCFL).
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Lemma
Every DPDA has an equivalent DPDA that always reads the
entire input string.
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Proof (1)

Let P = (Q,Σ,Γ, δ, q0, F ) be a DPDA. P may fail to read the
entire input for two reasons:

1. It tries to pop an empty stack - hanging.
2. It makes an endless sequence of ε−input moves - looping.

To solve hanging, we initialize the stack with $. if $ is popped
from the stack before the end of the input, P reads to the end of
the input and rejects.

For looping, we identify the looping situations, i.e., those from
which no further input symbol is ever read, and reprogramming
P so that it reads and rejects the input instead of looping.
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Proof (2)

Add new states:
qstart, qaccept, qreject.

Then modify P in three steps.
(i) Once P enters an accept state, it remains in accepting states
until it reads the next input symbol:
I Add a new accept state qa for every q ∈ Q.
I For every q ∈ Q, if δ(q, ε, x) = (r, y), then set
δ(qa, ε, x) = (ra, y). If q ∈ F , also change δ(q, ε, x) = (ra, y).

I For each q ∈ Q and a ∈ Σ, if δ(q, a, x) = (r, y), then
δ(qa, a, x) = (r, y).

I Let F ′ be the set of new and old accept states.
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Proof (3)

(ii) P rejects if it tries to pop an empty stack.
I P initializes the stack with the symbol $ by
δ(qstart, ε, ε) = (q0, $).

I If P detects $ while in a non-accepting state, it enters qreject
and scans the input to the end.
More precisely, if q 6∈ F ′, then set δ(q, a, $) = (qreject, ε). For
a ∈ Σ, set δ(qreject, a, ε) = (qreject, ε).

I If P detects $ while in an accept state, it enters qaccept.
Then if any input remains unread, it enters qreject and scans
the input to the end.
More precisely, if q ∈ F ′, then set δ(q, ε, $) = (qaccept, ε). For
a ∈ Σ, set δ(qaccept, a, ε) = (qreject, ε).
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Proof (4)

(iii) Modify P to reject instead of making an endless sequence
of ε−input moves.
I For every q ∈ Q and x ∈ Γ, call (q, x) a looping situation if,

when P is started in state q with x ∈ Γ on the top of the
stack, if it never pops anything below x and it never reads
an input symbol.

I A loop situation is accepting, if P enters an accept state
during its subsequent moves, and otherwise rejecting.

I If (q, x) is an accepting looping situation, set
δ(q, ε, x) = (qaccept, ε).

I If (q, x) is a rejecting looping situation, set
δ(q, ε, x) = (qreject, ε).
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Theorem
The class of DCFLs is closed under complementation. That is,
if A is a DCFL, then

Σ∗ −A = {s ∈ Σ∗ | s 6∈ A}

is also a DCFL.
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Proof (1)

We cannot simply swap the accept non-accept states of a
DPDA. The DPDA may accept its input by entering both accept
and non-accept states in a sequence of moves at the end of the
input string.

Assume P = (Q,Σ,Γ, δ, q0, F ) is a DPDA for A which always
reads the whole input string. Moreover, once P enters an
accept state, it remains in accept states until it reads the next
input symbol.
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Proof (2)

We designate some states as reading states.
I If P in a state q reads an a ∈ Σ without popping the stack,

i.e., δ(q, a, ε) 6= ∅, then q is a reading state.
I If δ(q, a, x) = (r, y), then add a new state qx and modify δ

as
δ(q, ε, x) = (qx, ε) and δ(qx, a, ε) = (r, y).

Let qx be a reading state, and it is an accept state if q ∈ F .
Remove the accepting state designation from any state which
isn’t a reading state.
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Proof (3)

The modified DPDA is equivalent to P , but it enters an accept
state at most once per input symbol, when it is about to read
the next symbol.

Now, invert which reading states are classified as accepting.
The resulting DPDA recognizes the complementary language.
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Corollary
Any CFL whose complement is not a CFL is not a DCFL.

Example
{aibjck | i 6= j or j 6= k} is a CFL but not a DCFL.
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Endmarked languages

Definition
For any language A the endmarked language A a is defined by

{w a | w ∈ A}.

Here a is the special endmarker symbol.

Theorem
A is a DCFL if and only if A a is a DCFL.
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Proof (1)

Let P be a DPDA recognizing A. Then DPDA P ′ recognizes
A a by:

1. Simulating P until P ′ reads a.
2. P ′ accepts if P had entered an accept state during the

previous symbol.
3. P ′ does not read any symbols after a.
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Proof (2)

Let DPDA P = (Q,Σ ∪ {a},Γ, δ, q0, F ) recognize A a.
Modify P so that each of its moves does exactly one of the
following operations:
I read an input symbol;
I push a symbol onto the stack;
I or pop a symbol from the stack.

We construct a P ′ to simulate P . Every time P ′ pushes a stack
symbols of P ′, then it pushes a symbol representing a subset of
Ps states. i.e., Γ′ = Γ ∪ P(Q).

Initially, P ′ pushes the set R0 defined by

R0 = {q ∈ Q | when P is started in q with an empty stack
it eventually accepts without reading any input symbols.}
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Proof (3)

Then P ′ begins simulating P .
I To simulate a pop move, P ′ first pops and discards the set

of states on the top of the stack, then it pops again to
obtain the symbol in order to simulate P .

I To simulate a push move δ(q, ε, ε) = (r, x), P ′ examines the
set of states R on the top of its stack, and then it pushes x
and the set of states

S = {q | q ∈ F or δ(q, ε, x) = (r, ε) and r ∈ R}.
I P ′ simulates a read move δ(q, a, ε) = (r, ε) by examining

the set R on the top of the stack and entering an accept
state if r ∈ R.
I If P ′ is at the end of the input string, then it accepts.
I Otherwise, it will continue simulating P , so this accept state

must also record Ps state.
Thus we create this state as a second copy of Ps original
state, marking it as an accept state in P ′.
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Our goal is to define deterministic context-free grammars
(DCFG), the counterpart to deterministic pushdown automata.

We will show that these two models are equivalent on
endmarked languages.
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From derivations to reductions

Derivation
Derivations in CFGs begin with the start variable and proceed
top down with a series of substitutions according to the
grammar rules, until the derivation obtains a string of terminals.

Reduction
For defining DCFGs we take a bottom up approach, by starting
with a string of terminals and processing the derivation in
reverse, employing a series of reduce steps until reaching the
start variable.
I Each reduce step is a reversed substitution, whereby the

string of terminals and variables on the right-hand side of a
rule is replaced by the variable on the corresponding
left-hand side.

I The string replaced is the reducing string.
I The entire reversed derivation is a reduction.
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Formal definition of reductions

If u and v are strings of variables and terminals, write u� v to
mean that v can be obtained from u by a reduce step, i.e.,
v ⇒ u.

A reduction from u to v is a sequence

u = u1� u2� . . .� uk = v

and we say that u is reducible to v, written u
∗
� v, equivalently

v
∗⇒ u.

A reduction from u is a reduction from u to the start variable.

In a leftmost reduction, each reducing string is reduced only
after all other reducing strings that lie entirely to its left.
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Handle

Let w be a string in the language of CFG G, and let ui appear in
a leftmost reduction of w. In the reduce step ui� ui+1, say
that the rule T → h was applied in reverse.

Therefore ,
ui = xhy and ui+1 = xTy,

where h is the reducing string.

ui =

x︷ ︸︸ ︷
x1 · · ·xj

h︷ ︸︸ ︷
h1 · · ·hk

y︷ ︸︸ ︷
y1 · · · y`�

x︷ ︸︸ ︷
x1 · · ·xj

T︷︸︸︷
T

y︷ ︸︸ ︷
y1 · · · y` = ui+1

We call h, together with its reducing rule T → h, a handle of ui.
A string that appears in a leftmost reduction of some string in
L(G) is called a valid string. We define handles only for valid
strings.
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Valid string may have several handles, but only if the grammar
is ambiguous. Unambiguous grammars may generate strings
by one parse tree only, and therefore the leftmost reductions,
and hence the handles, are also unique. In that case, we may
refer to the handle of a valid string.

Observe that y, the portion of ui following a handle, is always a
string of terminals because the reduction is leftmost.
Otherwise, y would contain a variable symbol and that could
arise only from a previous reduce step whose reducing string
was completely to the right of h. But then the leftmost reduction
should have reduced the handle at an earlier step.

ui =

x︷ ︸︸ ︷
x1 · · ·xj

h︷ ︸︸ ︷
h1 · · ·hk

y︷ ︸︸ ︷
y1 · · · y`�

x︷ ︸︸ ︷
x1 · · ·xj

T︷︸︸︷
T

y︷ ︸︸ ︷
y1 · · · y` = ui+1
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Example (1)

Consider the grammar G:

R → S | T
S → aSb | ab
T → aTbb | abb

Then
L(G) = B ∪ C

where B = {ambm | m ≥ 1}
and C = {amb2m | m ≥ 1}

Some leftmost reductions:

aaabbb� aaSbb� aSb� S � R,

aaabbbbbb� aaTbbbb� aTbb� T � R.
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Example (2)

Consider the grammar G:

S → T a
T → T (T ) | ε

A leftmost reductions:

()()a� T ( )()a� T (T )()a� T ( )a� T (T )a� Ta � S.
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Forced handles

Definition
A handle h of valid string v = xhy is a forced handle if h is the
unique handle in every valid sting xhŷ where ŷ ∈ Σ∗.
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Definition
A deterministic context-free grammar (DCFG) is a context-free
grammar such that every valid string has a forced handle.

The above definition does not tell us how to decide whether a
given CFG is a DCFG.
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DK-test

For any CFG we can construct an associated DFA DK that can
identify handles. DK accepts its input z if

1. z is the prefix of some valid string v = zy, and
2. z ends with a handle of v.

Moreover, each accept state of DK indicates the associated
reducing rule(s). In a general CFG, multiple reducing rules may
apply, depending on which valid v extends z. But in a DCFG,
each accept state corresponds to exactly one reducing rule.
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Two provisos

1. The start variable of a CFG does not appear on the
right-hand side of any rule.

2. Every variable appears in a reduction of some string in the
grammar’s language.
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The plan

To construct DFA DK, we will construct an equivalent NFA K
and convert K to DK via the subset construction.

To understand K, we introduce an NFA J which
accepts every input string that ends with the right-hand
side of any rule.
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The NFA J

1. guesses a rule B → u to use,
2. guess at which point to start matching the input with u,
3. keeps track of its progress through u.

We represent this progress by placing a dot in the
corresponding point in the rule. yielding the following
dotted rules:

B → .u1u2 · · ·uk−1uk
B → u1.u2 · · ·uk−1uk

...
B → u1u2 · · ·uk−1.uk
B → u1u2 · · ·uk−1uk.
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Dotted rules

1. Each dotted rule corresponds to one state of J , i.e., for
B → u.v we have a state B → u.v .

2. The accept states B → u. , which correspond to the
complete rules.

3. We add a separate start state with a self-loop on all
symbols and an ε−move to B → .u for each rule B → u.

Thus J accepts if the match completes successfully at the end
of the input. If a mismatch occurs or if the end of the match
does not coincide with the end of the input, this branch of Js
computation rejects.
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The NFA K

I Like J , the states of K correspond to all dotted rules.
I It has a special start state that has an ε−move to S1 → .u

for every rule with S1 being the start variable.
I Shift-moves: for a rule B → uav where a can be a terminal

or variable we have

B → u.av a−→ B → ua.v

I ε−moves: for a rule B → uCV and C → r we have

B → u.Cv ε−→ C → .r

I The accept states are all B → u. .
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Lemma
K may enter state T → u.v on reading input z if and only if
z = xu and xuvy is a valid string with handle uv and reducing
rule T → uv, for some y ∈ Σ∗.
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Proof (1)

Assume K enters state T → u.v on reading input z, whose
path from the start state is viewed as runs of shift-moves
separated by ε− moves.
I The shift-moves are transitions between states sharing the

same rule, shifting the dot rightward over symbols read
from the input.

I In the ith run, the rule is Si → uiSi+1vi, where Si+1 is the
variable expanded in the next run.

I The penultimate run is for rule S` → u`Tv`, and the final
run has rule T → uv.

I So the input z = u1u2 . . . u`u = xu, because the strings ui
and u were the shift-move symbols read from the input.
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Proof (2)

Let
y′ = v` . . . v2v1

then xuvy′ is derivable in G.
I Fully expand all variables that appear in y′ until each

variable derives some string of terminals, and let y be the
resulting string.

I The string xuvy is valid because it occurs in a leftmost
reduction of w ∈ L(G), a string of terminals obtained by
fully expanding all variables in xuvy.

I uv is the handle in the reduction and its reducing rule is
T → uv.



Deterministic Context-Free Languages 43/70

Proof (3)
Assume that string xuvy is a valid string with handle uv and
reducing rule T → uv. We need to show that K may enter
T → u.v on reading input xu.
1. The parse tree is rooted at the start variable S1 and it must

contain the variable T because T → uv is the first reduce
step in the reduction of xuvy.

2. Let S2, . . . , S` be the variables on the path from S1 to T . All
variables in the parse tree that appear leftward of this path
must be unexpanded, or else uv would not be the handle.

3. Each Si leads to Si+1 by some rule Si → uiSi+1vi:

S1 → u1S2v1
S2 → u2S3v2

...
S` → u`Tv`
T → uv.
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Proof (4)

On the input z = xu, the path from K ’s start state to T → u.v
is:

1. K makes an ε−moves to S1 → .u1S2v1 .
2. Reading the symbols of u1, it performs the corresponding

shift-moves until it enters S1 → u1.S2v1 at the end of u1.

3. It makes an ε−move to S2 → .u2S3v2 and continues with

shift-moves on reading u2 until it reaches S2 → u2.S3v2 .
· · ·

4. After reading u` it enters S` → u`.Tv` which leads by an

ε−move to T → .uv .

5. Finally after reading u it is in T → u.v .
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Corollary
K may enter state T → h. on reading input z if and only if
z = xh and h is a handle of some valid string xhy with reducing
rule T → h.
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From K to DK

We convert NFA k to DFA DK by using the subset construction.
All states unreachable from the start state are removed.

Thus, each of DK ’s status thus contains one or more dotted
rules. Each accept state contains at least one completed rule.
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An example

S → Ta
T → T (T ) | ε

146 CHAPTER 2 / CONTEXT-FREE LANGUAGES

EXAMPLE 2.55

Here is the DFA DK showing that the grammar below is a DCFG.

S → Taaa
T → T(T) | ε

S    •Ta
T    •T (T )

T    •

T    T ( •T )

T    •T (T )

T    •

T S    T •a
T    T •(T )

T
T    T (T •)

T    T •(T )

S    Ta •
a

T    (T ) •
)

(

(

FIGURE 2.56

Example of a DK-test that passes

Observe that all accept states satisfy the DK-test conditions.

RELATIONSHIP OF DPDAS AND DCFGS

In this section we will show that DPDAs and DCFGs describe the same class of
endmarked languages. First, we will demonstrate how to convert DCFGs to
equivalent DPDAs. This conversion works in all cases. Second, we will show
how to do the reverse conversion, from DPDAs to equivalent DCFGs. The latter
conversion works only for endmarked languages. We restrict the equivalence
to endmarked languages, because the models are not equivalent without this re-
striction. We showed earlier that endmarkers don’t affect the class of languages
that DPDAs recognize, but they do affect the class of languages that DCFGs gen-
erate. Without endmarkers, DCFGs generate only a subclass of the DCFLs—those
that are prefix-free (see Problem 2.52). Note that every endmarked language is
prefix-free.

THEOREM 2.57

An endmarked language is generated by a deterministic context-free grammar if
and only if it is deterministic context free.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the 
eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional 
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The DK−test

Starting with a CFG G, construct the associated DFA DK.
Determine whether G is deterministic by examining DKs
accept states. G passes the DK−test if every accept state
contains

1. exactly one completed rule, and
2. no dotted rule in which a terminal symbol immediately

follows the dot, i.e., no dotted rule of the form B → u.av for
a ∈ Σ.
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Theorem
G passes the DK−test if and only if G is a DCFG.
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Proof (1)
Assume that G is not deterministic and show that it fails the
DK-test.
I Take a valid string xhy that has an unforced handle h.
I Some valid string xhy′ has a different handle ĥ 6= h, where
y′ is a string of terminals, i.e., y′ ∈ Σ∗. Thus xhy′ = x̂ĥŷ.

I If xh = x̂ĥ, then input xh sends DK to a state with two
completed rules, failing the DK-test.

I If xh 6= x̂ĥ, by symmetry, we assume that xh is a proper
prefix of x̂ĥ. Then y′ ∈ Σ+.
I Let q be the state that DK enters on input xh, which must

be accepting for h is a handle of xhy.
I A transition arrow must exit q as x̂ĥ sends DK to an accept

state via q. That transition arrow is labeled with a terminal
symbol for y′ ∈ Σ+.

Hence q contains a dotted rule with a terminal symbol
immediately following the dot, violating the DK-test.
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Proof (2)

Assume G fails the DK-test at some accept state q. We show
that G has an unforced handle.

q has a complete rule T → h., for it is accepting. Let z be a
string that leads DK to q. Then z = xh where some valid string
xhy has handle h with reducing rule T → h, for y ∈ Σ∗

I If q has another completed rule B → ĥ.. Then some valid
string xhy′ must have a different handle ĥ with reducing
rule B → ĥ. Hence, h is not a forced handle.
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Proof (3)

q has a complete rule T → h., for it is accepting. Let z be a
string that leads DK to q. Then z = xh where some valid string
xhy has handle h with reducing rule T → h, for y ∈ Σ∗

I q contains a rule B → u.av with a ∈ Σ.
I xh takes DK to q, so xh = x̂u, where x̂uavŷ is valid and

has a handle uav with reducing rule B → uav, for some
ŷ ∈ Σ∗.

I Expand all variables in v to get v′ ∈ Σ∗, and let y′ = av′ŷ
with y′ ∈ Σ∗.

I The following is a leftmost reduction

xhy′ = xhav′ŷ = x̂uav′ŷ
∗
� x̂uavŷ � x̂Bŷ

∗
� S.

I x̂uavŷ is valid, and we can obtain x̂uav′ŷ from it using a
rightmost derivation, so x̂uav′ŷ is also valid.

I The handle of x̂uav′ŷ either lies inside v′ (if v 6= v′) or is uav
(if u = v). In either case, the handle includes a or follows a
and thus cannot be h because h fully precedes a. Hence h
is not a forced handle.
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An example failing the DK−test

S → Ea
E → E + T | T
T → T × a | a

2.4 DETERMINISTIC CONTEXT-FREE LANGUAGES 145

When building the DFA DK in practice, a direct construction may be faster
than first constructing the NFA K . Begin by adding a dot at the initial point in
all rules involving the start variable and place these now-dotted rules into DK ’s
start state. If a dot precedes a variable C in any of these rules, place dots at the
initial position in all rules that have C on the left-hand side and add these rules
to the state, continuing this process until no new dotted rules are obtained. For
any symbol c that follows a dot, add an outgoing edge labeled c to a new state
containing the dotted rules obtained by shifting the dot across the c in any of the
dotted rules where the dot precedes the c, and add rules corresponding to the
rules where a dot precedes a variable as before.

EXAMPLE 2.53

Here we illustrate how the DK-test fails for the following grammar.

S → Eaaa
E → E + T | T
T → T x a | a

E
S    •Ea
E   •E+T
E   •T
T    •T×a

T    • a

S   E •a
E  E •+T

E   E+ •T
T   •T×a

T   • a

T   a •

S   Ea •

E   E+T •

T    T •×a

E   T •

T    T •×a

a

T   T×• a

T

T   T×a •

+

a

×

×

a
T

T   T×a •

a

FIGURE 2.54

Example of a failed DK-test

Notice the two problematic states at the lower left and the second from the
top right, where an accept state contains a dotted rule where a terminal symbol
follows the dot.
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An example passing the DK−test

S → Ta
T → T (T ) | ε
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EXAMPLE 2.55

Here is the DFA DK showing that the grammar below is a DCFG.

S → Taaa
T → T(T) | ε

S    •Ta
T    •T (T )

T    •

T    T ( •T )

T    •T (T )

T    •

T S    T •a
T    T •(T )

T
T    T (T •)

T    T •(T )

S    Ta •
a

T    (T ) •
)

(

(

FIGURE 2.56

Example of a DK-test that passes

Observe that all accept states satisfy the DK-test conditions.

RELATIONSHIP OF DPDAS AND DCFGS

In this section we will show that DPDAs and DCFGs describe the same class of
endmarked languages. First, we will demonstrate how to convert DCFGs to
equivalent DPDAs. This conversion works in all cases. Second, we will show
how to do the reverse conversion, from DPDAs to equivalent DCFGs. The latter
conversion works only for endmarked languages. We restrict the equivalence
to endmarked languages, because the models are not equivalent without this re-
striction. We showed earlier that endmarkers don’t affect the class of languages
that DPDAs recognize, but they do affect the class of languages that DCFGs gen-
erate. Without endmarkers, DCFGs generate only a subclass of the DCFLs—those
that are prefix-free (see Problem 2.52). Note that every endmarked language is
prefix-free.

THEOREM 2.57

An endmarked language is generated by a deterministic context-free grammar if
and only if it is deterministic context free.
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Relationship of DPDAs AND DCFGs

Theorem
An endmarked language is generated by a deterministic
context-free grammar if and only if it is deterministic context
free.



Deterministic Context-Free Languages 56/70

Endmarked languages

Definition
For any language A the endmarked language A a is defined by

{w a | w ∈ A}

Here a is the special endmarker symbol.

Theorem
A is DCFL if and only if A a is a DCFL.
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Prefix-free languages

Definition
A ⊆ Σ∗ is prefix-free if for every w ∈ A and every proper prefix
w′ of w we have w′ 6∈ A.

Lemma
Every A a is prefix-free.

Lemma
Every DCFG generates a prefix-free language.
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Prefix-free languages (cont’d)

The grammar

S → Ta
T → T (T ) | ε

is DCFG, which recognizes some A a.

However, A cannot be generated by DCFG, since it is not
prefix-free.
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Lemma
Every DCFG has an equivalent DPDA.
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Lemma
Every DPDA that recognizes an endmarked language has an
equivalent DCFG.
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Proof (1)

Let P = (Q,Σ,Γ, δ, q0, {qaccept}) be a DPDA. Recall the previous
construction: For each pair of states p and q, the grammar has
a variable Apq which generates all strings taking P from p with
an empty stack to q with an empty stack.

We modify P such that:
1. It has a single accept state qaccept.
2. It empties its stack before accepting, which cannot be

deterministic without reading the endmark a.
3. Each transition either pushes a symbol onto the stack or

pops one off the stack, but it does not do both at the same
time.
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Proof (2)

1. For every p, q, r, s ∈ Q, u ∈ Γ, and a, b ∈ Σε, if
δ(p, a, ε) = (r, u) and δ(s, b, u) = (q, ε), then add
Apq → aArsb.

2. For every p, q, r, s ∈ Q, add Apq → AprArq.
3. For every p ∈ Q, add App → ε.

To avoid ambiguity, we combine rules of type 1 and 2 into:

1-2 For every p, q, r, s, t ∈ Q, u ∈ Γ, and a, b ∈ Σε, if
δ(r, a, ε) = (s, u) and δ(t, b, u) = (q, ε), add the rule
Apq → ApraAstb.

Let G be re resulting grammar.
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Proof (3)

In a derivation of the original grammar, for each substitution
due to a type 2 rule Apq → AprArq, we can assume that

r is P ′s state when it is at the rightmost point where the
stack becomes empty midway.

Then the subsequent substitution of Arq must expand it using a
type 1 rule Arq → aAstb.
We can combine these two substitutions into a single type 1-2
rule

Apq → ApraAstb
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Proof (4)

In a derivation using the modified grammar G, if we replace
each type 1-2 rule Apq → ApraAstb by the type 2 rule
Apq → AprArq followed by the type 1 rule Arq → aAstb, we get
the same result.
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Proof (5)

We use DK-test to show that G is deterministic
I We need to analyze how P operates on valid strings by

extending its input alphabet and transition function to
process variable symbols in addition to terminal symbols.

I Add all symbols Apq to P ’s input alphabet and extend its δ
by defining

δ(p,Apq, ε) = (q, ε).

Set all other transitions involving Apq to ∅.
I To preserve P ’ deterministic behavior, if P reads Apq from

the input then disallow an ε-move.
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Proof (6)
Consider the derivation:

Aq0,qaccept = V0 ⇒ v1 ⇒ · · · vi ⇒ · · · ⇒ vk = w.

Claim
If P reads vi containing a variable Apq, it enters state p just prior
to reading Apq.

If i = 0, then vi = Aq0,qaccept and P starts in q0.

Assume the claim is true for some i ≥ 0.
I vi = xApqy and Apq is the variable substituted in the step
vi ⇒ vi+1. By IH, P enters state p after reading x, prior to
reading Apq. By the construction of G, the substitution
rules may of two types:

1. Apq → ApraAstb or
2. App → ε.
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Proof (7)

I Thus either vi+1 = xApraAst or vi+1 = xy.
I In the first case, when P reads ApraAstb in vi+1, we know it

starts in state p, because it has just finished reading x.
As P reads ApraAstb in vi+1, it enters the sequence of
states r, s, t, and q, due to the substitution rule’s
construction.
Therefore, it enters state p just prior to reading Apr and it
enters state s just prior to reading Ast.
The claim holds on variables in the y part because, after
reading b, P enters state q and then it reads y. On input vi,
it also enters q just before reading y, so the computation
agree on the y parts of vi and vi+1.
Obviously, the computations agree on the x parts.

I In the second case, no new variables are introduced, so
we only need to observe that the computations agree on
the x and y parts of vi and vi+1.
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Proof (8)

Claim
G passes the DK-test.
Select one of the accept states of DK for G. It contains a
completed rule R which can be

1. Apq → ApraAstb, or
2. App →.

We need to show in both cases that the state cannot contain
a. another complete rule, and
b. a dotted rule that has a terminal symbol immediately after

the dot.
In each case, we start by considering a string z on which DK
goes to the above accept state.
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Case 1a.

R is a completed type 1-2 rule. For any rule in this accept state,
z must end with the symbols preceding the dot in that rule
because DK goes to that state on z. Hence the symbols
preceding the dot must be consistent in all such rules.
I These symbols are ApraAstb in R so any other type 1-2

completed rule must have exactly the same symbols on the
right-hand side.

I The variables on the left-hand side must also agree, so the
rules must be the same.
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Case 1a. (cont’d)
I Assume that the accept state contains R and some type 3

completed ε-rule T = Ass →..
I From R we know that z ends with ApraAstb.
I P pops its stack at the very end of z because a pop occurs

at that point in R, due to G’s construction.
I According to the way we build DK, a completed ε-rule in a

state must derive from a dotted rule that resides in the
same state, where the dot isn’t at the very beginning and
the dot immediately precedes some variable.

I An exception occurs at DK ’s start state, where this dot
may occur at the beginning of the rule, but this accept state
cannot be the start state because it contains a completed
type 1-2 rule.

I In G, that means T derives from a type 1-2 dotted rule
where the dot precedes the second variable. From G’s
construction a push occurs just before the dot.

I This implies that P does a push move at the very end of z,
contradicting our previous statement.


